PHYSICAL REVIEW E 100, 050402(R) (2019)

Translational control of gene expression via interacting feedback loops
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Translation is a key step in the synthesis of proteins. Accordingly, cells have evolved an intricate array of
control mechanisms to regulate this process. By constructing a multicomponent mathematical framework we
uncover how translation may be controlled via interacting feedback loops. Our results reveal that this interplay
gives rise to a remarkable range of protein synthesis dynamics, including oscillations, step change, and bistability.
This suggests that cells may have recourse to a much richer set of control mechanisms than was previously

understood.
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Introduction. Control of gene expression refers to the pro-
cesses by which the production of proteins is regulated by the
cell. This is at the heart of the functioning of all living organ-
isms and it allows cells to adapt to their environment. Control
of gene expression can occur at multiple levels [1,2]. In this
Rapid Communication, we focus on translational control.

Translation is the process by which a protein is made from
a messenger RNA (mRNA) molecule. An mRNA consists
of a sequence of codons, each coding for a certain amino
acid. Translation is performed by molecular machines called
ribosomes, which bind to the beginning of the mRNA [5
untranslated region (5" UTR)], scan it for the start codon, and
hop from one codon to the next, thereby producing the chain
of amino acids which form the protein. When the ribosome
reaches the stop codon, the protein is complete, is released
into the cytoplasm, and the ribosome binds off the mRNA.

Recent years have witnessed an explosion of information
about how translational mechanisms regulate protein levels
[3]. Prominent examples include translational control during
cell stress [4], switching in the mechanism responsible for
translation initiation during the cell cycle [5], and translational
repression by microRNAs (miRNAs) [6-9]. One of the main
advantages of translational control is that allows for a rapid
cell response [10].

In this Rapid Communication, we focus on one important
case of translational control that has remained unexplored
within this research framework, namely, the interplay between
positive and negative regulatory mechanisms. Proteins that
bind to the 5" UTR region of mRNAs and hinder translation
play an important role in the regulation of gene expression
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[11-13]. Examples include proteins involved in neural dif-
ferentiation and plasticity [14], cognitive problems [15], cell
cycle and differentiation of mammalian cells [16,17], and
DNA repair [18]. On the other hand, virtually all mRNAs
are subject to positive feedback via ribosome recycling due to
their pseudocircular structure [19,20]. A particularly pertinent
example is the poly(A) binding protein (PABP) [21-25].
PABP binds to the 3’ end [poly(A) tail] of all mRNAs and
strongly affects both translational efficiency and stability of
all transcripts. Moreover, PABPs interact with the initiation
factors bound to the cap of the mRNA, facilitating the circular-
ization of the mRNA and consequent recycling of ribosomes
[19,26]. Finally, PABPs protect the mRNA from degradation
[27]. Therefore, PABPs exert control on protein synthesis via
a twofold mechanism, and as a consequence, the regulation
of PABP availability provides a global mode of translational
regulation.

Here, we show that the interplay between negative trans-
lational feedback and ribosome recycling gives rise to a
range of dynamical behavior in protein synthesis, including
oscillations, step change, and bistability. The existence of at
least one negative and one positive feedback loop has been
proved to be a necessary condition for oscillatory behavior
and multistability, respectively [28-32], but examples of this
dynamical behavior have been studied mainly in transcrip-
tional regulation [33] or coupling between transcription and
translation [34].

Modeling framework. Our mathematical framework is a
multicomponent model that accounts for translation, protein
complex formation, and binding of protein complexes and
ribosomes at the 5" UTR (see Fig. 1). At its core is a stochas-
tic model of one-dimensional transport extensively studied
in nonequilibrium statistical physics—the totally asymmetric
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FIG. 1. Schematic of translation model with ribosome recycling
and autonegative feedback. Competitive recycling (dashed line),
noncompetitive recycling (solid line). Each site can be occupied by
no more than one particle, so that at any time ¢ the state at site i given
by Si(¢) is either S;(r) =0 or S;(t) =1, withi =1, ..., L, where L
is the lattice length. Particles bind to the first site of the lattice at rate
&, then hop from one site to the next at rate y (usually rescaled to
one and done so here), and finally leave the lattice from the last site
at rate 8, marking the point where the associated protein synthesis is
completed. See text for further details.

simple exclusion process (TASEP) [35]. Here, we augment
this standard model with processes that explicitly account
for protein synthesis and associated positive and negative
feedback. This allows us to consider both steady-state and
dynamic behaviors. Our model predicts the average number of
particles per site p and the consequent production of proteins.
Ribosomes are assumed to attach at a rate @ and move along
the mRNA at a rate y. On reaching the final site, ribosomes
leave with rate 8 and are recycled at rate k. At this stage a
protein is produced. The protein number N is controlled by
a balance of synthesis and degradation with rate constant r.
Critical to the model is that both proteins and ribosomes feed
back to affect the loading rate & (see Fig. 1). We consider
lattices representing realistic mRNA lengths of 500 codons
and simulation times that are of the order of the half-life of
typical prokaryotic mRNAs [see Supplemental Material (SM)
[36]].

Translation. Ribosomes are represented by particles that
hop stochastically along the sites of a one-dimensional lattice
corresponding to the codons of the mRNA [37]. Note that
in the standard case (setting recycling and feedback to zero
here) steady-state traffic on the lattice can be classified into
three main phases: low density (LD) (¢ < B, o < 1/2), high
density (HD) (B8 < o, B < 1/2), and the maximal current
MCO) («, B = 1/2). Each of these phases has an associated
average density p and current J (average flux of particles),
which in the limit of an infinitely long lattice are given
by oip =, pup = 1 — B, pmc = 1/2, and J, = p,(1 — p,),
p € {LD, HD, MC} [38,39]. Corresponding expressions for
the modified TASEP considered here will be presented below.

Translational negative feedback. A protein can bind (often
in multimeric form) to its own mRNA, thereby blocking
the loading of ribosomes. Since protein binding and unbind-
ing to the mRNA is generally much faster than ribosome
loading [40], the probability of the start codon being free
for ribosome loading can be described by a Hill function
f(N)=1/[1+ (N/8)"], where N is the protein copy number,
0 measures the protein level that induces the half maximal

ribosome binding rate, and n measures the cooperativity of the
protein multimer (see SM [36]). Thus, the intrinsic initiation
rate is modified from « (the standard constant rate) to o f(N).

Translational positive feedback. The two ends of the
mRNA can interact, leading to a pseudocircular structure [41],
which, together with the recycling complex Rlilp [42], pro-
mote terminating ribosomes to start a new round of translation
on the same mRNA [43]. Following Ref. [44], a ribosome on
site i = L is assumed to either detach at rate 8 and enter the
reservoir of free ribosomes or move directly onto site i = 1
at a recycling rate k [if S;(¢t) = 0] to reinitiate the translation
process.

Protein degradation. Once synthesized, proteins enter the
intracellular pool, where they are subjected to degradation.
This can be a complex process [45,46]. However, as a detailed
description is not critical to the work presented, we adopt
the widely used approach of modeling removal as a Poisson
process with resultant removal rate rN.

Finally, note that if the processes detailed above are in a
steady state, then J/ = rN and hence N = N* = J/r and hence
we can write f = 1/[1 4 (41 J)"], where we have introduced
the reciprocal factor I := 1/(460r) that measures feedback
intensity (the factor of 4 is for algebraic convenience).

Models for interacting feedback loops. Experimental results
suggest that recycled ribosomes are channeled downstream
of the normal de novo initiation site and thus may evade the
blocking effect of the protein complex [47]. This is the case
discussed here and referred to as noncompetitive recycling.
However, the relative position of the protein complex binding
site and the recycled ribosome initiation site is not clear.
Hence, an alternative is that both recycled ribosomes and de
novo initiation are blocked by the protein complex (compet-
itive recycling) (see Fig. 1). We comment on this alternative
case below.

In the noncompetitive recycling case a system of ordinary
differential equations that determine the dynamics of the
average occupancies p; of the lattice sites is

dp
— 5 =af N1 p) + kol = p1) =pi(1 = p2),
de novo recycled
d,O,' .
e pi-1t(l = pi) — pi(1 — piy1), i=2,...,L—1,
dpr
i = pr—1(1 —pr) = BpL — k(1 — p1)pr . (D
t S————
recycled

By direct comparison with the corresponding system for the
standard TASEP, effective entry and exit rates can be defined
as follows,

aefi ;= f(N)+kpp, Ber:=B+k(1—p). (2

Effective rates for the competitive recycling case can be
defined equivalently (see SM [36]). However, the behavior
of these two cases is similar in almost all parameter regimes
and we present only the results for the noncompetitive case
highlighting where any differences in the two cases arise.
Steady-state analysis of protein production and ribosome
density. Setting the right-hand side of system 1 to zero and ap-
plying a mean-field approach leads to conditions that partition
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the steady states of the system into phases aligned with those
for the standard case (LD, HD, and MC). These conditions
are defined by direct substitution of @ and  with ag and Begy,
respectively, in the standard conditions stated above. In turn
and after some lengthy analysis, expressions for these phases
and their boundaries in terms of the system parameter are as
follows—note these definitions collapse to the standard cases
on setting k = I = 0 (see SM [36]).
Maximal current phase:

o < ak 1 "

2o +k(L+1") 2 otherwise.
3)
Within this region,
o« k
Geff = 7 T + p
2|:,3 + \/,3<,3 + a(l +I”)>i|
and
1 k
Bett = §|:/3 +\//3<ﬁ + - +I")>:|.
o
Low-density phase:
H(B+ k)1 -B)\"
/3|:]+(W> :|, 28 +k < 1,
a < “)
p , .
B+ k(l +1"), otherwise.

Within this region, there exists a unique, positive expression
for g that yields unique, positive expressions for Beg and N*.
High-density phase:

AIB+k)1—-p)\"
ﬂ[1+(w> i|, 28+k <1,
o> )

il 1 +1),

otherwise.
1-28

Within this region, there exist either one, two, or three positive
solutions, B, that yield positive expressions for o and N*.

For k, I > 0 and for a large range of parameter space, long-
run Monte Carlo simulations of the modified TASEP reveal
steady-state phases that are well characterized by Eqs. (3)—(5)
(see Figs. S1 and S2 [36]). However, a deeper analysis reveals
that the complex interplay of positive and negative feedback
can generate distinct and different dynamical behavior.

Negative feedback and ribosome recycling induce oscilla-
tions in cellular protein level. Monte Carlo simulations reveal
periodic oscillations in the number of proteins N (¢) within the
initiation limited regime (LD phase). The stochastic nature of
the individual simulations makes it difficult to systematically
differentiate periodic oscillations from random fluctuations
by visual inspection. However, a power spectrum analysis
provides a clear demarcation: A tight, single-peaked spectrum
is associated with periodic oscillations [Figs. 2(a) and 2(c)]
whereas a broadband response is obtained in the case of
stochastic fluctuations [Figs. 2(b) and 2(d)].
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FIG. 2. Simulation and power spectrum of protein level in the
low-density phase. (a), (b) Protein number as a function of time. Av-
erages over 5000 realizations of stochastic simulations (black lines),
20 example realizations (gray lines), and single example trajectory
(green line). Red dashed lines are mean field N* as computed using
the steady-state theory. (a) Typical simulation and (c) the correspond-
ing power spectrum from the region where oscillations are predicted
to exist (@ = 0.8; note aer = 0.17 < 0.5, therefore corresponding to
the system being in the LD phase). (b) Typical simulation and (d) the
corresponding power spectrum from the region where oscillations
are not predicted to occur (e = 0.05). In all cases 8 = 0.5, k = 0.2,
I1=5/2, r=0.002,n =5, L =500. 1 time unit = 1/22 s.

The time needed for a ribosome to transit the mRNA
induces a delay between initiation and completion of protein
synthesis. This generates a delay in the action of the negative
feedback—a mechanism known to generate oscillatory behav-
ior [48]. A simplified model for the protein copy number N (¢)
in the LD regime is

dN(t)
dt

=J@)—rN()
= teff(t — T)[1 — aeet —T)] —rN(), (6)

where T denotes the translational delay time [49]. Appealing
to Egs. (2) and setting p;, = J(#)/ Bess, it follows that

a(f+k)
ak + B[1 4+ @IrN®)']

(1) = (7
Substituting Eq. (7) into Eq. (6) results in a delay differential
equation for N. The translational delay can be estimated
as T =L/(1 — p*), where p* := aee(N*). This simplified
model reproduces the amplitude and period of the stochastic
simulations [cf. Figs. 2(a) and S3(d)]. It can be shown that on
increasing o the steady state of (6) can be driven unstable via
a Hopf bifurcation with the Hopf locus given by

Bcos(v/B: — 2 T)+r =0, (3
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FIG. 3. The Hopf locus and the effect of varying recycling and
feedback. Hopf bifurcation locus in the -8 plane computed using
Eq. (8). The effect of (a) varying feedback intensity and (b) recycling
is shown. Black arrows indicate the direction of increasing effect.
(a) I =25/14 (red), I = 25/12 (green), I = 25/10 (blue) with k =
0.2 and (b) k = 0.2 (red), k = 0.4 (green), k = 0.6 (blue) with [ =
25/10. L = 500 sites, r = 0.002, n = 5.

where B is a function of the system parameters (see SM
[36]). This locus forms a curve in the «-8 plane (see Fig. 3).
After some algebra, it can be shown that necessary condi-
tions for the existence of the Hopf locus are n > 1 and I >
F (o, B, k, n) for some positive function F (see SM [36]). The
condition n > 1 indicates that cooperativity in protein binding
is necessary for the onset of oscillations [50]. The second
condition indicates that the onset of oscillations occurs when
the feedback intensity is sufficiently strong.

As one would intuitively expect, increasing feedback in-
tensity induces the onset of oscillations at lower values of
the intrinsic loading rate « [see Fig. 3(a)]. Interestingly, the
Hopf locus also shifts left on increasing the recycling rate [see
Fig. 3(b)]. Hence, counterintuitively, ribosome recycling—a
positive feedback mechanism—also enhances the onset of
oscillations [51].

Interplay between recycling and negative feedback induces
bistability in protein production. In the MC and LD phases,
the current J is uniquely defined for any given parameter set.
On the contrary, in the HD phase J can be multiply defined:
After some algebra it can be shown that B¢ is the solution to
the following 2n + 1 degree equation (see SM [36]),

4RI BBlx(1 — Bert)"™ ' — (kB + o) Berr + Bl + k) = 0.
9

For k =0, Eq. (9) has the unique solution B.; = 8. For
I =0, Begr is uniquely defined by Begr = (o + k)/ (kS + «)
[44]. However, when both k,I > 0, Eq. (9) can have three
admissible solutions, depending on the value of «. Thus, for
suitably chosen parameters, there exists an interval of values
of o for which three steady-state values of N* = J/r coexist.
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FIG. 4. (a) Protein number N* as a function of the initiation
rate « as predicted by the steady-state theory. N* is first mono-
tonically increasing (LD phase), then decreasing (HD phase) [44].
N* then passes through twofold bifurcations, leading first into, and
then out of, the interval of coexistent states—with the upper and
lower branches (solid black lines) separated by an intermediate state
indicated (dashed gray line). (b) Monte Carlo simulation of the
protein number as a function of time (solid black line) with the
mean-field solutions N* (red dashed lines) from (a) (@ = 0.77). In
both cases, 8 = 0.015, k =0.8, I =6, r =0.002, n = 2, L = 500.
1 time unit = 1/22 s.

Figure 4(a) shows N* as a function of «, so that on increasing
o from zero to one, the model transits from the LD to the HD
phase (at @ ~ 0.5).

With values of o selected from the coexistence inter-
val shown in Fig. 4(a), simulations reveal that the number
of proteins remains centered on high or low states for a
timescale orders of magnitude larger than stochastic fluctua-
tions [Fig. 4(b)]. Rapid switching events between the favored
state are accompanied by a brief hiatus at an intermediate
state. The mean locations of these favored and intermediate
states are well approximated by the analytic expressions for
the steady states obtained from Eq. (9) [Fig. 4(a)]. Frequency
histograms reveal the effect of varying o across the bistable
region and, together with dwell-time histograms, indicate this
to be a memoryless stochastic switching process (see Figs. S5
and S6).

Fixing k (respectively /) and increasing I (respectively
k) increases the interval of values of o for which the fold
exists (fold width—see Fig. S7). Interestingly, the location
of the fold is also an increasing function of / and k. Indeed,
somewhat counterintuitively, for a fixed value of «, increasing
the intensity of the negative feedback I can force the system
from a low to high N* state. To understand this recall that
within the HD regime, any change of parameters leading to
a decrease in the ribosome density leads to an increase in
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FIG. 5. Step change in steady-state protein levels. (a) Signal-
response curve for protein number N* as a function of the initiation
rate o (black curves). Inadmissible solutions for (9) (red dotted
curve). The LD-HD boundary (vertical gray dashed line). (B) Time
series of the number of proteins: &« = 0.28 then switched to ¢ = 0.3
at time ¢ = 4.5 x 10°. In each case, B =0.015, k =0.263, I =6,
r=0.002,n =2, L =500. 1 time unit = 1/22s.

the ribosomal current: Increasing I decreases g, thereby
decreasing the density of ribosomes on the mRNA. Finally,
we note that bimodality in the protein production rate is a
result of a careful balance between the negative and positive
feedback loops and tuning one or the other can drive the
system both into and out of a bimodal response (see Fig.
S7). Indeed, in the case of competitive recycling no bistability

occurs. Following similar calculations, it can be shown that
the equation corresponding to Eq. (9) has a unique solution. It
appears that feedback dominates and locks the system into a
unique steady state in that case.

Feedback interplay can induce step changes in protein
production. If k is fixed to ensure bistability, a critical value
of I exists at which the right boundary of the bistable region
coincides precisely with the LD-HD boundary. In this case,
as the initiation rate o passes through the LD-HD boundary,
a discontinuity in the number of proteins occurs [Fig. 5(a)].
(Qualitatively similar behavior is obtained on keeping I fixed
and varying k.) This step change in the number of proteins
can be large, suggesting that small changes in the ribosome
initiation rate « can result in a significant shift in protein
levels. Simulations confirm this theoretical prediction. On
increasing « dynamically during a simulation, a step change
(around 75% reduction) was clearly induced on crossing the
LD/HD critical value [Fig. 5(b)]. This cliff-edge response is
another unique feature resulting from the interplay between
feedback and recycling.

Conclusions. Our model shows the rich dynamical behav-
ior caused by the interplay of negative and positive feedback
loops in translation, and it provides a general mathemati-
cal framework to analyze other kinds of gene expression
regulation, such as regulation exerted by miRNAs [52]. It
suggests that this interplay could provide cells with a versatile
mechanism to adapt their protein levels according to the envi-
ronment. The centrally important protein PABP is subject to
ribosome recycling and is known to exhibit translational neg-
ative feedback. Interestingly, PABP has also been implicated
in circadian oscillations [53]. Finally, disturbances of poly(A)
tail length have been linked to a number of physiological and
pathological processes. Therefore, a better understanding of
the interplay of ribosome recycling and translational negative
feedback has far-reaching consequences.
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