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Multiparameter universality and directional nonuniversality of exact anisotropic critical correlation
functions of the two-dimensional Ising universality class
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We prove the validity of multiparameter universality for the exact critical bulk correlation functions of the
anisotropic square-lattice and triangular-lattice Ising models on the basis of the exact scaling structure of the
correlation function of the two-dimensional anisotropic scalar ϕ4 model with four nonuniversal parameters.
The correlation functions exhibit a directional nonuniversality due to principal axes whose orientation depends
on microscopic details. We determine the exact anisotropy matrices governing the bulk and finite-size critical
behavior of the ϕ4 and Ising models. We also prove the validity of multiparameter universality for an exact
critical bulk amplitude relation.
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The concept of bulk universality classes plays a fundamen-
tal role in the theory of critical phenomena [1–3]. They are
characterized by the spatial dimension d and the symmetry
of the ordered state which we assume here to be O(n) sym-
metric with an n-component order parameter. Within a given
(d, n) universality class, critical exponents and bulk scaling
functions are independent of microscopic details, such as the
couplings of (short-range) interactions or the lattice structure.
It was asserted that, once the universal quantities of a uni-
versality class are given, two-scale-factor universality [2–5]
implies that the asymptotic [small t = (T − Tc)/Tc] critical
behavior of any particular system of this universality class
is known completely provided that only two nonuniversal
amplitudes are specified. It has been shown [6–9], however,
that it is necessary to distinguish subclasses of isotropic and
weakly anisotropic systems within a universality class and
that two-scale-factor universality is not valid for the subclass
of weakly anisotropic systems. In the latter systems there
exists no unique bulk correlation-length amplitude but rather
d independent nonuniversal amplitudes in the d principal
directions. This has a significant effect on the anisotropic
bulk order-parameter correlation function G(x, t ) but a clear
classification of its universality properties was not developed
[8].

Recently [10] the notion of multiparameter universality,
originally introduced for critical amplitude relations [8], was
formulated for the scaling structure of G(x, t ) within the
anisotropic ϕ4 theory where G(x, t ) depends on up to d (d +
1)/2 + 1 independent nonuniversal parameters in d dimen-
sions, i.e., up to four or seven parameters in two or three
dimensions, respectively. It was hypothesized that multipa-
rameter universality of G(x, t ) is valid not only for “soft-spin”
ϕ4 models but also for all weakly anisotropic systems within
a given universality class including fixed-length spin models
such as Ising (n = 1), XY (n = 2), and Heisenberg (n =
3) models. No general proof was given for this hypothesis,
except for an analytic verification for a special example within
the two-dimensional anisotropic Ising model at T = Tc [11].

A unique opportunity for a significant test of the valid-
ity of multiparameter universality is provided by an analy-
sis of the exact results for the bulk correlation function of
the anisotropic “square-lattice” and “triangular-lattice” Ising
models [12,13] in the asymptotic scaling region near Tc.
Such an analysis is made possible by deriving the exact
scaling structure of G(x, t ) of the general anisotropic two-
dimensional scalar ϕ4 lattice model which belongs to the same
universality class as the d = 2 Ising model [14]. We intro-
duce angular-dependent correlation lengths which permits us
to determine the principal axes via an extremum criterion
and to derive the exact anisotropy matrices. This leads to a
proof of multiparameter universality for the Ising models with
three or four nonuniversal parameters for the square-lattice
or triangular-lattice model, respectively. However, the corre-
lation functions exhibit a directional nonuniversality due to
the principal axes whose orientation depends on microscopic
details. This dependence is different for Ising and ϕ4 models.
Our results are expected to make an impact on scaling theories
for G(x, t ) of real anisotropic systems such as magnetic mate-
rials [15], superconductors [16], alloys [17], and solids with
structural phase transitions [18], where angular-dependent
correlation functions are measurable quantities. Multiparame-
ter universality is relevant also for finite-size effects, e.g., the
critical Casimir force [10].

It is necessary to first reformulate the standard scaling form
of Giso

± (x, t ) for isotropic systems. In the limit of large |x| and
large ξ iso

± (t ) = ξ iso
0±|t |−ν at fixed |x|/ξ iso

± � 0 the scaling form
for n = 1 and 2 � d < 4 reads [3,19]

Giso
± (x, t ) = Diso

1 |x|−d+2−η�±(|x|/ξ iso
± ), (1)

with the universal scaling function �±(y) above (+) and be-
low (−) Tc and the nonuniversal amplitudes Diso

1 , ξ iso
0± , where

ξ iso
0+/ξ iso

0− is universal but Diso
1 still contains a universal part.

We employ the “true” (exponential) correlation lengths ξ iso
±

which are defined by the exponential decay ∼exp(−|x|/ξ iso
± )

of �± for large |x|/ξ iso
± and which are universally related to
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the second-moment correlation lengths [3]. The exact sum
rule [8] χ iso

± (t ) = ∫
dd x Giso

± (x, t ) yields the susceptibility

χ iso
± (t ) = Diso

1 [ξ iso
± (t )]2−η �̃± = �iso

± |t |−γ , (2)

�̃± = 2πd/2�(d/2)−1
∫ ∞

0
ds s1−η�±(s), (3)

with 2 − η = γ /ν and the universal quantities �̃+, �̃−, and
�iso

+ /�iso
− . This implies Diso

1 = �iso
+ (ξ iso

0+ )−2+η/�̃+, thus Giso
±

can be uniquely divided into universal and nonuniversal parts

Giso
± (x, t ) = �iso

+
(
ξ iso

0+
)−2+η |x|−d+2−η�±(|x|/ξ iso

± ), (4)

�+(y) = �+(y)/�̃+, �−(y) = �−(y)/�̃+, (5)

with two nonuniversal amplitudes �iso
+ and ξ iso

0+ and the univer-
sal scaling function �±(y). At Tc it is related to the universal
constants [2,8,20] Q̃3 and Q3 by

�+(0) = �−(0) = Q̃3 = 2d−2+η�[(d − 2 + η)/2]

(4π )d/2�[(2 − η)/2]
Q3. (6)

For d = 2, �iso
+ and ξ iso

0+ are related to the amplitude Biso of
the order parameter Miso = Biso|t |1/8 and to the specific-heat
amplitude Aiso through [3]

(Biso)2(�iso)−1
(
ξ iso

0+
)2 = Qc (7)

and Aiso(ξ iso
0+ )2 = (R+

ξ )2 where Qc and R+
ξ = (2π )−1/2 are

universal constants according to Eqs. (2.50), (3.49), and (6.31)
of [2]. We present the exact value of Qc in Eq. (76) below. Our
only assumption is the validity of two-scale-factor universality
for isotropic systems which implies that �±, Qc, R+

ξ are the
same for isotropic Ising and ϕ4 models with γ = 2 − η =
7/4, ν = 1, and ξ iso

0+/ξ iso
0− = 2.

We first consider the anisotropic scalar ϕ4 model on Ñ
lattice points xi ≡ (xi1, xi2) of a square lattice with lattice
spacing ã and finite-range interactions Ki, j . The Hamiltonian
divided by kBT and the bulk correlation function are defined
by [8]

H = ã2

⎡
⎣ Ñ∑

i=1

(
r0

2
ϕ2

i + u0ϕ
4
i

)
+

Ñ∑
i, j=1

Ki, j

2
(ϕi − ϕ j )

2

⎤
⎦, (8)

G±(xi − xj , t ) = lim
Ñ→∞

[〈ϕiϕ j〉 − M2], (9)

where M2 = lim|xi−xj|→∞ 〈ϕiϕ j〉. The large-distance
anisotropy is described by the anisotropy matrix

A = (Aαβ ) =
(

a c
c b

)
, (10)

Aαβ = lim
Ñ→∞

Ñ−1
Ñ∑

i, j=1

(xiα − x jα )(xiβ − x jβ )Ki, j, (11)

where weak anisotropy requires det A > 0, a > 0, b > 0
which ensures unchanged critical exponents [6]. It has been
shown recently [10] that G±(x, t ) has the asymptotic scaling
form

G±(x, t ) = �+(ξ̄0+)−7/4

[x · Ā−1x]1/8
�±

(
[x · Ā−1x]1/2

ξ̄±(t )

)
(12)

with Ā = A/(det A)1/2 where �± is the same scaling function
as that in Eq. (4) for isotropic systems (Ā = 1). We have ob-
tained (12) from Eqs. (5.61) and (5.32) of [10] by employing
the sum rule for the susceptibility of the anisotropic system
χ±(t ) = ∫

d2x G±(x, t ) = �±|t |−7/4 which yields the nonuni-
versal constant D1 = �+(ξ̄0+)−7/4/�̃+ [10]. Here ξ̄±(t ) is the
geometric mean

ξ̄±(t ) = ξ̄0±|t |−1, ξ̄0± = [
ξ

(1)
0± ξ

(2)
0±

]1/2
(13)

of the principal correlation lengths ξ
(α)
± (t ) = ξ

(α)
0± |t |−1 where

the principal axes are defined by the eigenvectors e(α)

determined by Ae(α) = λαe(α), α = 1, 2. The eigenval-
ues λα > 0 determine the amplitudes ξ

(α)
0± = λ1/2

α ξ ′
0± with

ξ
(α)
0+ /ξ

(α)
0− = ξ ′

0+/ξ ′
0− = 2 where ξ ′

0± is the correlation length
of the isotropic system obtained after a shear transfor-
mation that consists of a rotation and a rescaling in
the e(α) directions [6–8,10]. The amplitudes ξ

(α)
0+ are in-

dependent of the amplitude B of the order parameter
M = B|t |1/8 of the anisotropic model. From the shear
transformations [7,8,10] (ξ ′

0+)2 = (det A)−1/2(ξ̄0+)2, (B′)2 =
(det A)1/2B2, A′ = (det A)1/2A, and �′

+ = �+ we find the
relations for the anisotropic system

B2�−1
+ (ξ̄0+)2 = Qc (14)

and A(ξ̄0+)2 = (R+
ξ )2 where Qc and R+

ξ are the same as
in the isotropic case. Thus the susceptibility amplitude �+
is determined by three independent nonuniversal parameters
ξ

(1)
0+ , ξ

(2)
0+ , B whereas the specific-heat amplitude A is deter-

mined by two parameters ξ
(1)
0+ , ξ

(2)
0+ , and B2 can be expressed

as B2 = A�+Qc/(R+
ξ )2. The individual lengths ξ

(α)
0+ cannot be

determined from A, B, and �+.
Contours of constant correlations are ellipses determined

by x · Ā−1x = const whose excentricity and orientation are
characterized by

q = (λ1/λ2)1/2 = ξ
(1)
0±/ξ

(2)
0± (15)

and by the angle � determining the principal axes, i.e.,

e(1) =
(

cos �

sin �

)
, e(2) =

(− sin �

cos �

)
. (16)

For a 	= b we define

λ1 = a + b

2
+ a − b

2
w, λ2 = a + b

2
− a − b

2
w, (17)

w = [1 + 4c2/(a − b)2]1/2 � 1, (18)

tan � = [b − a + (a − b)w]/(2c), (19)

and for a = b, c 	= 0

λ1 = a + c, λ2 = a − c, � = π/4. (20)

From Ā = U−1λ̄U with the rotation and rescaling matrices
U = ( c� s�

−s� c�
) and λ̄ = (q 0

0 q−1 ) we obtain

Ā(q,�) =
(

q c2
� + q−1s2

� (q − q−1)c�s�

(q − q−1)c�s� qs2
� + q−1c2

�

)
(21)

with the abbreviations c� ≡ cos �, s� ≡ sin �. Using po-
lar coordinates x = (x1, x2) = (r cos θ, r sin θ ) (Fig. 1) we
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Ω

e(2)

e(1)

θ

x1

x2

FIG. 1. Elliptical contour of constant correlations of G±(x, t ),
(23)–(25). Dotted arrows e(1) and e(2): principal directions for a >

b > 0, c > 0 with 0 < � < π/4. Dashed arrow: vector x in the
direction θ .

define the angular-dependent correlation length ξ±(t, θ, q,�)
by

[x · (Ā−1x)]1/2/ξ̄±(t ) = r/ξ±(t, θ, q,�) (22)

which yields the exact reformulation of (12)

G±(x, t ) = �+ (ξ̄0+)−7/4

[r f (θ, q,�)]1/4
�±

(
r

ξ±(t, θ, q,�)

)
(23)

where the directional dependence is described by

ξ±(t, θ, q,�) = ξ̄±(t )/ f (θ, q,�), (24)

f (θ, q,�) = [(q sin2 � + q−1 cos2 �) cos2 θ

+ (q cos2 � + q−1 sin2 �) sin2 θ

+ (q−1 − q) cos � sin � sin(2θ )]1/2

= [q sin2(θ − �) + q−1 cos2(θ − �)]1/2. (25)

In the limit c → 0 at fixed a − b 	= 0 a “rectangular”
anisotropy is obtained with λ1 = a, λ2 = b, q = (a/b)1/2 =
ξ

(1)
0±/ξ

(2)
0± , � = 0, and

f (θ, q, 0) ≡ frec(θ, q) = (q−1 cos2 θ + q sin2 θ )1/2. (26)

For q 	= 1 the requirement ∂ξ±(t, θ, q,�)/∂θ = 0 yields
sin[2(θ − �)] = 0 implying that ξ± has extrema at θ (1) = �

and θ (2) = � + π/2 defining the two principal directions.
In contrast to Giso

± (x, t ), G±(x, t ) depends on four inde-
pendent nonuniversal parameters �+, ξ̄0+, q,� which violates
two-scale-factor universality. Unlike q, the angle �(a, b, c)
cannot be parametrized in terms of ξ

(α)
0± but depends on the

lattice structure and the microscopic couplings Ki, j through
a, b, c. Thus Ā depends not only on bulk correlation lengths
through q but also on other microscopic details through �.
The parametrization of (15)–(26) is valid in the unrestricted
range 0 < q < ∞ above, at, and below Tc [21]. The same
matrix Ā also enters the finite-size critical behavior [10].
These results derived for a ϕ4 model on a square lattice remain
valid more generally for a ϕ4 model with couplings Ki, j on
two-dimensional Bravais lattices [8].

The hypothesis of multiparameter universality [10] pre-
dicts that the critical correlation functions of all anisotropic

E1

e(2)

E3 e(1)E2

x1

x2

Ωtr

FIG. 2. Lattice points of the “triangular-lattice” Ising model (27)
on a square lattice with couplings E1, E2, E3. Dotted arrows e(1) and
e(2): principal directions for E1 > E2 > 0, E3 > 0 with 0 < �tr <

π/4.

Ising models with short-range interactions can be expressed in
the same form as (23)–(25) with the same universal functions
�± and f and the same critical exponents, but with up to
four different nonuniversal parameters. We shall show that
this is indeed valid for Ising models with the Hamiltonian
[12,13,22]

H Is =
∑

j,k

[−E1σ j,kσ j,k+1 − E2σ j,kσ j+1,k − E3σ j,kσ j+1,k+1],

(27)

where σ j,k = ±1 are spin variables on a square lattice (with
the lattice spacing ã = 1) with horizontal, vertical, and di-
agonal couplings E1 > 0, E2 > 0, E3 (Fig. 2). The exact
correlation function 〈σ0,0σM,N 〉± at vanishing external field
was calculated for E3 = 0 in Ref. [12] and for positive and
negative E3 	= 0 in Ref. [13], resulting in the scaling form

〈σ0,0σM,N 〉± = R−1/4F±(R/ξ Is
± , E1, E2, E3) (28)

with a nonuniversal scaling function F±, a dis-
tance R(E1, E2, E3), and a correlation length ξ Is

± =
ξ Is

0±(E1, E2, E3)|t |−1 with ξ Is
+/ξ Is

− = 2. The exact amplitude
C0±(E1, E2, E3) of the susceptibility was also calculated.
So far the universality properties of (28) have not been
analyzed in the literature [2,3,12,13,23], and the universal
part of the function F± has not been identified. In particular,
the principal axes and principal correlation lengths of the
triangular-lattice model (E3 	= 0) are as yet unknown, and
only a conjecture exists for the correlation lengths in the
direction of the bonds [24]. For comparison with (9) below Tc

we need to consider the subtracted correlation function

〈σ0,0σM,N 〉sub
± = 〈σ0,0σM,N 〉± − (MIs )2, (29)

where MIs(E1, E2, E3) is the spontaneous magnetization,
with MIs = 0 for T � Tc. We shall analyze three cases.

We start from the isotropic case E1 = E2 = E > 0, E3 = 0,
where R(E , E , 0) = (M2 + N2)1/2 ≡ R, and [12]

ξ Is
0+(E , E , 0) = (4βcE )−1 = [2 ln(1 + 21/2)]−1 ≡ ξ Is

0+, (30)

MIs(E , E , 0) = 25/16[ln(1 + 21/2)]1/8 |t |1/8 ≡ BIs|t |1/8,

(31)
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C0+(E , E , 0) = 219/8π
[
ξ Is

0+(E , E , 0)
]7/4

p+ ≡ CIs
0+, (32)

p+ = C0+(E , E , 0)/D = 0.159 284 695 8 . . . , (33)

with βc = (kBTc)−1, sinh 2βcE = 1. The constant p+ is ex-
pressed analytically in terms of a Painlevé function of the third
kind and its numerical value follows from Eq. (2.52S) of [12].
According to (4) we reformulate (29) as

〈σ0,0σM,N 〉sub
± = CIs

0+
(
ξ Is

0+
)−7/4

R1/4
�±(R/ξ Is

± ), (34)

�+(y+) = (219/8π p+)−1F̃+(y+), (35)

�−(y−) = (219/8π p+)−1[F̃−(y−/2) − 23/8(y−/2)1/4],
(36)

with y± = R/ξ Is
± , ξ Is

± ≡ ξ Is
0±(E , E , 0)|t |−1 where the functions

F̃+(y+) and F̃−(y−/2) are given by the right-hand side of
Eq. (2.39) of [12] with sinh 2βcE1 + sinh 2βcE2 replaced by
2 and with the argument θ replaced by y+/2 or y−/4, respec-
tively. The unsubtracted correlation function [12] 〈σ0,0σM,N 〉±
is easily obtained by dropping the last term in Eq. (36)
which comes from −(MIs )2 in Eq. (29). According to two-
scale-factor universality the functions �± identify the exact
universal scaling functions above and below Tc of all systems
in the subclass of isotropic systems in the (d = 2, n = 1)
universality class. In particular, �+(0) = �−(0) = Q̃3 is a
universal amplitude. Its exact value is Q̃3 = 0.270 969 . . .

where we have used Eq. (5.10S) of [12]. This implies Q3 =
0.414 131 . . . .

Now we turn to the case of a “rectangular” anisotropy
E1 	= E2, E3 = 0 where the condition of criticality is S1S2 =
1 with Sα = sinh 2βrec

c Eα, α = 1, 2 [12]. Using x1 = N =
r cos θ, x2 = M = r sin θ we derive from Eqs. (2.6), (2.8),
(2.10), and (2.44) of [12]

R(E1, E2, 0) = [qrecM2 + (qrec)−1N2]1/2 (37)

= r frec(θ, qrec), (38)

qrec = ξ
(1)rec
0± /ξ

(2)rec
0± = (S1/S2)1/2, (39)

ξ
(α)rec
0+ = S1/2

α

[
2βrec

c E1/S1/2
1 + 2βrec

c E2/S1/2
2

]−1
(40)

= 2ξ
(α)rec
0− , (41)

MIs(E1, E2, 0) = [
qrec + (qrec)−1

]1/16
[ξ̄ rec

− (t )]−1/8 (42)

≡ Brec|t |1/8, (43)

ξ̄ rec
± (t ) = ξ̄ rec

0±|t |−1, ξ̄ rec
0± = [

ξ
(1)rec
0± ξ

(2)rec
0±

]1/2
, (44)

where ξ
(1)rec
0± and ξ

(2)rec
0± are the correlation-length amplitudes

in the principal directions (1,0) and (0,1), respectively, cor-
responding to �rec = 0 and where frec(θ, qrec) is the same
function as defined in Eq. (26), with q replaced by qrec. From
Eq. (2.8) of [12] we derive

ξ Is
0+(E1, E2, 0) = [

2βrec
c (E1C1 + E2C2)

]−1

× (S1 + S2)1/2 = ξ̄ rec
0+ (45)

= 2ξ Is
0−(E1, E2, 0) = 2ξ̄ rec

0− , (46)

where Cα = coth 2βrec
c Eα . This identifies “the correlation

length ξ” in Ref. [12] as ξ̄ rec
+ (t ) above T rec

c and 2ξ̄ rec
− (t )

below T rec
c as follows from Eq. (2.31) of [12]. From Eqs.

(2.46a) and (2.48) of [12] we obtain the exact amplitude
Crec

0+ ≡ C0+(E1, E2, 0) in the form

Crec
0+ = 29/4π p+

(
ξ̄ rec

0+
)7/4

[qrec + (qrec)−1]1/8, (47)

and from Eq. (2.39) of [12] we obtain

F±(y, E1, E2, 0) = {[qrec + (qrec)−1]/2}1/8F±(y, E , E , 0).

(48)

Together with (35) and (36) this leads to the exact reformula-
tion of the asymptotic result of [12]

〈σ0,0σM,N 〉rec,sub
±

= Crec
0+

(
ξ̄ rec

0+
)−7/4

[x · (Ārec)−1x]1/8
�±

(
[x · (Ārec)−1x]1/2

ξ̄ rec± (t )

)
(49)

= Crec
0+

(
ξ̄ rec

0+
)−7/4

[r f (θ, qrec, 0)]1/4
�±

(
r

ξ rec± (t, θ )

)
, (50)

ξ rec
± (t, θ ) = ξ̄ rec

± (t )/ f (θ, qrec, 0), (51)

with the angular-dependent correlation lengths ξ rec
± (t, θ ) and

with Ārec(qrec) = Ā(qrec, 0), in exact agreement with (12)
and (21)–(26) for �rec = 0, thus confirming multiparameter
universality above, at, and below T rec

c with three nonuniversal
parameters Crec

0+, ξ̄ rec
0+ , qrec. This is valid for both E1 � E2 and

E1 � E2 in the unrestricted range 0 < qrec < ∞. For E1 = E2

the isotropic results are recovered.
We proceed to the case of a “triangular” anisotropy [13,22]

with E3 	= 0 and the condition of criticality Ŝ1Ŝ2 + Ŝ2Ŝ3 +
Ŝ3Ŝ1 = 1 with Ŝα = sinh 2β tr

c Eα, α = 1, 2, 3 [25]. We first
determine the angle �tr describing the orientation of the
principal axes. For T ≈ T tr

c the angular dependence of the
distance R(E1, E2, E3) ≡ Rtr(θ ) = r ftr(θ ) of Eq. (11) of [13]
is given by

ftr(θ ) = [(Ŝ1 + Ŝ3) sin2 θ + (Ŝ2 + Ŝ3) cos2 θ − Ŝ3 sin 2θ ]1/2.

(52)

We define the angular-dependent correlation length ξ tr
±(t, θ )

by rewriting the scaled variable of Eq. (10) of [13] for T ≈ T tr
c

as

Rtr(θ )/ξ̄ tr
±(t ) = r/ξ tr

±(t, θ ), (53)

ξ tr
±(t, θ ) = ξ̄ tr

±(t )/ ftr(θ ). (54)

The requirement ∂ξ tr
±(t, θ )/∂θ = 0 yields θ = �tr with

tan 2�tr = 2Ŝ3

Ŝ1 − Ŝ2
= 2(1 − Ŝ1Ŝ2)

Ŝ2
1 − Ŝ2

2

for E1 	= E2, (55)

�tr = π/4 for E1 = E2, (56)

implying that ξ tr
±(t, θ ) has extrema at θ (1) = �tr and θ (2) =

�tr + π/2 defining the two principal directions. Clearly
�tr(E1, E2, E3) is a nonuniversal quantity that depends on
microscopic details and differs from �, (19), of the ϕ4 model
even if the ϕ4 and Ising models have the same couplings on
the same lattices. This is due to the nonuniversal difference
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between a fixed-length spin model and a soft-spin model.
From (52)–(56) we determine the ratio qtr = ξ

(1)tr
0± /ξ

(2)tr
0± of the

amplitudes of the principal correlation lengths

qtr(E1, E2, E3)

= ξ tr
±(t,�tr )

ξ tr±(t,�tr + π/2)
= ftr(�tr + π/2)

ftr(�tr )

= 2 + Ŝ2
1 + Ŝ2

2 ± [(
Ŝ2

1 + Ŝ2
2

)2 + 4(1 − 2Ŝ1Ŝ2)
]1/2

2(Ŝ1 + Ŝ2)
, (57)

where now the ± sign in front of the square root term means
E1 > E2 (+) and E1 < E2 (−), respectively, and

qtr(E , E , E3) = ftr(3π/4)

ftr(π/4)
= 1

sinh 2β tr
c E

(58)

for E1 = E2 = E > 0. From (55)–(58) we derive

qtr cos2 �tr + qtr−1 sin2 �tr = Ŝ1 + Ŝ3, (59)

qtr sin2 �tr + qtr−1 cos2 �tr = Ŝ2 + Ŝ3, (60)

(qtr−1 − qtr ) cos �tr sin �tr = −Ŝ3, (61)

for both E1 � E2 and E1 � E2. Together with (52) these
equations prove the validity of the identification ftr(θ ) =
f (θ, qtr,�tr ) in the unrestricted range [26] 0 < qtr < ∞
above, at, and below T tr

c where f is indeed the same function
(25) as derived within the ϕ4 theory. This completes the
determination of the angular dependence of the anisotropy
matrix Ātr ≡ Ā(qtr,�tr ) for the triangular-lattice Ising model
(27) where Ā is the same matrix as in Eq. (21) for the ϕ4

model, in exact agreement with multiparameter universality.
Our results for rectangular anisotropy are recovered from
(52)–(61) in the limit E3 → 0.

We mention two earlier conjectures. (i) From (52) and (54)
we derive

κ1 = ξ
(diag)tr
0±

21/2ξ
(hor)tr
0±

= ftr(0)

21/2 ftr(π/4)
= cosh 2β tr

c E2

Ŝ1 + Ŝ2
, (62)

κ2 = ξ
(diag)tr
0±

21/2ξ
(vert)tr
0±

= ftr(π/2)

21/2 ftr(π/4)
= cosh 2β tr

c E1

Ŝ1 + Ŝ2
, (63)

where ξ
(diag)tr
0± , ξ

(hor)tr
0± , and ξ

(vert)tr
0± denote the correlation

lengths in the (1,1), (1,0), and (0,1) directions and the factor
21/2 accounts for the diagonal lattice spacing. This confirms
the conjecture in Eq. (2.6) of [24]. (ii) The ratio (58) used in
Sec. V C of [10] was based on the conjecture in Eq. (A22) of
[24] and is derived here directly from the exact result (52).

In the remaining analysis of the triangular case we confine
ourselves to E1 = E2 = E3 = E > 0 where

�tr(E , E , E ) = π/4, (64)

qtr(E , E , E ) = 1/ sinh 2β tr
c E = 31/2, (65)

ftr(θ ) = f (θ, 31/2, π/4) = 3−1/4(2 − sin 2θ )1/2. (66)

By expanding Eqs. (2) and (10) of [13] around T tr
c to leading

order in |t | = |T − T tr
c |/T tr

c we determine the magnetization,

the mean correlation lengths ξ̄ tr
±(t ) = ξ̄ tr

0±|t |−1, and the princi-
pal correlation lengths ξ

(α)tr
0+ as

MIs(E , E , E ) = (4 ln 3)1/8|t |1/8 ≡ Btr|t |1/8, (67)

ξ̄ tr
0+ = [

ξ
(1)tr
0+ ξ

(2)tr
0+

]1/2 = 3−3/421/2/ ln 3 (68)

= 3−1/4ξ
(1)tr
0+ = 31/4ξ

(2)tr
0+ = 2ξ̄ tr

0−. (69)

From Eqs. (12) and (14)–(16) of [13] we obtain

C0+(E , E , E ) = 221/83−3/16π p+
(
ξ̄ tr

0+
)7/4 ≡ Ctr

0+, (70)

F±(y, E , E , E ) = 21/43−3/16F±(y, E , E , 0). (71)

Together with (35) and (36) this leads to the exact reformula-
tion of the asymptotic result of [13]

〈σ0,0σM,N 〉tr,sub
±

= Ctr
0+

(
ξ̄ tr

0+
)−7/4

[x · (Ātr )−1x]1/8
�±

(
[x · (Ātr )−1x]1/2

ξ̄ tr±(t )

)
(72)

= Ctr
0+ (ξ̄ tr

0+)−7/4

[r f (θ, qtr,�tr )]1/4
�±

(
r

ξ tr±(t, θ,�tr )

)
, (73)

ξ tr
±(t, θ,�tr ) = ξ̄ tr

±(t )/ f (θ, qtr,�tr ), (74)

with the same universal functions �+, �−, and f as in
Eqs. (23)–(25), (35), and (36) and the same matrix Ātr ≡
Ā(qtr,�tr ) as in Eq. (21), with the four nonuniversal param-
eters Ctr

0+, ξ̄ tr
0+, qtr, and �tr given in Eqs. (70), (68), (65),

(64), respectively, thus proving the validity of multiparameter
universality for the triangular-lattice Ising model above, at,
and below T tr

c , and disproving two-scale-factor universality.
Our hypothesis of multiparameter universality predicts the
structure of (72)–(74) to be valid also in the general case
E1 	= E2, E3 	= 0.

In order to complete our analysis we show that the uni-
versal amplitude relations (7) and (14) derived for the ϕ4

model remain valid also for the Ising model. We first employ
(30)–(33) for the isotropic Ising model to derive

(BIs )2
(
CIs

0+
)−1(

ξ Is
0+

)2 = (4π p+)−1, (75)

in structural agreement with (7). Thus our analysis identifies
the exact universal constant Qc for d = 2, n = 1 as

Qc = (4π p+)−1 = 0.499 592 701 . . . . (76)

This can be confirmed by means of a different derivation
from Eqs. (6.29) and (6.31) of [2] which determines Qc =
(R+

ξ )2/RC . From the rectangular and triangular results (42)–
(47) and (67)–(70), respectively, we derive

(Brec)2
(
Crec

0+
)−1(

ξ̄ rec
0+

)2 = (4π p+)−1 = Qc, (77)

(Btr )2
(
Ctr

0+
)−1(

ξ̄ tr
0+

)2 = (4π p+)−1 = Qc, (78)

which agrees with (14) for the anisotropic ϕ4 model. Thus
both the anisotropic Ising and ϕ4 models have universal
amplitude relations with the same universal constant Qc as
for the isotropic models, in agreement with the hypothesis
of multiparameter universality. In the anisotropic cases three
independent nonuniversal parameters are involved in Eqs. (77)
and (78) for the same reasons as given in the context of (14).
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Multiparameter universality for other critical bulk am-
plitude relations within ϕ4 theory in d dimensions follows
from Sec. III of [8], e.g., Eqs. (3.32)–(3.36). In particular,
multiparameter universality is predicted, for general n, for
anisotropic systems at Tc in the presence of an ordering field h
with the amplitude �c of the susceptibility and the principal
correlation lengths ξ (α)

c according to Eq. (3.35) of [8] for
each α, with a universal constant Q2(d, n) that is the same
as for the corresponding relation [20] of isotropic systems at
Tc in the same (d, n) universality class. A verification of such
relations within anisotropic fixed-length spin models would
be interesting.

To summarize, we have determined the exact anisotropy
matrix Ā for anisotropic ϕ4 and Ising models [12,13] and
have confirmed the validity of multiparameter universality
for the exact bulk order-parameter correlation functions of
these models above, at, and below Tc, thereby answering the
long-standing question [12] as to the universality properties
of the Ising models. It is reassuring that the leading scaling
part of the detailed expressions for 〈σ0,0σM,N 〉± presented in
[12,13] can be condensed into the same compact universal
forms (50) and (73) as the exact result (23) for the anisotropic
ϕ4 model, with three universal functions �+, �−, and f . We
have also found agreement with multiparameter universality
for the exact critical bulk amplitude relations (14), (77), and
(78) with three independent nonuniversal parameters. These
results support the validity of multiparameter universality
for the large class of weakly anisotropic systems within the
(d, n) universality classes which is of relevance for studying
the correlation functions in real anisotropic systems [15–18].
The significance of multiparameter universality for finite-size
effects, e.g., on the critical Casimir force and the specific heat,

has been pointed out in Ref. [10]. In all cases the universal
critical exponents are not changed by weak anisotropy [6,8],
unlike the case of strong anisotropy [28]. Nonuniversality
enters 〈σ0,0σM,N 〉± through the anisotropy matrix Ā, the mean
correlation length, and the susceptibility amplitude in the
prefactor. Ā is temperature independent and is applicable
above, at, and below Tc in bulk and confined systems [10].
As an appropriate parametrization of Ā we have employed
the ratio q of the principal correlation lengths and the angle
� determining the principal directions. Both parameters are
nonuniversal microscopic quantities. While for ϕ4 models
� is known explicitly according to (11) and (19), this is
not generally the case for Ising models. We agree with the
assertion [29] that, apart from the Ising models [12,13] ana-
lyzed in this Rapid Communication, the principal directions
“generically depend in an unknown way on the anisotropic
interactions.” Since the principal directions enter the angular
dependence of correlation functions in a crucial way the
unknown dependence of � on microscopic details introduces
a significant nonuniversality into the correlation functions of
weakly anisotropic systems, in contrast to isotropic systems
of the same universality class. This underscores the necessity
of distinguishing subclasses of isotropic and anisotropic sys-
tems within a given (d, n) universality class. The latter are
less universal than the former and require significantly more
nonuniversal input in order to achieve quantitative predictions.
This statement applies also to finite-size effects in anisotropic
systems where up to d (d + 1)/2 + 1 nonuniversal parameters
enter the finite-size scaling form of the free energy density
[8,10]. This sheds new light on the general belief that the
critical behavior of systems with short-range interactions is
largely independent of microscopic details [1–3].
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