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Surprising variants of Cauchy’s formula for mean chord length
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We examine isotropic and anisotropic random walks which begin on the surface of linear (N), square (N x N),
or cubic (N x N x N) lattices and end upon encountering the surface again. The mean length of walks is equal to
N and the distribution of lengths n generally scales as n~!* for large n. Our results are interesting in the context
of an old formula due to Cauchy that the mean length of a chord through a convex body of volume V and surface
S is proportional to V/S. It has been realized in recent years that Cauchy’s formula holds surprisingly even if
chords are replaced by irregular insect paths or trajectories of colliding gas molecules. The random walk on a
lattice offers a simple and transparent understanding of this result in comparison to other formulations based on

Boltzmann’s transport equation in continuum.
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Cauchy (1789-1857) [1] derived a number of mathemati-
cally rigorous results with far reaching applications in physics.
Cauchy’s theorem for line integrals of holomorphic functions
in the complex plane is a prime example. Another result which
has found numerous applications in recent years concerns
the mean length of a chord inside a d-dimensional spheroid
body. Cauchy’s formula states that the average chord length
(over an ensemble of straight lines AB joining a randomly
chosen pair of points A and B on the inside surface of the
body) is proportional to the volume V of the body divided by
its surface S. The constant of proportionality 1, depends on
the dimension; 3 = 4 for a sphere and n, = 7 for a circle.
The simplicity of this result is appealing although not too
surprising because the volume and the surface are the only
free parameters in the problem and V/S has the dimension
of a length. What is surprising is that the result seems to
hold even if the straight chord AB is replaced by a random
zigzag trajectory of a gas molecule entering V at point A
and leaving it at point B (first exit). Even more surprising is
the apparent independence of the result from the details of
collisions between molecules. The mean chord length plays
a key role in several practical problems including neutron
scattering with nuclei [2], stereology [3], image analysis [4],
and understanding heterogeneous materials [5]. As may be
expected, a result with random walks replacing chords would
have a much greater applicability. It is observed that Cauchy’s
formula applies to some biological problems as well pertain-
ing to insect behavior. The average distance traveled by an ant
between its entry into a circular domain and the first exit from
it is proportional to the radius of the circle [6]. These and other
potential applications have inspired several theoretical studies
in recent years in generalizing the original Cauchy’s formula.

Extant studies assume that the trajectory of a particle
between its first entry and exit from V comprises n line
segments of lengths £, ¢, ..., ¢, oriented randomly with
respect to each other. The molecule moves at constant speed

2470-0045/2019/100(5)/050103(5)

050103-1

in continuum space and suffers n > 0 collisions with other
molecules during its stay in V. Analysis based on Feyn-
man’s path integral [7] as well as simplified versions of the
Boltzmann transport equation [8] leads to similar conclu-
sions. It predicts the average length of the trajectory (L) =
1+, +---+4£,) =ngR, where R is the radius of the
bounding d-dimensional sphere for isotropic random walks.
If the average length of a segment ¢; between two successive
collisions A = (¢;) = (L)/n exists in the limit n — oo, a
mean-field-like solution predicts that segment lengths ¢; are
distributed exponentially according to the probability P(¢;) =
exp(—¥;/A)/X\. The result (L) = nyR also holds for an arbi-
trary distribution of ¢; if a constraint is imposed between the
distribution of the first step £; that injects the walker inside
V and the distribution of subsequent step lengths [8]. In the
present Rapid Communication, we study the problem on an
N x N square lattice. Here each step of the walk is of unit
length and the total length of the walk is simply the number
of steps n between entry into the lattice and first exit from it.
Our main finding is that the key feature of Cauchy’s formula
holds for isotropic as well as anisotropic random walks on
the lattice. The average length of the walk (n) scales linearly
with N but surprisingly the distribution of walk lengths n in
different realizations of the walk follows a power law. In the
following we present numerical results as well as theoretical
support for them. The results may be easily generalized for
a d-dimensional hypercubic lattice for d > 2. The results
extend Cauchy’s formula on lattices but more interestingly
provide a simple intuitive understanding of the same based
on a one-dimensional random walk with two absorbers.
Figure 1 illustrates a computer generated isotropic random
walk on a small 10 x 10 lattice. In this particular realization
the walker takes a total of n = 68 steps through 27 lattice
points. Starting at the entry point (6,1) on the edge of the
lattice, she takes the first step to (6,2) and randomly walks
on for a total of 68 steps until she reaches the boundary
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FIG. 1. An isotropic random walk on a 10 x 10 lattice that starts
and ends on the boundary.

again at (1,6) and terminates the walk. The first and last steps
are necessarily perpendicular to the boundary but other steps
occur with equal probability in any of the four directions.
The directions of the first 8§ and the last 5 of the 68 steps
are shown by arrows. The remaining steps are left unmarked
because these are traversed back and forth several times
making overlapping loops of various lengths. This is not an
artifact of the small system size but rather a general feature
of restricted (surface to surface) random walks. The walks
tend to be loopy and localized in crowded neighborhoods
which are separated from each other by longer and less loopy
paths. On account of the number of loops that a walker may
make in a localized region, the size of the localized region
is not a true indicator of the length of walk through it. This
feature endows the system with a scale invariant property. It
gives rise to a power-law distribution for key quantities. In
our simulations on hypercubic lattices of N¢ sites we focus
on two quantities: (i) (n), the mean length of the walk, and
(ii) P(n; {p}; N), the distribution of lengths. Here {p} is a set
of 2d probabilities for moving in different directions on the
lattice. For example, an isotropic walk on a square lattice is
denoted by p = 0.25; 0.25; 0.25; 0.25. It serves to distinguish
between symmetric and asymmetric walks. Our main findings
are as follows: (i) (n) scales linearly with N for symmetric
and asymmetric walks, and (ii) P(n; {p}; N) shows power laws
for symmetric and a few asymmetric cases as well. The result
for (n) is in conformity with the general idea of Cauchy’s
formula. The power-law distribution is in contrast to extant
studies in continuum where a mean-field solution produces an
exponential distribution.

Figure 1 depicts just a single walk for illustrative purposes.
In simulations on larger systems presented below, each point
on the boundary (except corners on square and cubic lattices)
was assigned an equal probability of being chosen as the
starting point of the walk. The direction of the first step was
restricted to the nearest neighbor of the starting point lying
inside the boundary. The corner sites were excluded because
they did not have a nearest neighbor inside the boundary.
No restriction was placed on the direction of the walk after
the first step. Results were obtained by (a) averaging over
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FIG. 2. Average length (n) of a random walk starting and ending
on a surface of a d-dimensional hypercubic lattice of linear size
N. The values of p are the probabilities of walking in 2d different
directions. Thus the figure shows three isotropic and three anisotropic
walks. The data for two anisotropic walks is rescaled (see text) so that
all cases collapse on a line (n) = N.

a large number of randomly selected starting points on the
boundary, and (b) averaging over all points on the boundary
as starting points. As may be expected, results in the two
cases are indistinguishable from each other on the scale of the
figures. The numerical procedure outlined above is a natural
realization on lattices of the two conditions for the validity
of Cauchy’s formula [8]: (i) the starting position should be
uniformly distributed over the boundary, and (ii) the starting
direction should satisfy isotropic incident flux condition.

Figure 2 shows the result for (n) on an N? lattice for
10 < N < 103, d < 3, and different cases of symmetric as
well as asymmetric walks. We find (n) to be proportional
to N in each case within numerical errors. The constant of
proportionality is unity for symmetric walks but different
from unity for asymmetric walks for reasons that are simple
to understand and explained in the following. After scaling
by appropriate weight factors, the data for all cases collapse
on a single line as shown in Fig. 2. For a symmetric walk,
the walker moves to any of its nearest neighbors with equal
probability. In an asymmetric walk, the probabilities to go
to different neighbors are different. On a square lattice, we
consider two cases of asymmetry for exit from site (i, j). Case
I: the probability to go to (i — 1, j) or (i + 1, j) is equal to
0.10 but the probability to go to (i, j — 1) or (i, j + 1) is equal
to 0.40. Case II: the probability to go to (i — 1, j) is equal
to 0.10, and to (i + 1, j), (i, j— 1), or (i, j + 1) is equal to
0.30 in each direction. In other words, the asymmetry in case
I is between left-right (x axis) and up-down (y axis) steps. In
case II there is an asymmetry along the x axis in addition to
asymmetry between the two axes. The probabilities to go to
different neighbors add up to unity ensuring the walker does
move to a new site in each step. The proportionality of (n)
to N and the constants of proportionality can be understood
by focusing on the one-dimensional case. We shall return to it
shortly after presenting the results for the distribution of walk
lengths.
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FIG. 3. Probability of a walk comprising n steps shows a power-
law behavior except for one case shown in open black squares (see
text).

The distributions P(n; {p}; N) for fixed {p} and different
N are qualitatively similar. The range of n increases with
increasing N but the scatter in the data reduces when larger
number of realizations of the walk are used to calculate the
distribution. We also note that P(n; {p}; N) remains finite for
n > N. Thus even for N < 103, simulations generate huge
data files, particularly so for symmetric walks. Figure 3 is
drawn using reduced data based on logarithmic binning of
the raw data into a reasonable number of bins that preserve
the trends of the raw data. The raw data for Fig. 3 was
obtained for N = 10° and more than 10° realizations of the
walk. The important features of Fig. 3 are the following. For
symmetric walks, P(n; {p}; N) shows a power-law decrease
with increasing n over several decades. Within numerical
errors, P(n;{p};N) ~ n~!> for large n. For an asymmetric
walk belonging to case I, the distribution of walk lengths
is qualitatively similar to the one for the symmetric walk.
However, it is different for the asymmetric case II. In this case
we do not see a clear power law although the departure from
the power law does not look very pronounced on the scale of
Fig. 3. We can understand case II more clearly by referring to
Fig. 4, which shows the results for symmetric and asymmetric
walks on a 1d lattice of length N.

In one dimension, the problem can be solved analytically
[9,10]. On a linear lattice 1,2, ...,m,...N — 1, N with p the
probability of moving towards N, g = 1 — p the probability of
moving towards 1, sites 1 and N being absorbers, the average
number of steps S, required to start from m and get absorbed
at 1 is given by

m N 1 - .
Sm = - [ N] (f p > g;r = q/p);
g—-p q—plLl-r
Sy = m(N —m) (iftp=gq=1/2). (D

The probability that it takes exactly n steps to get absorbed
into attractor 1 is given by
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FIG. 4. Similar plot as in Fig. 3 but without logarithmic binning
of data and for selected cases. In the 1d asymmetric case the
probabilities of reaching the two absorbers are plotted separately. It
explains the shape of the anisotropic walk in 2d (see text).

The key points are that the average length of the walk
scales linearly with N, and the probability that a symmetric
walk is completed in n steps scales as n~'? for n — oo.
Simulations show that these features hold in two and three di-
mensions as well. The reason is as follows. Consider isotropic
walks on a square lattice. A walker may start from a randomly
selected site on an edge, say site (1, m) on the top edge (first
row). The first step brings her straight down to the second
row at point (2, m). Thereafter she can move in any direction
with equal probability taking one step at a time until she hits
one of the edges. We may imagine that each step is decided
by two tosses of a coin, the first toss deciding if she would
move along a column or a row, and the second deciding the
direction. Now consider a modified walk where she decides
to ignore the first toss and stays on the column m. She uses
the second toss to move up or down on column m with equal
probability. This modified walk is a one-dimensional walk
with rescaled time. The average number of steps needed to
hit either the top or the bottom edge is equal to N — 1, i.e.,
the average length of the walk scales linearly with N. We can
also imagine a walk confined to the first row moving left or
right with equal probability but skipping steps in the vertical
direction. The average length of the walk before it hits the
left or the right edge of the square is equal to m(N — m),
again scaling linearly with N. On a d-dimensional hypercubic
lattice we may consider components of the walk along each
dimension independently and so the qualitative features of the
composite walk are the same as for each component. This
explains why the average length of the walk scales linearly
with N, and the distribution of lengths as n~! irrespective of
the dimensionality of the lattice.

Similar reasoning may be used to understand asymmetric
walks. Figure 4 shows the distribution of lengths for three
cases: (i) 1d asymmetric; (ii) 1d symmetric (for comparison);
and (iii) 2d asymmetric. The idea behind Fig. 4 is to use the
1d example to understand the scaling of data for asymmetric
walks in Fig. 2 which make it collapse on a common curve for
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symmetric walks, and also to understand the shape of one 2d
curve in Fig. 3 which does not follow a clear power law. At
the risk of some repetition, the data for the 1d curves in Fig. 4
is obtained as follows. On the lattice 1,2, ..., N — 1, N, start
from site 2 or site (N — 1) with equal probability. Take a step
towards N with probability p or towards site 1 with probability
g = 1 — p. Count the number of steps n to reach site 1 or site
N, whichever occurs first. Average the distribution of n over
107 realizations of the walk. For p = 0.50 both absorbers are
reached equally frequently and the probability of reaching any
one of them scales as n~' for large . In higher dimensions as
well, the power-law distribution is obtained whenever the two
absorbers on opposite sides of a coordinate axis have equal
probability of encounter.

For the 1d asymmetric case, the two absorbers are not
reached with equal probability. Figure 4 shows that the prob-
abilities of hitting absorber 1 or absorber N at the end of n
steps are in the ratio 0.25:0.75. The probability of hitting N is
larger because the walk is biased towards it. To calculate the
average length (n) we have to use different weight factors for
the two absorbers. This is relatively easy in 1d because there
are only two absorbers but gets tedious in higher dimensions.
A simplification is provided by the fact that the weight factors
of different absorbers do not depend on the length n. Thus we
may not count the frequency of different absorbers separately
but simply rescale the cumulative number of instances where
the walk hits an absorber after n steps. In the two cases
of asymmetric walk {d = 2;p = 0.10;0.10;0.40;0.40} and
{d =2; p=0.10;0.30;0.30; 0.30}, the cumulative frequen-
cies need to be weighted by 0.89 and 1.20, respectively, to
make (n) vs N data collapse on a single line as shown in Fig. 2.

The probability to hit the absorber N comprises two dis-
jointed parts: a part that starts at 0.375 at n = 1 and decreases
rapidly for higher odd values of n, and another part with
a peak around n =~ 2000. The exponentially decreasing part
corresponds to a walk starting at N — 1 and getting absorbed
at N after n=1,2,3... steps. The simulation data agrees
with the analytic solution mentioned above but the peak is
a finite size effect. There are two parameters of interest, n
and N. The analytic result applies to n < N. However, in
numerical simulations we may have n >> N, and a substantial
number of walks terminate at N for n & 2N. This accounts
for walks that start from site 2 and continue towards site N;
for p = 0.75, ¢ = 0.25, it takes nearly 2N steps to cover the
distance to N. As the asymmetry decreases, the following
effects set in: (i) rapidly decreasing branch tends to a slower
power-law decrease and extends to higher n; (ii) the peak
diminishes as well and may not remain disjoint from the other
part of the curve.

A combination of the above effects explains the 2d asym-
metric case {p = 0.10;0.30;0.30;0.30} in Fig. 4 if we con-
sider the following points: (i) asymmetry is along the x axis,
(i1) there is a peak at n =~ 5000, (iii) 10% of 5000 steps
are taken towards column 1 and 30% towards column N;
(iv) 5000 x (0.30 — 0.10) = 1000 = N; (v) thus a walk start-
ing next to first column reaches the last column after 5000
steps and is terminated; (vi) P(n;{p};N) is rather close to
a power law because the probability to move along three
directions is each equal to 0.30 so there is a good deal of
isotropy in the system.

In conclusion, we have studied restricted random walks on
bounded d-dimensional hypercubic lattices of size N¢. The
walks start and end on the surface of the lattice. The starting
points are uniformly distributed over the surface, and the first
step of each walk is perpendicular to the surface and directed
inwards. These conditions are the lattice analog of uniform
and isotropic incident flux associated with the Cauchy formula
for random walks in continuum space bounded by an ellipsoid
surface [8]. As in the continuum case, the average length of the
walk is proportional to the volume divided by the surface of
the lattice. The constant of proportionality depends on the ge-
ometry of the problem. On the hypercubic lattice the average
length is equal to NV, i.e., the closest distance between the face
of the hypercube where the walk starts and the face opposite to
it. Of course, not all walks end on the opposite face and even
those that may end on it have a distribution of lengths. We find
the lengths of the walk have a power-law distribution with the
exponent —3/2 within numerical errors. The geometry of the
hypercube and the condition of uniform and isotropic incident
flux conspire to pair a shorter walk with a longer walk nearly
in a detailed balance manner. This leads to an average value of
the length equal to N as mentioned above. The lengths have a
power-law distribution if the random walk is symmetric, i.e.,
if it has an equal probability of taking a step towards any
one of the 2d faces of the cube. The power-law distribution
also holds in cases when the walk is symmetric between each
pair of opposite faces, but not necessarily symmetric between
different pairs. The power law is lost if the symmetry between
opposite faces is lost.

The results presented here may have a broader significance
on two accounts. Firstly, random walks are used to model a
large number of statistical physics problems. They are primary
models of diffusion, which is a basic mechanism for the
evolution of statistical systems. Diffusion is used not only
to understand a system’s evolution from a nonequilibrium to
an equilibrium state but also to understand equilibrium and
steady states. Thus different variants of random walks may be
useful in understanding the richness of diffusion phenomena
including anomalous diffusion [11]. Recent studies of diffu-
sion with stochastic resetting [12] are also interesting in this
context. Stochastic resetting effectively reduces the domain of
an otherwise perennial random walk and has a marked effect
on its likelihood to hit a specified trap and get terminated. The
random walks studied here are confined to a bounded space
and this too has a strong effect on their properties. It may
be interesting to explore if there are any general principles
governing the effect of a bounded domain on the properties of
random walks inside it. However, this is somewhat outside the
scope of the present study.

Secondly, and not entirely unrelated to the point made
above, our study highlights the effect of the surface on the
dynamics of the system bounded by it. Often statistical models
in the thermodynamic limit ignore surface effects and focus
on the deep interior of the volume. This also includes sev-
eral boundary value problems outside the realm of statistical
physics. The role of surface is merely to fix the boundary
conditions for the differential equations to be solved. The
possibility of some physical quantities depending only on the
ratio of volume to surface but independent of the dynamics
inside volume may offer new insights and therefore needs
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further exploration. Even in cases where surfaces play a
more direct role in the theoretical understanding, Cauchy’s
formula may provide a different viewpoint. For example,
some reflection shows that it can be used to obtain an alternate
understanding of gas laws without the stringent assumptions

of an ideal gas. We hope this Rapid Communication is a small
step in this direction.
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