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Comment on “Slow passage through resonance”
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In a recent numerical and analytical study, Park et al. [Phys. Rev. E 84, 056604 (2011)] presented the statement
that a linearly damped harmonic oscillator subject to a linear frequency chirp ω f (t ) = ω0 + εt experiences “an
early onset of resonance, setting in when the ramped forcing frequency is midway between its initial value
ω0 and the natural frequency ωn for resonance in the unforced problem,” i.e., the resonance occurs when the
instantaneous frequency ωinst approaches (ω0 + ωn)/2. This statement is not valid because the instantaneous
frequency of the forcing function actually grows twice as fast as stated in the paper, and the resonance actually
occurs for instantaneous forcing frequency ωinst approximately equal to the natural frequency ωn. We also
highlight the difference between the critical frequency ramp rate for resonance amplitude measurement and
the critical frequency ramp rate for resonance frequency and damping measurements.
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Park et al. [1] studied the slow passage through resonance
of a damped harmonic oscillator, with the “forcing frequency
ω f as a slowly varying parameter in time, that is, ω f (t ) =
ω0 + εt , where ω0 is an initial frequency and ε is a ramp rate.”
They derived interesting numerical results on the maximum
amplitude reached and the influence of the frequency ramp
rate ε and the damping coefficient γ of the linear harmonic
oscillator on this maximum amplitude. Those results were
complemented by analytical derivations, and the authors drew
practical conclusions on the critical ramp rate beyond which
the response amplitude is lower than the one attained in the
static-parameter model. However, what is presented as the
main finding of the study, namely that the resonance occurs
midway between the starting frequency of the linear forcing
chirp and the resonance frequency of the undamped oscillator
ωn, is not valid because ω f is not the instantaneous forcing
frequency. The differential equation in Ref. [1] is

ẍ + γ ẋ + x = sin(ω f t ) with ω f = ω0 + εt, (1)

with the natural resonance frequency ωn = 1. It is reported
in Ref. [1] that the instantaneous forcing frequency is ω f di-
rectly, whereas it actually is the derivative of the instantaneous
phase φ(t ), which gives:

ωinst(t ) = dφ

dt
= d

dt
[(ω0 + εt )t] = ω0 + 2εt . (2)

The actual instantaneous frequency then grows twice as
fast as the statement made in Ref. [1], i.e., the actual ramp
rate used is 2ε and not ε. Highlighting the difference between
ω f and ωinst is crucial since it is not the first occurrence of
this mistake in the literature (see, for example, the book from
Evan-Iwanowski [2], pages 78 and 86 therein).

First, it is important to mention that this problem of “slow
passage through resonance,” for which the frequency of the
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harmonic forcing is ramped, is restricted to stable linear oscil-
lators, i.e., with γ being a real positive constant. This problem
differs from the “slow passage through Hopf bifurcations,” for
which one ramps at a finite rate the damping coefficient from
a positive to a negative value (e.g., Refs. [3,4]).

In what follows, we clarify the problem by computing
numerical solutions of the following ordinary differential
equation:

d2x

dτ 2
+ 2ν

dx

dτ
+ ω2

nx = F sin

[(
ωi + β

2
τ

)
τ

]
, (3)

with ν the damping rate, ωn the undamped natural angular
frequency, F the amplitude of the forcing, ωi the initial
frequency of the chirp, and β the frequency ramp rate. Using
the nondimensional time t = ωnτ , this equation becomes

ẍ + γ ẋ + x = sin(ω f t ) with ω f = ω0 + ε

2
t, (4)

and with γ = 2ν/ωn, ω0 = ωi/ωn, and ε = β/ω2
n. Note that

we also assume F/ω2
n = 1. In contrast with Eq. (1) for which

the instantaneous forcing frequency is ω0 + 2εt , one now
obtains:

ωinst(t ) = d

dt

[(
ω0 + ε

2
t

)
t

]
= ω0 + εt . (5)

For steady harmonic excitation at angular frequency ω, the
response amplitude is

A(ω) = 1√
ω2γ 2 + (1 − ω2)2

. (6)

For the chirp excitation of Eq. (4), with instantaneous
frequency given by Eq. (5), the responses for three different
values of ε can be seen in Fig. 1(b): For a very slow frequency
ramp rate (green), the shape of the envelope of the response
approaches the response amplitude. For increasing frequency
ramp rates (blue and red), the resonance is delayed and
reaches a lower maximum amplitude. The effect of frequency
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FIG. 1. (a) Transfer function of the studied system with s the Laplace variable. (b) Time traces of x(t ) as function of instantaneous angular
frequency ωinst for γ = 10−2 and ε = 10−5 (green), 10−4 (blue), and 10−3 (red). (c) Influence of damping γ and frequency ramp rate ε on the
instantaneous frequency at which the maximum amplitude is attained (black lines). Superimposed markers correspond to the time traces on
top. (d) Influence of damping γ and frequency ramp rate ε on the maximum amplitude reached by the oscillator (black lines). Superimposed
markers correspond to the time traces on top. Red dashed line: Limit of the maximum ε to be used for staying within 10% error on the maximum
amplitude, given by εa = γ 2/4. (e) Steady-state transfer function (blacked dashed) line, with almost perfectly superimposed transfer functions
from the green, blue, and red sweep signals on top. The transfer function of the red signal (highest ε, i.e. fastest frequency sweep) is wavy but
still reproduces the general shape accurately. (f) Influence of damping γ and frequency ramp rate ε on the damping γfit obtained from a fit on
the transfer function (black lines). Superimposed markers correspond to the time traces on top. Red dashed line: Limit of the maximum ε to
be used for staying within 10% error on γfit, given by εd = γ /10.

ramp rate on the instantaneous frequency at which maximum
response occurs is displayed in Fig. 1(c) for different oscillator
damping: The quasisteady chirp asymptotes exhibit instanta-

neous frequencies at maximum response that are lower than
1, which corresponds to the expected resonance frequency for
harmonic forcing ωr =

√
1 − γ 2/2. The latter frequency is
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different from the frequency of the free damped oscillations√
1 − γ 2/4. Evaluating Eq. (6) at ωr indeed gives the approx-

imation given in Eq. (2) in Ref. [1]. Figure 1(c), similarly
to Fig. 6 in Ref. [1], also underlines the delay in resonance
for fast chirps, where the maximum amplitude is reached at a
higher instantaneous frequency than the resonance frequency.
This effect is accentuated when the damping γ decreases. The
effect of the frequency ramp rate on the maximum reached
amplitude for different damping coefficients is presented in
Fig. 1(d) (similarly to Fig. 4(a) in Ref. [1]). One can see that
for increasing oscillator damping, the critical chirp rate, above
which the steady-state resonance amplitude is not attained any
more, increases. This critical ramp rate is εa ≈ γ 2/4, which is
consistent with previous studies [5–7].

If one is interested in the actual oscillation amplitude (dur-
ing ramp-up of an engine to nominal condition for example
[8]), then this criterion holds and one indeed needs very slow
frequency ramp rates. However, for identifying the natural
frequency ωn and the damping γ of a linear oscillator, one
should not look at the transient amplitude response but at
the frequency content of the response to the linear chirp by
computing from data the transfer function:

H (ω) = Sxy(ω)

Syy(ω)
, (7)

where Sxy is the cross-spectral density of the response x(t ) and
of the chirp excitation y(t ) = sin [φ(t )] = sin [(ω0 + εt/2)t]

and Syy is the power spectral density of y(t ). The transfer
functions corresponding to the three examples of Fig. 1(b)
are displayed in Fig. 1(e), where all three are almost perfectly
superimposed onto the transfer function for steady harmonic
excitation. Only the transfer function of the red signal (highest
ε, i.e. fastest frequency sweep) is wavy but still reproduces
the general shape accurately. In order to obtain the resonance
frequency and damping of the oscillator, one can then simply
fit a second-order transfer function to these data. The effect
of frequency ramp rate and system damping on the identified
damping γfit is shown in Fig. 1(f). One can see that the critical
chirp rate for this measure to be accurate is higher than the
critical ramp rate needed to attain the maximum response
amplitude. The critical frequency ramp rate for an accurate
damping measurement is εd ≈ γ /10. The difference in these
critical ramp rates is quite explicit when one looks closer at the
red triangles in Figs. 1(c), 1(d), and 1(f): For ε = 10−3, one
has a maximum amplitude and corresponding instantaneous
frequency that significantly differ from the corresponding
steady harmonic forcing values. In contrast, the frequency
response is very similar in terms of peak frequency, amplitude,
and width, thus the fitted damping is very close to the
actual one.

In conclusion, we clarified the fact that there is no early
onset of resonance when linear harmonic oscillators are sub-
mitted to linear chirps, as it was stated by Park et al. [1]. In
fact, it is a substantial delay which one observes in the case of
the linear chirp rate exceeding a critical value.
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