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The multiphase lattice Boltzmann (LB) models based on pairwise interactions show great potential for
simulating multiphase flows due to the conceptual and computational simplicity. Although the dynamics of
multiphase flows are reproduced by the pairwise interaction force, the gradient of density (or effective density,
i.e., pseudopotential) is implicitly involved in these models via the specialized forcing scheme or the consistent
scheme for ε3-order term. This work focuses on the calculation of density gradient in this class of multiphase LB
models. Theoretical analyses are first carried out to reveal the involvement and calculation of density gradient.
On the basis of a low Mach number approximation, an improved scheme is then proposed to calculate the
density gradient for the recent LB model with self-tuning equation of state. Analytical and numerical calculations
show that the improved scheme is more accurate and can help to reduce the numerical error when the reduced
temperature is relatively low.
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I. INTRODUCTION

Multiphase flows are widely encountered in daily life and
have important applications in engineering, like phase-change
heat sink and digital microfluidics [1,2]. The dynamics of
multiphase flows, such as phase transition and separation,
interface breakup and coalescence, nonzero surface tension,
etc., are quite varied and complex from the macroscopic
viewpoint. Physically speaking, all the associated dynamics
are the natural consequences of the underlying molecular
interactions at the microscopic level, which can be approxi-
mately modeled by the Lennard-Jones potential consisting of
a short-range repulsive core and a long-range attractive tail
[3]. As a mesoscopic numerical method that originates from
the lattice gas automata and can be derived from the kinetic
theory in an a priori manner [4–6], the lattice Boltzmann (LB)
method shows potential for incorporating the microscopic
interactions and thus for modeling multiphase flows without
resorting to interface capturing or tracking techniques [7–10].

The applications of LB method to multiphase flows
emerged at the early stage of its development [7–9]. Various
LB models have been proposed for multiphase flows, which
can be generally categorized into the color-gradient LB model
[7,11], the Shan-Chen LB model [8,12], the free-energy LB
model [9,13], and the phase-field LB model [14,15]. Among
these models, the Shan-Chen LB model, which is originally
proposed by Shan and Chen [8] and also termed the pseudopo-
tential LB model, is the simplest one in both concept and com-
putation. In this model, pairwise interactions are introduced to
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mimic the underlying molecular interactions responsible for
multiphase flows. Because of this clear physical picture, the
pseudopotential LB model has attracted significant attention
since its first development, and the practical applications of
this model are quite wide [16–18]. In addition to the above
models, some kinetic-theory-based LB models for multiphase
flows have also be developed in an a priori manner [3,10,19].
Though with a solid basis in kinetic theory, these models
are rarely applied in practice, probably because of severe nu-
merical instabilities. Recently, inspired by the thermodynamic
foundations of kinetic theory analyzed by He and Doolen [3],
Huang et al. [20] developed an LB model with self-tuning
equation of state (EOS) for multiphase flows. In this model, a
self-tuning EOS is achieved by directly devising the collision
term at the discrete level, and a pairwise interaction force
is introduced to mimic the long-range molecular interactions
that are responsible for the nonmonotonic EOS and nonzero
surface tension.

The pseudopotential LB model and the recent LB model
with self-tuning EOS can be classified as a class of multiphase
LB models based on pairwise interactions. For the pseudopo-
tential LB model, the thermodynamic consistency cannot be
achieved in the strict sense [3], and as a compromise solution,
various specialized forcing schemes have been proposed to
alleviate the inconsistency about coexistence densities (i.e., to
approximate the coexistence densities close to the thermody-
namic results). Kupershtokh et al. [21,22] proposed the exact-
difference-method (EDM) forcing scheme, which can help
to achieve a relatively low reduced temperature in practice.
Huang et al. [23] compared five existing forcing schemes and
observed that different forcing schemes have quite different
performance. In 2012, Li et al. [24] found that such difference
is mainly caused by the additional term introduced by the
forcing scheme in the recovered macroscopic equation, which
yields a different coefficient ε in the mechanical stability
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condition that can be expressed as [25]∫ ρl

ρg

(P0 − pEOS)
ψ ′

ψ1+ε
dρ = 0. (1)

Here, ρg and ρl are the coexistence gas and liquid densi-
ties, respectively, pEOS denotes the nonmonotonic EOS for
multiphase fluids, P0 = pEOS(ρg) = pEOS(ρl ) is the pressure
in the bulk phases, ψ is the so-called pseudopotential, and
ψ ′ = dψ/dρ. Based on this finding, Li et al. [24] proposed an
improved forcing scheme that permits to adjust the coefficient
ε. Afterward, some other specialized forcing schemes that can
adjust ε were proposed [26–28]. Realizing that there exists
some inconsistency in performing the Chapman-Enskog (CE)
analysis for the pseudopotential LB model with a specialized
forcing scheme, Huang and Wu [29] proposed a consistent
scheme for ε3-order term that can adjust both the coefficient
ε and surface tension (ε is the small expansion parameter
in the CE analysis). As for the recent LB model with self-
tuning EOS, the thermodynamic consistency can be naturally
achieved, and thus the standard forcing scheme (defined in
Sec. II C) is used to incorporate the pairwise interaction force.
To compensate for the discrete lattice effect at the ε3 order, a
consistent scheme for ε3-order term is also employed in this
model [20].

For the multiphase LB models based on pairwise interac-
tions, both the specialized forcing scheme and the consistent
scheme for ε3-order term are usually related to the pairwise
interaction force, which cannot be simply viewed as a second-
order gradient operator due to its explicit physical signifi-
cance. Therefore, at first glance, the derivatives in density
(or effective density, i.e., pseudopotential) do not seem to
be involved in this class of multiphase LB models. In this
work, we will analyze the specialized forcing scheme and the
consistent scheme for ε3-order term in a unified framework
to reveal that the density gradient is implicitly involved in
these models. Hereafter, the density gradient represents the
gradient of effective density (i.e., pseudopotential) for the
pseudopotential LB model or the gradient of density for
the LB model with self-tuning EOS, respectively. Then, an
improved scheme is proposed to calculate the density gra-
dient for the recent LB model with self-tuning EOS due to
its thermodynamic consistency. The remainder of this paper
is organized as follows. In Sec. II, theoretical analyses are
performed to reveal the involvement of density gradient in
the pairwise-interaction-based LB models. In Sec. III, the
recent LB model with self-tuning EOS is focused on and
an improved scheme is proposed to calculate the density
gradient. Analytical and numerical calculations are carried
out in Sec. IV to validate the improved scheme, and a brief
conclusion is drawn in Sec. V.

II. MULTIPHASE LB MODELS

The multiple-relaxation-time (MRT) LB equation for the
density distribution function (DF) fi can be expressed as
[29,30]

fi(x + eiδt , t + δt ) = f̄i(x, t ), (2a)

m̄(x, t ) = m + δt Fm − S
(

m − meq + δt

2
Fm

)
+ SQm, (2b)

where Eqs. (2a) and (2b) denote the streaming and collision
processes executed in velocity and moment spaces, respec-
tively, m = M( fi )T and ( f̄i )T = M−1m̄ are the moment of
density DF and the post-collision density DF, respectively, and
M is the orthogonal transformation matrix [31]. The right-
hand side (RHS) of Eq. (2b) is computed at position x and
time t , in which the equilibrium moment meq and the discrete
force term Fm are evaluated with the real fluid velocity u,
i.e., meq ≡ meq(ρ, u) and Fm ≡ Fm(F, u). The last term on
the RHS of Eq. (2b) is a consistent scheme for ε3-order term,
where the discrete term Qm is of order ε2 (i.e., Qm = ε2Q(2)

m ).
The collision matrix S is diagonal for the pseudopotential LB
model, while it is nondiagonal for the recent LB model with
self-tuning EOS. The macroscopic variables, density ρ and
real fluid velocity u, are defined as

ρ =
∑

i
fi, ρu =

∑
i
ei fi + δt

2
F. (3)

In this work, the two-dimensional nine-velocity (D2Q9) lat-
tice [32] is considered. Therefore, the discrete force term Fm

can be given as [33]

Fm =
[

0, 6
F · u

c2
, −6

F · u
c2

,
Fx

c
, −Fx

c
,

Fy

c
, −Fy

c
,

2
Fxux − Fyuy

c2
,

Fxuy + Fyux

c2

]T

, (4)

where c = δx/δt is the lattice speed. Since this work focuses
on the calculation of density gradient, the other technical
details (such as meq and S), as well as the elimination of the
additional cubic terms of velocity, will not be covered here,
and the reader is referred to previous works [20,34–36].

In the class of multiphase LB models based on pairwise
interactions, the pairwise interaction force is expressed as
[12,20]

F(x) = G2φ(x)
∑

i
ω(|eiδt |2)φ(x + eiδt )eiδt , (5)

where φ denotes the pseudopotential ψ for the pseu-
dopotential LB model [12,22,24,29,34] or the density ρ

for the LB model with self-tuning EOS [20], G2 is
used to control the interaction strength, and ω(|eiδt |2) is
the weight to maximize the isotropy degree of F. In
this work, the nearest-neighbor interaction is considered,
and thus ω(δ2

x ) = 1/3 and ω(2δ2
x ) = 1/12, which indicates

that
∑

i ω(|eiδt |2)eieiδ
2
t = δ2

x I and
∑

i ω(|eiδt |2)eieieieiδ
4
t =

δ4
x II/3 [37]. Here (II)αβγ δ = δαβδγ δ + δαγ δβδ + δαδδβγ . Per-

forming Taylor series expansion of φ(x + eiδt ) centered at x,
F given by Eq. (5) can be written as

F = G2δ2
x φ∇φ + G2δ4

x

6
φ∇∇ · ∇φ + O(∇5). (6)

Based on Eq. (6), a simple scheme can be obtained to calculate
∇φ as follows:

∇φ = F
G2δ2

x φ
+ O(∇3), (7)

which is actually the second-order isotropic central scheme
(ICS) simplified with the pairwise interaction force.
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A. Specialized forcing schemes

In the LB method, a forcing scheme is used to incorporate
the force term and thus consists of all the relevant terms in
both the LB equation and the defining equation of macro-
scopic variables, e.g., δt (I − S/2)Fm in Eq. (2b) and δt F/2
in Eq. (3). To approximate the coexistence densities close to
the thermodynamic results, as well as to achieve relatively
low reduced temperature, various specialized forcing schemes
have been proposed for the pseudopotential LB model. In the
following, two popular schemes, proposed by Kupershtokh
et al. [21,22] and Li et al. [24], respectively, will be analyzed.

1. Kupershtokh et al.’s forcing scheme

The forcing scheme proposed by Kupershtokh et al. [21,22]
(i.e., the so-called EDM forcing scheme) is widely adopted
because of its compact form and good stability with respect to
the reduced temperature. It is originally derived for the single-
relaxation-time (SRT) LB equation, which is given as [22]

fi(x + eiδt , t + δt ) = fi − 1

τ

[
fi − f eq

i (ρ, v)
]

+ [
f eq
i (ρ, v + δv) − f eq

i (ρ, v)
]
, (8)

where v = ∑
i ei fi/ρ, δv = δt F/ρ, τ is the dimensionless

relaxation time, f eq
i (ρ, v) and f eq

i (ρ, v + δv) are the equilib-
rium density DFs evaluated with v and v + δv, respectively,
and the RHS is computed at position x and time t . The
macroscopic density ρ and velocity u are also defined by
Eq. (3), which suggests that u = v + δv/2. The above SRT
LB equation can be easily extended to MRT LB equation.
The corresponding MRT collision process in moment space
is expressed as

m̄(x, t ) = m − S[m − meq(ρ, v)]

+ [meq(ρ, v + δv) − meq(ρ, v)]. (9)

In the CE analysis, u is of order ε0 and F is of order ε1.
Therefore, to avoid the inconsistency in performing the CE
analysis for EDM forcing scheme, v and δv should be substi-
tuted by u − δt F/(2ρ) and δt F/ρ, respectively, and meq(ρ, v)
and meq(ρ, v + δv) should also be decomposed [38]. On the
basis of this principle, Eq. (9) is reformulated as [29]

m̄(x, t ) = m + δt Fm − S
[

m − meq(ρ, u) + δt

2
Fm

]

+ SQm,EDM, (10)

where meq(ρ, u) is evaluated with the real fluid velocity u, Fm

is the same as Eq. (4), and the discrete term Qm,EDM is given
as

Qm,EDM =
[

0,
3

4

δ2
t |F|2
ρc2

, −3

4

δ2
t |F|2
ρc2

, 0, 0, 0, 0,

1

4

δ2
t

(
F 2

x − F 2
y

)
ρc2

,
1

4

δ2
t FxFy

ρc2

]T

. (11)

Although the form of Eq. (10) seems to be more complicated
than the form of Eq. (9), Eq. (10) is a better starting point
for performing the consistent CE analysis, because meq(ρ, u),
Fm, and Qm,EDM in Eq. (10) are of order ε0, ε1, and ε2,
respectively.

2. Li et al.’s forcing scheme

The forcing scheme proposed by Li et al. [24] is widely
adopted in practice because of its ability to adjust the co-
efficient ε in mechanical stability condition. The SRT LB
equation with Li et al.’s forcing scheme is given as [24]

fi(x + eiδt , t + δt )

= fi − 1

τ

[
fi − f eq

i (ρ, u)
]

+ δtωi

(
1 − 1

2τ

)(
ei − u′

c2
s

+ ei · u′

c4
s

ei

)
· F, (12)

where cs = c/
√

3, u′ = u + σF/[(τ − 0.5)ψ2], and σ is used
to adjust the coefficient ε. Similarly, the RHS of Eq. (12) is
computed at (x, t ), and the macroscopic variables, density ρ

and velocity u, are defined by Eq. (3). An MRT version of
Li et al.’s forcing scheme can be obtained based on Eq. (12).
The corresponding MRT collision process in moment space is
expressed as

m̄(x, t ) = m − S[m − meq(ρ, u)] + δt

(
I − S

2

)
Fm,Li, (13)

where Fm,Li is given as

Fm,Li =
[

0, 6
F · u

c2
+ 6σ

|F|2(
s−1

e − 0.5
)
ψ2c2

,

− 6
F · u

c2
− 6σ

|F|2(
s−1
ε − 0.5

)
ψ2c2

,
Fx

c
, −Fx

c
,

Fy

c
, −Fy

c
, 2

Fxux − Fyuy

c2
+ 2σ

F 2
x − F 2

y(
s−1

p − 0.5
)
ψ2c2

,

Fxuy + Fyux

c2
+ 2σ

FxFy(
s−1

p − 0.5
)
ψ2c2

]T

. (14)

Note that τ − 0.5 in u′ is replaced by s−1
e − 0.5, s−1

ε − 0.5, or
s−1

p − 0.5 when deriving the above Fm,Li. Here, se, sε, and sp

are the relaxation parameters in S [29]. Since u is of order ε0

and F is of order ε1, Fm,Li consists of two parts that are of order
ε1 and ε2, respectively. To facilitate the consistent CE analysis
for Li et al.’s forcing scheme, Eq. (13) can be reformulated as

m̄(x, t ) = m+δt Fm−S
[

m − meq(ρ, u) + δt

2
Fm

]
+ SQm,Li,

(15)

where Fm is the same as Eq. (4) and the discrete term Qm,Li is
given as

Qm,Li =
[

0, 6σ
δt |F|2
ψ2c2

, −6σ
δt |F|2
ψ2c2

, 0, 0, 0, 0,

2σ
δt

(
F 2

x − F 2
y

)
ψ2c2

, 2σ
δt FxFy

ψ2c2

]T

. (16)

Obviously, meq(ρ, u), Fm, and Qm,Li in Eq. (15) are of order
ε0, ε1, and ε2, respectively.
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B. Consistent schemes for ε3-order term

To avoid the inconsistency in performing the CE analysis
for the pseudopotential LB model with a specialized forcing
scheme, Huang and Wu [29] proposed a consistent scheme
for ε3-order term for the pseudopotential LB model. A sim-
ilar scheme is also employed in the recent LB model with
self-tuning EOS [20]. For these pairwise-interaction-based
LB models with a consistent scheme for ε3-order term, the
MRT LB equation is generally written as Eq. (2), and the
macroscopic density and velocity are defined by Eq. (3).

1. Pseudopotential LB model

For the pseudopotential LB model, to adjust the coefficient
ε in mechanical stability condition and the surface tension,
Huang and Wu proposed the following discrete term [29]

Qm =
[

0, −3(k1 + 2k2)
|F|2

G2ψ2c2
, 3(k1 + 2k2)

|F|2
G2ψ2c2

,

0, 0, 0, 0, −k1
F 2

x − F 2
y

G2ψ2c2
, −k1

FxFy

G2ψ2c2

]T

, (17)

where k1 and k2 are the adjustable parameters, and G is the
same as that in the pairwise interaction force given by Eq. (5),
which is different from the G in the original work by Huang
and Wu [29].

2. LB model with self-tuning EOS

Recently, a thermodynamically consistent LB model with
self-tuning EOS is developed by Huang et al. [20]. To com-
pensate for the discrete lattice effect at the ε3 order, a consis-
tent scheme for ε3-order term is employed in this model. The
corresponding discrete term is given as [20]

Qm =
[

0,
1

2

|F|2
G2ρ2c2

, −1

2

|F|2
G2ρ2c2

, 0, 0, 0, 0,

1

12

F 2
x − F 2

y

G2ρ2c2
,

1

12

FxFy

G2ρ2c2

]T

. (18)

Note that the LB model with self-tuning EOS is naturally
consistent with thermodynamic theory, and the surface tension
can be adjusted by the scaling factors in both the adopted EOS
and interaction strength. Therefore, Qm for this model [i.e.,
Eq. (18)] does not contain any adjustable parameters, which
is different from Qm for the pseudopotential LB model [i.e.,
Eq. (17)].

C. Discussions

From the above analyses, we can see that Eqs. (2), (3),
and (4) can be viewed as a unified framework for the
pairwise-interaction-based LB models with a specialized forc-
ing scheme or with a consistent scheme for ε3-order term.
The forcing scheme, constituted by δt (I − S/2)Fm in Eq. (2b),
δt F/2 in Eq. (3), and Fm given by Eq. (4), can be regarded as a
standard forcing scheme, which is first proposed by Guo et al.
[33] and can be derived from the kinetic theory in an a priori
manner. The discrete term Qm can be generally written as

Qm = [0, Qm,1, Qm,2, 0, 0, 0, 0, Qm,7, Qm,8]T. (19)

Through the third-order CE analysis, the ε3-order term Radd

introduced by SQm in the recovered macroscopic momentum
conservation equation can be derived [29]

Radd = −c2

[
∂x

(
1
6 Qm,1 + 1

2 Qm,7
) + ∂yQm,8

∂xQm,8 + ∂y
(

1
6 Qm,1 − 1

2 Qm,7
)
]
. (20)

Based on the specific Qm given by Eqs. (11), (16), (17), and
(18), Radd can be generally written as

Radd = ∇ ·
[

A1
FF

G2φ2
+ A2

(F · F)I
G2φ2

]
, (21)

where A1 = −δ2
t G2ψ2/(4ρ) and A2 = 0 for Kupershtokh

et al.’s forcing scheme, A1 = −2σδt G2 and A2 = 0 for Li
et al.’s forcing scheme, A1 = k1 and A2 = k2 for the consistent
scheme for ε3-order term in the pseudopotential LB model,
and A1 = −1/12 and A2 = −1/24 for the consistent scheme
for ε3-order term in the LB model with self-tuning EOS. Here,
it is worth pointing out that A1 for Kupershtokh et al.’s forcing
scheme varies with space and time due to its factor ψ2/ρ,
while A1 and A2 for the other schemes are constants. Since
∇ = ε1∇1 and F = ε1F(1) in the CE analysis, Radd given by
Eq. (21) is consistently of order ε3. In the multiphase LB
models based on pairwise interactions, the ε3-order term Radd

should be considered in deriving the correct pressure tensor
[20,24,29], and Eq. (7) [i.e., ∇φ = F/(G2δ2

x φ)] can be used
for further calculation. Considering Eq. (7), Radd given by
Eq. (21) can be simplified as

Radd = ∇ · [A1G2δ4
x ∇φ∇φ + A2G2δ4

x (∇φ · ∇φ)I
]
, (22)

and the corresponding term Padd introduced by Radd in the
derived pressure tensor (∇ · Padd ≡ −Radd) is

Padd = −A1G2δ4
x ∇φ∇φ − A2G2δ4

x (∇φ · ∇φ)I. (23)

For the multiphase LB models based on pairwise interac-
tions, the pairwise interaction force, given by Eq. (5) and in-
corporated by the standard forcing scheme, cannot be simply
viewed as a finite-difference gradient operator due to its ex-
plicit physical significance. However, the ε3-order term Radd,
introduced by the specialized forcing scheme or the consistent
scheme for ε3-order term, should be viewed as a numerical
trick without explicit physical significance to alleviate the
thermodynamic inconsistency about the coexistence densities
or to compensate for the discrete lattice effect at the ε3 order.
From this viewpoint, ∇φ is actually involved in the pairwise-
interaction-based LB models via the ε3-order term Radd [see
Eq. (22)], and this ∇φ is calculated by the second-order ICS
simplified with the pairwise interaction force [i.e., Eq. (7)]
in previous works. Theoretically speaking, it is unnecessary
to calculate ∇φ for Radd via Eq. (7). In addition, it is more
reasonable to express Qm in terms of ∇φ rather than in terms
of F. Therefore, Qm given by Eqs. (11), (16), (17), and (18)
can be generally expressed as

Qm = −G2δ2
x δ

2
t

[
0, 3(A1 + 2A2)|∇φ|2,−3(A1 + 2A2)|∇φ|2,
0, 0, 0, 0, A1[(∂xφ)2 − (∂yφ)2], A1∂xφ∂yφ

]T
,

(24)

where A1 and A2 are the same as those in Eq. (21).
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Due to its explicit physical significance, the pairwise inter-
action force F, which is incorporated by the standard forcing
scheme, is relatively accurate in simulating multiphase flows
by the pairwise-interaction-based LB models. However, as a
numerical trick, the ε3-order term Radd, which is generally in-
troduced by the term SQm in Eq. (2b), could be a major source
of numerical error. To verify this point, a one-dimensional flat
interface is simulated by the pseudopotential LB model with
consistent scheme for ε3-order term [i.e., Eq. (17)]. Three
sets of k1 and k2 are considered, i.e., (i) k1 = 0 and k2 = 0,
(ii) k1 = −1/8 and k2 = 0, and (iii) k1 = −1/4 and k2 = 0,
which correspond to the coefficient ε in mechanical stability
condition being 0, 1, and 2, respectively. The Carnahan-
Starling EOS [see Eq. (29)], with a = 1, b = 4, Rg = 1, and
KEOS = 1/4, is adopted in the simulations. The interaction
strength, lattice spacing, and time step are chosen as G = 1,
δx = 1, and δt = 1, respectively.

The numerical results are shown in Fig. 1. For the case
with k1 = 0 and k2 = 0 (i.e., Qm = 0), the coexistence curve
obtained by simulation is in excellent agreement with the
analytical one given by mechanical stability condition, as
seen from Fig. 1(a). To be quantitative, at the reduced tem-
perature Tr = 0.76156, the analytical gas and liquid densi-
ties (ρg,analytical and ρl,analytical) are 1.32696253 × 10−6 and
3.23474688 × 10−1, respectively, while the numerical gas and
liquid densities (ρg,numerical and ρl,numerical) are 1.32697638 ×
10−6 and 3.23474688 × 10−1, respectively. For the other two
cases with k1 �= 0 and k2 = 0 (i.e., Qm �= 0), the coexistence
curve by simulation agrees with the analytical one by mechan-
ical stability condition when Tr is relatively large. However,
the deviation in gas branch becomes quite obvious when Tr

is relatively low. Quantitatively, for the case with k1 = −1/8
and k2 = 0, the analytical and numerical gas densities are
1.21325731 × 10−6 and 5.76969968 × 10−6, respectively, at
Tr = 0.650; as for the case with k1 = −1/4 and k2 = 0, the
analytical and numerical gas densities are 7.87354321 × 10−5

and 1.63470555 × 10−4, respectively, at Tr = 0.400. Consid-
ering the deviation in gas branch is much larger than the devia-
tion in liquid branch, the relative error of gas density (Eρ,gas =
|ρg,numerical − ρg,analytical|/ρg,analytical) is computed here, and the
variation of Eρ,gas with the analytical liquid-to-gas density
ratio (ρl,analytical/ρg,analytical) is given in Fig. 1(b). As one can
see, at the same density ratio ρl,analytical/ρg,analytical, Eρ,gas

with Qm = 0 is about five orders of magnitude smaller than
Eρ,gas with Qm �= 0. Here, it is worth emphasizing that the
gas density obtained with Qm = 0 greatly deviates from the
thermodynamic result given by Maxwell construction, even
though the corresponding Eρ,gas is very small. In the practical
applications of the pseudopotential LB model, a suitable
nonzero Qm is necessary to approximate the gas density close
to the thermodynamic result [22,24,29].

III. DENSITY GRADIENT CALCULATION

From the above analyses, it can be seen that ∇φ is gener-
ally involved in the pairwise-interaction-based LB models and
this ∇φ is simply calculated by Eq. (7) in previous works. In
the following, we will focus on the recent LB model with self-
tuning EOS due to its thermodynamic consistency and then

FIG. 1. Numerical results for the simulations of one-dimensional
flat interface by the pseudopotential LB model with consistent
scheme for ε3-order term. (a) The coexistence curves obtained
by simulation and the analytical ones given by mechanical sta-
bility condition. (b) The relative error of gas density Eρ,gas =
|ρg,numerical − ρg,analytical|/ρg,analytical versus the analytical density ratio
ρl,analytical/ρg,analytical.

propose an improved scheme to calculate the density gradient
(φ = ρ). In this model, the discrete term Qm [see Eqs. (18)
and (24)] can be expressed in terms of ∇ρ as follows:

Qm = G2δ2
x δ

2
t

[
0,

1

2
|∇ρ|2, −1

2
|∇ρ|2, 0, 0, 0, 0,

1

12
[(∂xρ)2 − (∂yρ)2],

1

12
∂xρ∂yρ

]T

, (25)

and the derived pressure tensor P satisfies [20]

∇ · P = ∇pEOS − κρ∇∇ · ∇ρ, (26)

where κ = G2δ2
x /4 and pEOS is the recovered EOS for multi-

phase fluids.
For the single-phase flows under the low Mach num-

ber condition, it has been shown that the pressure can be
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decomposed into the dynamic and thermodynamic parts,
where the dynamic part acts to balance the inertia and external
force and the thermodynamic part can be assumed to be spa-
tially uniform [39]. Inspired by this idea, and considering that
the LB model is limited to the low Mach number flows, we
assume that the pressure tensor recovered by the multiphase
LB model is spatially uniform (i.e., ∇ · P = 0) to calculate
the density gradient. Therefore, from Eq. (26), we have

∇pEOS = κρ∇∇ · ∇ρ, (27)

where ∇pEOS can be further written as d pEOS
dρ

∇ρ. Substituting
Eq. (27) into the Taylor series expansion of the pairwise
interaction force [i.e., Eq. (6)], an improved scheme for ∇ρ

can be obtained

∇ρ = F

G2δ2
x ρ + 2

3

d pEOS

dρ

. (28)

In practical applications, the EOS pEOS is directly specified,

and d pEOS
dρ

can be easily obtained. Compared with the previous
second-order ICS [i.e., Eq. (7)], the present improved scheme
does not introduce additional complexity in the multiphase
LB model. Here, it is worth pointing out that the low Mach
number approximation ∇ · P = 0 is only used to calculate ∇ρ

in the discrete term Qm [i.e., Eq. (25)] for the ε3-order term
Radd.

IV. VALIDATIONS AND DISCUSSIONS

In this section, analytical and numerical calculations are
carried out to validate the improved scheme for density gra-
dient for the LB model with self-tuning EOS. The Carnahan-
Starling EOS is chosen as an example [40],

pEOS = KEOS

[
ρRgT

1 + ϑ + ϑ2 − ϑ3

(1 − ϑ )3
− aρ2

]
, (29)

where Rg is the gas constant, T is the temperature, and
ϑ = bρ/4. Here, the coefficients a and b are related to the
critical point as a = 0.4963880577294099R2

gT 2
c /pc and b =

0.1872945669467330RgTc/pc, with Tc and pc denoting the
critical temperature and pressure, respectively. In the follow-
ing, a = 1, b = 4, and Rg = 1 are chosen, and the reduced
temperature is given as Tr = T/Tc. For the LB model with
self-tuning EOS, the interaction strength is set to [20]

G = KINT

√
2KEOSa/δ2

x , (30)

and the lattice sound speed is chosen as

cs = KINT

√
∂ρ (pEOS + KEOSaρ2)

∣∣∣∣
ρ=ρl

. (31)

In Eqs. (29), (30), and (31), the scaling factors KEOS and KINT

are used to adjust the surface tension σ and interface thickness
W , which satisfy σ ∝ KEOSKINT and W ∝ KINT, respectively.
In this work, the interface thickness W is defined from ρ =
0.95ρg + 0.05ρl to ρ = 0.05ρg + 0.95ρl . More technical de-
tails of this LB model (such as meq and S) can be found in
Ref. [20].

FIG. 2. Comparisons between the denominator G2δ2
x ρ + 2

3

d pEOS
dρ

of Eq. (28) and the denominator G2δ2
x ρ of Eq. (7). The scaling factor

KINT is determined by prescribing W = 5δx , and the scaling factor
KEOS is fixed at 1. In the ρ - Tr plane, the coexistence curve by
Maxwell construction is shown by the solid line and the region with
d pEOS

dρ
< 0 is depicted by the gray area.

Before proceeding further, some discussion on the denom-
inator G2δ2

x ρ + 2
3

d pEOS
dρ

of the improved scheme for density
gradient [i.e., Eq. (28)] is necessary. As it is known, the EOS
for multiphase fluids is nonmonotonic, implying that d pEOS

dρ

could be negative. To show the magnitude and variation of
d pEOS

dρ
, the denominator G2δ2

x ρ + 2
3

d pEOS
dρ

of Eq. (28) is calcu-

lated and compared with the denominator G2δ2
x ρ of Eq. (7).

The scaling factor KINT is determined by prescribing W = 5δx,
which is quite small in real simulations. The scaling factor
KEOS has no effect on the relative magnitude and variation of
d pEOS

dρ
, and thus KEOS is simply fixed at 1. The results with

Tr varying from 0.95 to 0.40 are given in Fig. 2, where the
coexistence curve by Maxwell construction is shown by the
solid line and the region with d pEOS

dρ
< 0 is depicted by the

gray area in the ρ-Tr plane. It can be seen from Fig. 2 that
d pEOS

dρ
is negative in the middle-density range (also see Fig. 6),

and G2δ2
x ρ + 2

3
d pEOS

dρ
, just like G2δ2

x ρ, is invariably positive. In

the region with d pEOS
dρ

< 0, G2δ2
x ρ + 2

3
d pEOS

dρ
is slightly smaller

than G2δ2
x ρ, while in the region with d pEOS

dρ
> 0 and near the

gas branch, G2δ2
x ρ + 2

3
d pEOS

dρ
could be significantly larger than

G2δ2
x ρ when Tr is relatively low. As the interface thickness

increases, the gap between G2δ2
x ρ + 2

3
d pEOS

dρ
and G2δ2

x ρ tends
to become smaller, which is expected since the accuracy of
Eq. (7) can be systematically improved by grid refinement.
From the above discussion, it can be found that as compared
with the denominator G2δ2

x ρ of Eq. (7), the denominator
G2δ2

x ρ + 2
3

d pEOS
dρ

of Eq. (28) will not become rather small in

spite of the negative d pEOS
dρ

.

A. One-dimensional flat interface

First, a one-dimensional flat interface put along the y co-
ordinate is considered. From Eq. (26), the following pressure
tensor can be derived:

P =
(

pEOS − κρ∇ · ∇ρ − κ

2
∇ρ · ∇ρ

)
I + κ∇ρ∇ρ, (32)
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FIG. 3. The profiles of normalized density ρ∗ and density gradient dρ∗/dx∗ across phase interface. The solid lines are the analytical
profiles, the dot denotes the density ρ∗ at the grid point set to its analytical value, and the cross and circle denote the density gradient dρ∗/dx∗

at the grid point calculated by Eqs. (7) and (28), respectively. The reduced temperature is chosen as (a) Tr = 0.9, (b) Tr = 0.8, (c) Tr = 0.7,
(d) Tr = 0.6, (e) Tr = 0.5, and (f) Tr = 0.4, respectively.

and thus the normal pressure is given as

Pn = pEOS − κρ
d2ρ

dx2
+ κ

2

(
dρ

dx

)2

. (33)

In the equilibrium state, the normal pressure should be equal
to the pressure in the bulk gas and liquid phases. Therefore,
from Eq. (33) and following the procedure in Ref. [12], the
following integral equation can be obtained [41]:∫ ρl

ρg

(P0 − pEOS)
1

ρ2
dρ = 0, (34)

where P0 = pEOS(ρg) = pEOS(ρl ) is the pressure in the bulk
phases. Equation (34) is known as the Maxwell construction in
thermodynamic theory, from which the coexistence densities
can be thermodynamically determined.

To validate the improved scheme for density gradient, the
analytical profiles of density and density gradient across phase
interface are computed from Eqs. (33) and (34) using numer-
ical integration. Then, the spatial discretization is carried out
with the interfacial region being divided into five grid points
(i.e., W/δx = 5), and the density at the grid point is set to its
analytical value. Based on the density at the grid point, the
density gradient at the grid point is calculated by Eqs. (7)
and (28), respectively. For the sake of discussion, the density

and coordinate are normalized as ρ∗ = (ρ − ρg)/(ρl − ρg)
and x∗ = x/W , respectively, and KEOS = KINT = 1 are used
in the computations because the profiles of ρ∗ and dρ∗/dx∗
are independent of KEOS and KINT. The results with Tr varying
from 0.9 to 0.4 are given in Fig. 3. It can be seen that dρ∗/dx∗
calculated by Eq. (28) agrees very well with its analytical
value, while dρ∗/dx∗ calculated by Eq. (7) obviously deviates
from its analytical value in the interfacial region, especially
around x∗ = −0.6 and x∗ = 0. Thus, the present improved
scheme [i.e., Eq. (28)] is more accurate than the previous
second-order ICS [i.e., Eq. (7)]. From Fig. 3, the asymmetry of
the dρ∗/dx∗ profile with respect to x∗ = 0 can be clearly seen,
especially when Tr is relatively low. Such a feature indicates
that the equilibrium density profile across phase interface
considerably deviates from a hyperbolic tangent function for
the Carnahan-Starling EOS.

The above analytical calculations demonstrate that the
improved scheme for density gradient [i.e., Eq. (28)] is more
accurate than the second-order ICS [i.e., Eq. (7)] when the
density at the grid point is set to the analytical value. To
numerically validate Eq. (28) and further compare Eqs. (28)
with (7), the one-dimensional flat interface is simulated by the
LB model with self-tuning EOS. The computational domain
is chosen as 1024δx × 4δx with the lattice spacing δx = 1, and
periodic boundary conditions are applied in both the x and y
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FIG. 4. Coexistence curves obtained by the simulations of one-dimensional flat interface with different schemes for ∇ρ and given by the
Maxwell construction in thermodynamic theory. The surface tension is fixed at σ = 0.01 and the interface thickness is set to (a) W = 5δx ,
(b) W = 10δx , (c) W = 20δx , and (d) W = 40δx , respectively.

directions. At time t = 0, the density and velocity fields are
initialized as

ρ(x, 0) = ρg,Maxwell + ρl,Maxwell

2
+ ρg,Maxwell − ρl,Maxwell

2

× tanh
|x − xc| − d0/2

W/ ln(19)
, (35a)

u(x, 0) = 0, (35b)

where ρg,Maxwell and ρl,Maxwell are the coexistence gas and
liquid densities given by Maxwell construction, xc = 512δx

and d0 = 512δx are the central position and initial width of
the liquid phase, and W is the interface thickness. In the
simulations, the dimensionless relaxation time τ (τ ≡ s−1

p ) is
chosen as 1.5 and the other relaxation parameters in S are set
following Ref. [20]. The surface tension σ is fixed at 0.01 and
the interface thickness W is set to 5δx, 10δx, 20δx, and 40δx,
respectively. Figure 4 gives the coexistence curves obtained
by the simulations with different schemes for density gradient.
For comparison, the thermodynamic coexistence curve given
by Maxwell construction is also plotted in Fig. 4. It can be
seen that the coexistence curve with ∇ρ calculated by Eq. (28)
agrees better with the thermodynamic curve than the one with
∇ρ calculated by Eq. (7) when the reduced temperature Tr

is relatively low. In the situation with very small interface
thickness (W = 5δx), the simulation with Eq. (28) is more
stable with respect to Tr than the simulation with Eq. (7).
However, in the situation with W = 10δx, the simulation with

Eq. (7) becomes a little more stable, which is probably caused
by the relatively large gas density that leads to a lower density
ratio, as shown in Fig. 4(b). From Fig. 4, we can also see
that the coexistence curve by simulation converges to the
thermodynamic result as the interface thickness increases.
This feature indicates that, for the LB model with self-tuning
EOS, the deviation in gas branch is caused by the spatial dis-
cretization error in interfacial region and can be systematically
reduced by grid refinement.

To further compare the numerical results obtained with
∇ρ by Eqs. (7) and (28), the relative error of gas den-
sity, defined as Eρ,gas = (ρg,numerical − ρg,Maxwell )/ρg,Maxwell, is
computed here, and the variation of Eρ,gas with the reduced
temperature Tr is given in Fig. 5. In a relatively low Tr range
(Tr � 0.675) with a corresponding larger density ratio, Eρ,gas

with ∇ρ by Eq. (28) is significantly smaller than Eρ,gas with
∇ρ by Eq. (7), and the gap tends to become larger as Tr

decreases. However, in a relatively large Tr range (Tr � 0.700)
with a corresponding lower density ratio, Eρ,gas with ∇ρ by
Eq. (28) becomes a little larger than Eρ,gas with ∇ρ by Eq. (7),
which is unexpected and may be explained as follows. For the
simulation with Eq. (28), Eρ,gas is always larger than 0 and
monotonically increases as Tr decreases. As for the simulation
with Eq. (7), Eρ,gas is larger than 0 in the Tr � 0.800 range
but becomes slightly smaller than 0 in the Tr � 0.825 range,
which indicates that there exists a point with Eρ,gas = 0 in
the 0.800 < Tr < 0.825 range. By further considering Eρ,gas

tends to 0 as Tr tends to 1, the simulation with Eq. (7) could be
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FIG. 5. Relative errors of gas density Eρ,gas = (ρg,numerical − ρg,Maxwell )/ρg,Maxwell obtained by the simulations of one-dimensional flat
interface with different schemes for ∇ρ. The surface tension is fixed at σ = 0.01 and the interface thickness is set to (a) W = 5δx , (b) W = 10δx ,
(c) W = 20δx , and (d) W = 40δx , respectively.

relatively accurate in the Tr � 0.700 range. Nevertheless, the
present improved scheme for density gradient [i.e., Eq. (28)]
can help to achieve higher numerical accuracy when Tr is
relatively low. Here, it is also worth pointing out that the
simulation with Eq. (28) is actually acceptable in a relatively
large Tr range because Eρ,gas itself is quite small in this range
due to the corresponding low density ratio, as clearly shown
in Fig. 5.

B. Two-dimensional circular interface

To further validate the improved scheme for density gradi-
ent, a two-dimensional circular interface is considered in this
part. In the equilibrium state, the chemical potential μ should
be the same in the gas and liquid phases [41]. Thus, for a small
variation in the interface radius r, there has

dμg = dμl , (36)

where the subscripts “ g” and “ l ” denote the gas and liq-
uid phases, respectively. From Eq. (36) and considering an
isothermal system, we have

1

ρg

d pg = 1

ρl

d pl . (37)

In addition, for the two-dimensional circular interface, the
force balance equation (i.e., the Laplace law) can be

written as

d pl − d pg = σd
1

r
, (38)

where σ is the surface tension. Note that r > 0 and r < 0
represent a droplet in gas phase and a bubble in liquid phase,
respectively, and r → ∞ indicates that the circular interface
degenerates into a flat interface. From Eqs. (37) and (38), the
densities (ρg and ρl ) and pressures (pg and pl ), as functions of
the interface radius r, can be thermodynamically determined.

In practical applications, it would be difficult to solve
Eqs. (37) and (38) because of the complexity of the EOS
for multiphase fluids. Since the variations in densities (ρg and
ρl ) and pressures (pg and pl ) caused by the circular interface
are quite small, the nonlinear EOS can be locally linearized
around the gas and liquid points, as illustrated by Fig. 6.
Therefore, we have

d pg = ϕg,satdρg, d pl = ϕl,satdρl , (39)

where

ϕg,sat ≡ d pEOS

dρ

∣∣∣∣
ρ=ρg,sat

, ϕl,sat ≡ d pEOS

dρ

∣∣∣∣
ρ=ρl,sat

. (40)

Here, the subscript “sat” denotes the saturated state for flat
interface. Using Eq. (39), Eqs. (37) and (38) can be easily
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FIG. 6. Local linearization of the nonlinear EOS for multiphase
fluids around the gas and liquid points. The density range with
d pEOS

dρ
< 0 is depicted by the gray area.

integrated from a flat interface to a circular interface with
radius r as follows:

ϕg,sat ln
ρg

ρg,sat
= ϕl,sat ln

ρl

ρl,sat

, (41a)

ϕl,sat(ρl − ρl,sat ) − ϕg,sat(ρg − ρg,sat ) = σ

r
, (41b)

from which the gas and liquid densities can be easily deter-
mined. Here, it is worth pointing out that, if the liquid phase
is incompressible (i.e., ρl/ρl,sat → 1) and the gas phase obeys
the ideal-gas EOS (i.e., pg = KEOSρgRgT ), and if the liquid
density is much larger than the gas density (i.e., ρl � ρg),
Eq. (41) will degenerate into the Kelvin equation for gas
pressure in thermodynamic theory [41].

The two-dimensional circular interface is simulated by the
LB model with self-tuning EOS on a periodic domain with
size being 1024δx × 1024δx. The interface thickness W and
surface tension σ are fixed at 10δx and 0.01, respectively,
and the reduced temperature Tr is set to 0.7 and 0.6, respec-
tively. The other parameters remain the same as those for the

one-dimensional flat interface. In the simulations, the density
and velocity fields are initialized as

ρ(x, 0) = ρg,Maxwell + ρl,Maxwell

2
+ ρg,Maxwell − ρl,Maxwell

2

× tanh
|x − xc|sgn(r0) − r0

W/ ln(19)
, (42a)

u(x, 0) = 0, (42b)

where r0 is the initial radius and xc is the central position
of the computational domain. Fig. 7 shows the variation of
the gas density ρg with the interface curvature 1/r, where the
analytical curve is determined by Eq. (41) and the equilibrium
radius r in the simulation is measured at ρ = (ρg + ρl )/2 after
convergence. It can be seen that for the case with Tr = 0.7, ρg
with ∇ρ by Eq. (7) is in better agreement with the analytical
curve than ρg with ∇ρ by Eq. (28). However, for the case
with Tr = 0.6, ρg with ∇ρ by Eq. (28) becomes more accurate
than ρg with ∇ρ by Eq. (7). Obviously, these results for the
two-dimensional circular interface are fully consistent with
the results in Fig. 5 for the one-dimensional flat interface.
Therefore, the improved scheme for density gradient [i.e.,
Eq. (28)] is beneficial to the numerical accuracy when the
reduced temperature is relatively low. From Fig. 7, it is also
interesting to note that as compared with Eq. (7), the slope of
the curve with ∇ρ by Eq. (28) agrees much better with the
analytical curve for both Tr = 0.7 and Tr = 0.6.

Finally, a moving droplet in gas phase is simulated to
further demonstrate the improved performance of Eq. (28).
The simulation parameters remain the same as those for
the foregoing stationary situation. As for the initial state,
the density field is set to the convergent density field of the
corresponding stationary situation with r0 = 128δx, and the
velocity field is prescribed as u0 ≡ (U0, 0)T. Here, it is worth
pointing out that the elimination of the additional cubic terms
of velocity is plugged into the LB model with self-tuning
EOS for simulating the dynamic multiphase flows [20,34].
In the simulation, the total kinetic energy, defined as Ek =
1
2

∫
ρ |u − u0|2dx, is computed. Fig. 8 shows the evolution of

the total kinetic energy Ek with the time-step number t/δt .
At t/δt = 0, there has Ek = 0. When the quasi-steady state

FIG. 7. Variations of the gas density ρg with the interface curvature 1/r obtained by the simulations of two-dimensional circular interface
with different schemes for ∇ρ and analytically determined by Eq. (41). The interface thickness and surface tension are fixed at W = 10δx and
σ = 0.01, respectively, and the reduced temperature is set to (a) Tr = 0.7 and (b) Tr = 0.6, respectively.
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FIG. 8. Evolutions of the total kinetic energy Ek with the time-step number t/δt in the simulations of a moving droplet with different
schemes for ∇ρ and different moving velocities. The initial radius, interface thickness, and surface tension are fixed at r0 = 128δx , W = 10δx ,
and σ = 0.01, respectively, and the reduced temperature is set to (a) Tr = 0.7 and (b) Tr = 0.6, respectively.

is reached, both the velocities in liquid and gas phases will
deviate from the prescribed velocity u0 [34], resulting in a
finite value of Ek . From Fig. 8, the improved performance
of Eq. (28) can be clearly seen. To be specific, Ek with ∇ρ

by Eq. (28) is smaller than Ek with ∇ρ by Eq. (7) for both
Tr = 0.7 and Tr = 0.6 as long as the simulations are stable.
In addition, for the case with Tr = 0.6 and U0/cs = 0.02, the
simulation with ∇ρ by Eq. (28) is stable, while the simulation
with ∇ρ by Eq. (7) blows up after 4600 time steps.

V. CONCLUSION

In this work, the multiphase LB models based on pairwise
interactions are theoretically analyzed in a unified frame-
work. It is found that the gradient of density (or effective
density, i.e., pseudopotential) is generally involved in this
class of multiphase LB models and usually calculated by
the second-order ICS simplified with the pairwise interaction
force. Numerical tests show that the pairwise interaction force
incorporated by the standard forcing scheme is quite accurate

due to its explicit physical significance. The ε3-order term,
in which the density gradient is involved, should be viewed
as a numerical trick and it is a major source of numerical
error. Because of its thermodynamic consistency, the recent
multiphase LB model with self-tuning EOS is focused on,
and an improved scheme is then proposed on the basis of
a low Mach number approximation to calculate the density
gradient for this model. Analytical calculations demonstrate
that the present improved scheme is more accurate than the
previous second-order ICS. Numerical simulations show that
the results obtained with the improved scheme are in better
agreement with the thermodynamic results when the reduced
temperature is relatively low.
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