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Conserved discrete unified gas-kinetic scheme with unstructured discrete velocity space
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Discrete unified gas-kinetic scheme (DUGKS) is a multiscale numerical method for flows from continuum
limit to free molecular limit, and is especially suitable for the simulation of multiscale flows, benefiting from
its multiscale property. To reduce integration error of the DUGKS and ensure the conservation property of the
collision term in isothermal flow simulations, a conserved-DUGKS (C-DUGKS) is proposed. On the other hand,
both DUGKS and C-DUGKS adopt Cartesian-type discrete velocity space, in which Gaussian and Newton-Cotes
numerical quadrature are used for calculating the macroscopic physical variables in low-speed and high-speed
flows, respectively. However, the Cartesian-type discrete velocity space leads to huge computational cost and
memory demand. In this paper, the isothermal C-DUGKS is extended to the nonisothermal case by adopting
coupled mass and inertial energy distribution functions. Moreover, since the unstructured mesh, such as the
triangular mesh in the two-dimensional case, is more flexible than the structured Cartesian mesh, it is introduced
to the discrete velocity space of C-DUGKS, such that more discrete velocity points can be arranged in the
velocity regions that enclose a large number of molecules, and only a few discrete velocity points need to be
arranged in the velocity regions with a small amount of molecules in it. By using the unstructured discrete
velocity space, the computational efficiency of C-DUGKS is significantly increased. A series of numerical tests
in a wide range of Knudsen numbers, such as the Couette flow, lid-driven cavity flow, two-dimensional rarefied
Riemann problem, and the supersonic cylinder flows, are carried out to examine the validity and efficiency of
the present method.
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I. INTRODUCTION

With the fast development of hypersonic vehicles and
near-space aircraft, numerical flow solvers are required to
be applicable to flows in all flow regimes from continuum
limit to free molecular limit. In multiscale simulations, both
numerical methods for continuum flow, such as computational
fluid dynamics (CFD) methods based on Navier-Stokes (N-S)
equations, and numerical methods for rarefied flow, such as
the direct simulation Monte Carlo (DSMC) [1] method for
Boltzmann equation, should face the problems of model inac-
curacy and large computational cost, respectively. Although
the CFD methods have achieved great success in continuum
flow simulations, it cannot be directly extended to rarefied
flows with nonequilibrium effect [1,2]. On the other hand, due
to the limitation of cell size and time step, the computational
cost of the DSMC method becomes huge in continuum and
near-continuum flow simulations [2].

In recent years, the numerical schemes based on gas-
kinetic theory have achieved a fast development [2–7]. As
the governing equation of the gas-kinetic theory, theoretically,
the Boltzmann equation can be used for flow simulations in
all flow regimes [8,9]. The discrete velocity method (DVM)
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[10–12] is one of the numerical methods for the Boltzmann
equation and its Bhatnagar-Gross-Krook-type (BGK-type)
[13] model equations, in which a discrete velocity space is
used. Since most DVM schemes are single-scale methods
with split particle transport and collision processes as the
DSMC method, their iteration time step should be less than
the mean collision time, and their cell size should be less than
the mean free path [14,15]. To address this problem, some
asymptotic preserving schemes [16,17], such as the unified
gas-kinetic scheme (UGKS) [6,18–21], discrete unified gas-
kinetic scheme (DUGKS) [2,3,7], and the improved DVM
[22–24], have been proposed. In the algorithm of UGKS,
the particle transport and collision processes are coupled by
the analytical solution of the BGK-type model equation for
updating the discrete distribution functions; as a result, there
are no restrictions of the cell size, and the time step can be
chosen according to Courant-Friedrichs-Lewy (CFL) condi-
tion. DUGKS has a similar physical process to the UGKS,
except for the way of calculating the distribution functions at
the cell interface. As a result, the numerical flux of distribution
functions at the cell interface is obtained from the time integral
of the analytical solution of the BGK-type equation in the
UGKS algorithm, while, in the algorithm of DUGKS, this
numerical flux is obtained from the distribution functions at
the half-time step, which can be determined by the numerical
characteristic solution of the BGK-type equation. Being the
same as the UGKS, the numerical flux of the DUGKS also
couples the particle transport and collision processes, while
its mathematical form is simple and easy to compute [2].
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Recently, an improved DVM with the asymptotic preserving
property has been proposed by Yang et al. [22–24]. Different
from the UGKS and DUGKS, the backward Euler rule is
used for the collision term in the improved DVM. And the
reconstruction of numerfical flux is a combination of the
numerical flux from the collisionless Boltzmann solver and
the numerical flux from the N-S solver with an adaptive
parameter.

Recently, Liu et al. proposed a conserved-DUGKS
(C-DUGKS) for isothermal microchannel flows in all flow
regimes [25]. The conserved-DUGKS means that the macro-
scopic conservative variables (mass, momentum, and energy)
at the cell center are updated by calculating their flux in-
stead of conducting a numerical quadrature of the auxiliary
distribution in the original DUGKS. Therefore, the meaning
of the word conserved in C-DUGKS is different from the
meaning of the word “conservative” in the conservative DVM
(CDVM). The meaning of conservative in CDVM is that the
equilibrium distribution function should satisfy the compati-
bility condition (macroscopic conservation) [26–28]. Like the
original DUGKS, the C-DUGKS also calculates the microflux
at the cell interface by means of the characteristic-line theory
using the auxiliary distribution functions, while the discrete
distribution functions and macroscopic conservative variables
(mass, momentum, and energy) are updated simultaneously
to ensure the conservation of the numerical collision term in
a time-implicit form which is similar to that of the UGKS
method.

Up to now, both the DUGKS and the C-DUGKS use a
Cartesian discrete velocity space with either Gauss-Hermite or
Newton-Cotes numerical quadrature. For hypersonic rarefied
gas flow simulations, a huge number of discrete velocity
points should be adopted to capture the nonequilibrium dis-
tribution functions accurately, and the corresponding compu-
tational cost and memory demand is huge.

To improve the computational efficiency of the asymptotic
preserving gas-kinetic methods such as the UGKS and the
DUGKS, Zhu et al. and Pan et al. proposed implicit UGKS
[29] and implicit DUGKS schemes [30] for nonequilibrium
steady flow, respectively, and the multigrid technology is used
to accelerate the convergence [31]. Then, the corresponding
schemes are extended to unsteady flow simulations further
[32]. Up to now, the implicit scheme with multigrid tech-
nology improves the computational efficiency significantly
(up to 100 times faster than the explicit ones). Besides the
implicit method with multigrid technology, the velocity space
adaptation [33–37] is another feasible method for acceleration
purposes. To improve the computational efficiency and reduce
the memory consumption of the UGKS method, Yuan et al.
introduced an unstructured discrete velocity space in the nu-
merical scheme [38], and the corresponding technology is pro-
posed to suppress the integration error on unstructured mesh.
Since the unstructured mesh is flexible, it can be made dense
in the regions easily where the value of distribution functions
is large, and be made coarse when the value of distribution
functions is small. As a result, a small amount of discrete
velocity points is sufficient for capturing the nonequilibrium
distribution functions.

In this paper, the C-DUGKS method is extended from
the isothermal and incompressible one to a more general

nonisothermal and compressible one by adopting the cou-
pled mass and inertial energy distribution functions and the
corresponding coupled BGK-type equation system. On the
other hand, the unstructured velocity space is introduced to
C-DUGKS to improve the computational efficiency, and the
validity of the unstructured velocity space is further exam-
ined. The Shakhov model is chosen from BGK-type model
equations, since its numerical behavior is better than the other
models, especially for high Mach number flows.

The rest of the paper is organized as follows: the present
nonisothermal and compressible C-DUGKS based on the
Shakhov model is introduced in Sec. II along with the unstruc-
tured discrete velocity space. In Sec. III, a series of numerical
tests in different flow regimes, including the Couette flow, lid-
driven cavity flow, two-dimensional rarefied Riemann prob-
lem, and the supersonic cylinder flow, are used to examine the
validity, accuracy, and computational efficiency of the present
method. The discussion and conclusion are in Sec. IV.

II. THE CONSERVED DISCRETE UNIFIED
GAS-KINETIC SCHEME

A. Shakhov model for Boltzmann equation

The starting point of the DUGKS is the BGK-type Boltz-
mann model equations that use simple relaxation operators
instead of a complicated Boltzmann collision term. The BGK
equation corresponds to a fixed unity Prandtl (Pr) number
[3]. To get the right Pr number, several modified models are
proposed based on different physical considerations, such as
the Shakhov model [39] and the ellipsoidal statistical model
(ES model) [40]. The D-dimensional (D is from one to three)
Shakhov model equation used in this paper is in the form of

∂ f

∂t
+ ξ · ∇ f = � ≡ − f − f s

τ
, (1)

where f = f (x, ξ, η, ζ, t ) is the velocity distribution functions
for particles moving in D-dimensional physical space with
velocity ξ = (ξ1, . . . , ξD) at position x = (x1, . . . , xD) and
time t . Here η = (ξD+1, . . . , ξ3) is the dummy velocity (with
the degree of freedom L = 3 − D) consisting of the remaining
components of the translational velocity of particles in three-
dimensional space; ζ is a vector of K elements representing
the internal degree of freedom of molecules; � is the collision
operator, τ = μ/p, μ is dynamic viscous coefficient, p is
static pressure, and f s is the Shakhov equilibrium distribution
functions in the following form:

f s = f eq

[
1 + (1 − Pr)

c · q
5pRT

(
c2 + η2

RT
− 5

)]
= f eq + fPr,

(2)

where f eq is the Maxwellian distribution function, c = ξ − u
is the peculiar velocity, u is the macroscopic flow velocity,
q is the heat flux, R is the specific gas constant, and T is the
temperature. The Maxwellian distribution function is given by

f eq = ρ

(2πRT )(3+K )/2 exp

(
−c2 + η2 + ζ 2

2RT

)
, (3)

where ρ is the density. In the gas-kinetic theory, the con-
servative flow variables are defined by the moments of the
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distribution functions as follows:

W =
⎛
⎝ ρ

ρu
ρE

⎞
⎠ =

∫
ψ(ξ, η, ζ) f dξ dη dζ, (4)

where ψ = (1, ξ, (ξ 2 + η2 + ζ 2)/2)T , ρE = ρu2/2 + ρε is
the total energy density, ρε = ρcV T is the inertial energy
density, and cV = (3 + K )R/2 is the specific heat capacity at
constant volume. The specific heat ratio is

γ = cp

cV

= 5 + K

3 + K
, (5)

where cp = (5 + K )R/2 is the specific heat capacity at con-
stant pressure. In the gas-kinetic theory, the heat flux is
defined by

q = 1

2

∫
c(c2 + η2 + ζ 2) f dξ dη dζ, (6)

and the stress tensor is defined by

τ =
∫

cc( f − f eq)dξ dη dζ. (7)

The expression of viscous coefficient μ is related to the
law of intermolecular interactions [1,3,41]. For variable hard-
sphere (VHS) molecules, the viscous coefficient is

μ = μref

(
T

Tref

)ω

, (8)

where ω is the heat index, which is 0.5 for the HS model and
0.81 for argon gas. The relation between the mean free path λ

and μ (VHS model) can be written as follows:

λ = 2μ(5 − 2ω)(7 − 2ω)

15ρ(2πRT )1/2 . (9)

In the nondimensional system, the Knudsen (Kn) number is
defined as

Kn = λ

L
= 2μ(5 − 2ω)(7 − 2ω)

15ρ(2πRT )1/2L

=
√

γ

π

√
2(5 − 2ω)(7 − 2ω)

15

Ma

Re
, (10)

where Ma = u/
√

γ RT and Re = ρuL//μ are the Mach num-
ber and Reynolds number, respectively, and L is the reference
length.

B. Reduced distributions

The transport process of molecules depends on the D-
dimensional particle velocity ξ only, and is irrelevant to η and
ζ. To avoid the discretization of η and ζ, two reduced dis-
tribution functions [42] are adopted in the present numerical
scheme as follows:

g(x, ξ, t ) =
∫

f (x, ξ, η, ζ, t )dη dζ,

h(x, ξ, t ) =
∫

(η2 + ζ 2) f (x, ξ, η, ζ, t )dηdζ. (11)

Given Eqs. (1) and (11), the following BGK-type equation
system can be obtained:

∂g

∂t
+ ξ · ∇g = �g ≡ −g − gs

τ
,

∂h

∂t
+ ξ · ∇h = �h ≡ −h − hs

τ
, (12)

where the reduced Shakhov equilibrium distribution functions
gs and hs are given by

gs =
∫

f s(x, ξ, η, ζ, t )dη dζ = geq + gPr,

hs =
∫

(η2 + ζ 2) f s(x, ξ, η, ζ, t )dηdζ = heq + hPr, (13)

with

geq =
∫

f eqdη dζ = ρ

(2πRT )D/2 exp

(
− c2

2RT

)
, (14)

gPr =
∫

fPrdη dζ = (1 − Pr)
c · q

5pRT

(
c2

RT
− D − 2

)
geq,

(15)

heq =
∫

(η2 + ζ 2) f eqdη dζ = (K + 3 − D)RT geq, (16)

hPr =
∫

(η2 + ζ 2) fPrdη dζ = (1 − Pr)
c · q

5pRT

×
[(

c2

RT
− D

)
(K + 3 − D) − 2K

]
RT geq. (17)

By substituting Eq. (11) into Eqs. (4), (6), and (7), it can be
obtained that

ρ =
∫

gdξ,

ρu =
∫

ξgdξ,

ρE = 1

2

∫
(ξ 2g + h)dξ, (18)

q = 1

2

∫
c(c2g + h)dξ, (19)

τ =
∫

cc(g − geq)dξ. (20)

Using the reduced distribution functions, the conservation
property of the Shakhov collision operator can also be written
as ∫

�gdξ = 0,∫
ξ�gdξ = 0,∫
(ξ 2�g + �h)dξ = 0. (21)

C. The conserved DUGKS

As can be seen from Eq. (12), g and h have the same
updating rule, therefore they can be replaced by a new symbol
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φ in the algorithm for simplicity, and the governing equation
can be written as

∂φ

∂t
+ ξ · ∇φ = �φ ≡ −φ − φs

τ
. (22)

Integrating Eq. (22) into control volume Vj from time tn to
tn+1 = tn + �t , it can be obtained that

φn+1
j (ξ) − φn

j (ξ) + �t

|Vj |
F n+1/2

j (ξ) = �t

2

[
�n+1

j (ξ) + �n
j (ξ)

]
,

(23)
where |Vj | is the volume of Vj and F n+1/2(ξ) is the microflux
across the cell interface given by

F n+1/2
j (ξ) =

∫
∂Vj

(ξ · n)φ(x, ξ, tn+1/2)dS, (24)

where ∂Vj is the surface of the control volume Vj and n is the
external normal unit vector of dS (an infinitesimal element of
∂Vj). It should be noted that a trapezoidal rule is used for the
time discretization of the collision term.

In order to avoid calculating the collision term at tn+1 time
on the right side of Eq. (23), DUGKS introduces two new
auxiliary distribution functions. The conservative variables
of C-DUGKS are updated first [25], so that the equilibrium
distribution functions at tn+1 can be obtained; then the implicit
evolution equation can be transformed into the following
explicit one:

φn+1
j (ξ) =

(
1 + �t

2τ n+1
j

)−1[
φn

j (ξ) − �t

|Vj |
F n+1/2

j (ξ)

+ �t

2

(
φs,n+1

j (ξ)

τ n+1
j

+ φs,n
j (ξ) − φn

j (ξ)

τ n
j

)]
. (25)

Similar to the UGKS, conservative variables W n+1
j need

to be updated before calculating the equilibrium distribution
functions φs,n+1

j (ξ) and the relaxation time τ n+1
j in Eq. (25).

Given Eqs. (18), (21), and (23), W n+1
j can be updated using

the following equations:⎛
⎜⎝

ρn+1
j

(ρu)n+1
j

(ρE )n+1
j

⎞
⎟⎠ =

⎛
⎜⎝

ρn
j

(ρu)n
j

(ρE )n
j

⎞
⎟⎠ − �t

|Vj |
∫∫

∂Vj

(ξ · n)

×
⎛
⎝ g(x, ξ, tn+1/2)

ξg(x, ξ, tn+1/2)
ξ 2g(x, ξ, tn+1/2) + h(x, ξ, tn+1/2)

⎞
⎠dS dξ.

(26)

Equations (25) and (26) are the evolution equations for
the microscopic distribution functions and the macroscopic
conservative variables, respectively. Once the distribution
functions φ(x, ξ, tn+1/2) at the half-time step and at the cell
interface are obtained, the whole scheme can be established.

In order to obtain φ(x, ξ, tn+1/2), the Shakhov model equa-
tion (22) is integrated along the characteristic line (in the
direction of particle velocity) from tn to tn+1/2. As shown
in Fig. 1, the characteristic line ends at the midpoint of the
cell interface. This process can be expressed by the following

FIG. 1. Sketch of two neighboring cells and the characteristic line.

equation:

φ (xb, ξ, tn + h) − φ (xb − ξh, ξ, tn)

= h

2
[�(xb, ξ, tn + h) + �(xb − ξh, ξ, tn)], (27)

where xb is the midpoint of the cell interface, and h = �t/2
is the half-time step. By introducing the following auxiliary
distribution functions,

φ̄ = φ − h

2
� = 2τ + h

2τ
φ − h

2τ
φs,

φ̄+ = φ + h

2
� = 2τ − h

2τ
φ + h

2τ
φs, (28)

Eq. (27) can be written as

φ̄(xb, ξ, tn + h) = φ̄+(xb − ξh, ξ, tn). (29)

That means as long as φ̄+(xb − ξh, ξ, tn) is known,
φ̄(xb, ξ, tn + h) can be directly obtained. Since the collision
operator fulfills the conservation property [Eq. (21)], the
macroscopic variables at the cell interface at the half-time step
can be obtained from the auxiliary distribution functions as
follows:

ρ =
∫

ḡdξ,

ρu =
∫

ξḡdξ,

ρE = 1

2

∫
(ξ 2ḡ + h̄)dξ, (30)

q̄ = 1

2

∫
c(c2ḡ + h̄)dξ, q = 2τ

2τ + h Pr
q̄. (31)

At the half-time step, the Shakhov equilibrium distribution
functions φs(xb, ξ, tn + h) at the cell interface can be ob-
tained by calculating the macroscopic conservative variables
W (xb, ξ, tn + h) and the heat flux q(xb, ξ, tn + h) at the cell
interface. Thus, the distribution functions at the cell interface
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FIG. 2. Flow chart of C-DUGKS.

can be recovered through the following equation:

φ(xb, ξ, tn + h) = 2τ

2τ + h

−
φ (xb, ξ, tn + h)

+ h

2τ + h
φs(xb, ξ, tn + h). (32)

Since both distribution functions and macroscopic vari-
ables at the cell interface at the half-step are constructed from
φ̄(xb, ξ, tn + h), φ̄(xb, ξ, tn + h) is equal to φ̄+(xb − ξh, ξ, tn)
[Eq. (29)]. Therefore, the calculation of φ̄+(xb − ξh, ξ, tn) is
very important in the present scheme. By using the Taylor ex-
pansion at the center of the control volume, φ̄+(xb − ξh, ξ, tn)
can be obtained from the following reconstruction:

φ̄+(xb − ξh, ξ, tn) = φ̄+(xc, ξ, tn) + �(xc, ξ, tn)∇φ̄+

(xc, ξ, tn) · (xb − ξh − xc),

xb − ξh ∈ Vc, (33)

where Vc stands for control volume which is centered at point
C (Fig. 1). If ξ · nb � 0, point C is P (the center the left cell)

in Fig. 1, otherwise point C is Q (the center of the right cell).
∇ φ+ (xc, ξ, tn) is the gradient of the auxiliary distribution
functions at point C, which is calculated by the least-square
method in this paper, and �(xc, ξ, tn) is the gradient limiter
used to suppress the numerical oscillations. The Venkatakr-
ishnan limiter [43] is chosen in this paper.

The time step of the present explicit scheme is determined
by the following CFL condition:

�t = α
�x

ξ + u
, (34)

where α is the CFL number, and �x is the minimum grid
spacing.

Figure 2 shows the flow chart of the present compressible
and nonisothermal C-DUGKS. The key point of the present
scheme is calculating the distribution functions at the cell
interface at the half-time step.

D. Unstructured discrete velocity space

By integrating the distribution functions in the continuous
velocity space, the conservative variables can be obtained
from Eq. (18). In numerical simulations, when discrete ve-
locity space is adopted, the continuous integration in Eq. (18)
is replaced by the following numerical quadrature:

ρ =
b∑

i=1

wig(ξi ),

ρu =
b∑

i=1

wiξig(ξi ),

ρE = 1

2

b∑
i=1

wi

[
ξ 2

i g(ξi ) + h(ξi )
]
. (35)

Since numerical quadrature is adopted in the discrete ve-
locity space, there are numerical errors in the quantities of
the macroscopic variables. In explicit schemes, the numeri-
cal quadrature error will lead to the numerical error of the

X

Y

-4 -2 0 2 4
-4

-2

0

2

4

(a)

X

Y

-4 -2 0 2 4
-4

-2

0

2

4

(b)

FIG. 3. Discrete velocity spaces. (a) Structured velocity mesh. (b) Unstructured velocity mesh.
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FIG. 4. Geometry of the Couette flow.

schemes, and it can be suppressed by refining the discrete
velocity space [3,18,25], while, for implicit schemes, this
numerical quadrature error harms convergence, and exact
conservation is enforced [38]. Up to now, the DUKGS gener-
ally uses Gauss-Hermite numerical quadrature for low-speed
continuum flows and Newton-Cotes numerical quadrature for
high-speed rarefied flows. These two numerical quadratures
are conducted on structured Cartesian mesh in velocity space.
Therefore, when the flow Mach number is large, the amount of
discrete velocity points needs to be extremely large. Actually,
according to Eq. (35), the velocity mesh should be dense
only in the regions where the value of distribution function is
large, and can be coarse in the regions with small distribution
function.

To reduce the amount of discrete velocity points and im-
prove the computational efficiency, Yuan et al. introduced the
unstructured discrete velocity into the UGKS method, since
the unstructured mesh (the triangular mesh, for example) is
more flexible than the structured one [38]. Figure 3 illustrates
a simple comparison between the structured Cartesian mesh
and the unstructured triangular mesh for discrete velocity
space about a Maxwellian distribution with a free-stream
velocity u = 0. The triangular mesh can be dense at the zero
velocity point where the distribution function is the maximum,
and gradually become coarse when the molecular speed is

X

Y

-4 -2 0 2 4
-4

-2

0

2

4

FIG. 5. Unstructured velocity mesh for Couette flow with 1882
points.

H

u
/U

w

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

UGKS
C-DUGKS(U)
C-DUGKS(S)

FIG. 6. U-velocity profile in vertical direction predicted
by UGKS and C-DUGKS with unstructured velocity mesh
[C-DUGKS(U)] and structured velocity mesh [C-DUGKS(S)].

large (far from the zero velocity point in velocity space).
Obviously, the unstructured discrete velocity space is flexible.
It can refine and coarsen the mesh when needed. This makes
the unstructured mesh an efficient way to organize the discrete
velocity space.

In the unstructured discrete velocity space, the discrete
points and their weights are the central point and the area
of mesh cells, respectively. Theoretically, the accuracy of
this type of integration is slightly lower than that of the
Gauss-Hermite and Newton-Cotes ones on structured Carte-
sian mesh; whereas, since the unstructured mesh is flexible, its
integration accuracy is often higher than that of the structured
one with the same amount of discrete points. In this paper, the
unstructured discrete velocity space is introduced to the C-
DUGKS to improve the computational efficiency and reduce
memory cost. Since DUGKS has a similar physical process as
UGKS, it is easy to believe that unstructured discrete velocity
space will work well in C-DUGKS. Several examples will be
carried out to explore the performance of the present method
in the next section.

III. NUMERICAL EXPERIMENTS

A series of test cases are carried out using the present
C-DUGKS with both structured Cartesian discrete velocity

TABLE I. Convergence time of C-DUGKS with both structured
and unstructured velocity meshes (in seconds) for Couette flow.

Structured Unstructured Ratio
mesh (A) mesh (B) (A/B)

Discrete velocity points 6400 1882 3.4
Convergence time (Kn = 0.01) 137.0 40.3 3.4
Convergence time (Kn = 0.2/

√
π) 36.3 9.3 3.9

Convergence time (Kn = 2/
√

π) 28.1 9.3 3.0
Convergence time (Kn = 20/

√
π) 271.7 96.1 2.8
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FIG. 7. Geometry of the cavity flow.

space and unstructured triangular discrete velocity space. The
accuracy and numerical efficiency of the two methods are
compared. The results of UGKS and DSMC are chosen as the
benchmark solutions.

The first test case is the Couette flow with Kn number
0.01, 0.2/

√
π , 2/

√
π , and 20/

√
π . The second test case is

the lid-driven cavity flow with Kn number 0.075, 1, and 10.
The third test case is the two-dimensional rarefied Riemann
problem. The last test case is the supersonic cylinder flow
with Kn number 0.1 and 1. For simulation of steady flow in
this paper, the relative errors of macroscopic variables are
calculated every 1000 steps. When the relative error is less
than ε as the following,

√∑
(un+1000 − un)2√∑

(un+1000)2
< ε, (36)

it is considered that the flow has reached the stable state. In
this paper, ε is chosen as 10−6 for all steady test cases. All
numerical simulations are conducted on a compute node with
24 cores, and the CPU information is Intel(R) Xeon(R) CPU
E5-2685 v3 @ 2.6 GHz.

A. Couette flow

The Couette flow is driven by two parallel plates whose
distance is H as shown in Fig. 4. The upper and lower plates
move in the opposite directions with a magnitude Uw. In this
case, the physical space between the two plates is discretized
into 100 cells. The working gas is argon (R = 208 J/kg/K),
and the HS model is adopted (ω = 0.5). Taking H as the
reference length, four cases with Kn number 0.01, 0.2/

√
π ,

2/
√

π , and 20/
√

π are carried out. The flow field is station-
ary initially. Both the initial temperature and wall tempera-
tures are 273 K. The velocity of plates is Uw = 0.5

√
RT =

119.15 m/s. For simplicity, dimensionless physical variables
are used. The reference temperature and velocity are Tref =
273 K and Uref = √

2RTref = 337.00 m/s, respectively. The
dimensionless density and temperature of the initial flow are
ρ0 = 1.0 and T0 = 1.0, respectively, and the magnitude of the
dimensionless velocity of both plates is U = 0.3535.

Similar to Ref. [29], 80×80 uniform discrete velocity
points in a range of [−4, 4]×[−4, 4] are chosen as the struc-
tured discrete velocity space. And the unstructured discrete
velocity space shown in Fig. 5 is adopted. The range of this
unstructured velocity space is a circle surface that is centered
at (0, 0) with a radius of 4. The number of discrete velocity
points is 1681. Although different types of discrete velocity
spaces are chosen, they can use the same CFL number, since
their minimum spatial mesh size and maximum discrete ve-
locity are the same.

Figure 6 shows the horizontal velocity profile in the vertical
direction predicted by C-DUGKS with both structured and un-
structured velocity spaces, along with the benchmark UGKS
data. Since the vertical velocity is almost zero for Couette
flow, the discrete velocity space in the vertical direction is
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FIG. 8. Spatial mesh (a) and unstructured velocity mesh (b) for cavity flow.
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FIG. 9. Simulation results of cavity flow at Kn = 0.075. (a) Temperature (UGKS, the background and white solid lines; C-DUGKS with
unstructured velocity mesh, black dashed lines; C-DUGKS with structured velocity mesh, red dashed lines). (b) Heat flux (UGKS, blue solid
lines; C-DUGKS with unstructured velocity mesh, black solid lines; C-DUGKS with structured velocity mesh, red solid lines). (c) U velocity
along the central vertical lines and V velocity along the central horizontal lines (C-DUGKS with unstructured velocity mesh [C-DUGKS(U)],
black solid lines; C-DUGKS with structured velocity mesh [C-DUGKS(S)], blue dashed lines; UGKS, red circle symbol).

set coarse, and it is refined in the horizontal direction. It is
found that the results predicted by the UGKS and the present
C-DUGKS are quite consistent with each other. Since the
unstructured mesh is flexible, 1882 discrete velocity points are
sufficient in this case, while the number of discrete velocity
points is 6400 (80×80) for the structured velocity space.
Table I is the convergence time of C-DUGKS with both struc-
tured and unstructured velocity space. Since the computation
time is proportional to the number of discrete velocity points,
the utilization of the unstructured velocity space leads to a
three to four times speedup.

B. Cavity flow

Two-dimensional lid-driven cavity flow is one of the classic
cases to test numerical schemes, especially their performance

on viscous effect. Here, cavity flow cases with a wide range
of Kn numbers (0.075, 1, and 10) are carried out. The length
of the four walls of the cavity (shown in Fig. 7) are L. The
top wall is moving from left to right with a constant velocity
Uw, and the other walls are static. The working gas is argon,
and the HS molecular model is chosen. The temperatures
of all walls are 273 K. Initially, the flow field is stationary
with a temperature of 273 K. The sonic speed and Mach
number of the moving wall are a = √

γ RT = 307.64 m/s
and Ma = 0.16, respectively. In numerical simulation, Tref =
227.50 K and Uref = √

2RTref = 307.64 m/s are set as the ref-
erence temperature and velocity, respectively. Therefore, the
dimensionless density and temperature of the initial flow field
are ρ0 = 1.0 and T0 = 1.2, respectively. The dimensionless
velocity of the top wall is Uw = 0.16. The present C-DUGKS
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FIG. 10. Simulation results of cavity flow at Kn = 10. (a) Temperature (UGKS, the background and white solid lines; C-DUGKS with
unstructured velocity mesh, black dashed lines; C-DUGKS with structured velocity mesh, red dashed lines). (b) Heat flux (UGKS, blue solid
lines; C-DUGKS with unstructured velocity mesh, black solid lines; C-DUGKS with structured velocity mesh, red solid lines). (c) U velocity
along the central vertical lines and V velocity along the central horizontal lines (C-DUGKS with unstructured velocity mesh [C-DUGKS(U)],
black solid lines; C-DUGKS with structured velocity mesh [C-DUGKS(S)], blue dashed lines; UGKS, red circle symbol).

with both structured and unstructured velocity space are used
for simulation, and the UGKS data is used as the benchmark
solution. The spatial mesh for cavity (2460 cells) is shown in
Fig. 8(a). In order to capture the boundary layer, a body-fitted
rectangular mesh is used near the wall, while an unstructured

TABLE II. Convergence time of C-DUGKS with both structured
and unstructured velocity meshes (in seconds) for the Kn = 0.075
case of cavity flow.

Structured Unstructured Ratio
mesh (A) mesh (B) (A/B)

Discrete velocity points 2500 1192 2.1
Convergence time (Kn = 0.075) 677.1 235.7 2.9

triangular mesh is used inside the cavity. For unstructured
discrete velocity spaces, the velocity mesh (1192 points) in
Fig. 8(b) is chosen for all Kn numbers, which is centered
at (0, 0) with a radius of 4. For structured discrete velocity

TABLE III. Convergence time of C-DUGKS with both struc-
tured and unstructured velocity meshes (in seconds) for Kn = 1 and
10 cases of cavity flow.

Structured Unstructured Ratio
mesh (A) mesh (B) (A/B)

Discrete velocity points 10201 1192 8.6
Convergence time (Kn = 1) 1537.3 189.3 8.1
Convergence time (Kn = 10) 2319.1 189.1 12.3
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FIG. 11. Simulation results of cavity flow at Re = 1000. (a) Velocity streamline. (b) U -velocity alone central vertical line and V -velocity
alone central horizontal line.

spaces, a structured and uniform mesh of 50×50 points is
chosen for Kn = 0.075, while the mesh with 101×101 points
is chosen for Kn = 1 and 10. The ranges of both structured
velocity spaces are [−4, 4]×[−4, 4].

The results of cavity flow at Kn = 0.075 and 10 are pre-
sented in Figs. 9 and 10, where the temperature contours, the
streamline of heat flux, and the velocities along the central
horizontal and central vertical lines are illustrated. It can be
seen that the results from C-DUGKS with both structured and
unstructured velocity space are in good agreement with the
UGKS. In addition, a close observation of Fig. 10(a) shows
that the result of C-DUGKS with the structured mesh (10 201
discrete velocity points) has a nonphysical ray effect at the

X

Y

-5 0 5

-6

-4

-2

0

2

4

6

FIG. 12. Unstructured velocity mesh for 2D rarefied Riemann
problem.

bottom-left corner of the cavity, i.e., the temperature contour
is jittery and discontinuous. On the contrary, the result of
C-DUGKS with the unstructured velocity mesh (only 1192
discrete velocity points) is consistent with the benchmark
solution with no ray effect. Since the speed of the top moving
wall is only 0.16 (near the origin of the velocity space),
and the temperature is around 1.0 in the whole flow field,
then particles are concentrated near the origin of the velocity
space. Since the unstructured mesh is flexible and can arrange
sufficient discrete velocity points near the velocity origin, then
the distribution function is well captured, and the ray effect
is avoided. Moreover, the unstructured velocity mesh can be
set coarse in the regions far from the velocity origin; then the
total number of discrete velocity points is still much less than
that of the structured and uniform velocity mesh. Tables II
and III show the convergence time taken by C-DUGKS with
both structured and unstructured mesh. It is found that the
convergence time of C-DUGKS with the unstructured mesh
is much less than that of C-DUGKS with the structured
velocity space (with a speedup of 8 to 12), benefiting from
use of the unstructured velocity mesh. In order to examine
the performance of the present method in the continuum flow
regime, the cavity flow case with Re = 1000 is conducted.
In this case, the Mach number of the moving wall is 0.1, so
that the flow is nearly incompressible and the solutions can be
compared with the benchmark solutions of the incompressible
N-S equations [44]. A 128×128 uniform spatial mesh and
the same unstructured velocity mesh [Fig. 8(b)] are adopted.
Figure 11 is the streamline velocity [Fig. 11(a)] and the
U -velocity alone central vertical line and V -velocity alone
central horizontal line [Fig. 11(b)]. The present results have
good agreement with the benchmark solution.

C. Two-dimensional rarefied Riemann problem

In this section, the two-dimensional rarefied Riemann
problem is used to test the validity of the present C-DUGKS
method. And the computational domain is divided into
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FIG. 13. The contours of the density (a), temperature (b), velocity magnitude (c), and the streamlines (d) for the 2D rarefied Riemann
problem at t = 0.15. In (a), (b), and (c), the background and white solid lines are from the collisionless Boltzmann equation, and the black
dashed lines and red dashed lines are the results of C-DUGKS with unstructured and structured velocity mesh, respectively. In (d), the blue
solid lines are the solutions of the collisionless Boltzmann equation, and the black solid lines and red solid lines are the results of C-DUGKS
with unstructured and structured velocity mesh, respectively.

quadrants with different macroscopic variables as follows:

(ρ, u, v, p)

=

⎧⎪⎨
⎪⎩

(ρ1, u1, v1, p1) = (0.5313, 0, 0, 0.4), x > 0, y > 0
(ρ2, u2, v2, p2) = (1, 0.7276, 0, 1), x � 0, y > 0
(ρ3, u3, v3, p3) = (0.8, 0, 0, 1), x � 0, y � 0
(ρ4, u4, v4, p4) = (1, 0, 0.7276, 1), x > 0, y � 0.

(37)

The working gas is composed of a diatomic molecule (HS
model) with γ = 1.4. The viscous coefficient is μ0 = 10.
Taking the physical variables in the first quadrant as the
reference values, Kn is 27.7. The computational domain
[−0.5, 0.5]×[−0.5, 0.5] is discretized into a Cartesian mesh
with 60×60 cells. The unstructured discrete velocity spaces

used in C-DUGKS (2788 discrete velocity points) is shown
in Fig. 12, which is centered at (0, 0) with a radius of
7, while the structured discrete velocity spaces used in C-
DUGKS has 101×101 discrete velocity points in the range
of [−7, 7]×[−7, 7].

TABLE IV. Run time of C-DUGKS with both structured and
unstructured velocity meshes (in seconds) for the Riemann problem.

Structured Unstructured Ratio
mesh (A) mesh (B) (A/B)

Discrete velocity points 10201 2788 3.7
Run time (Kn = 27.7) 642.2 175.9 3.7
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FIG. 14. Unstructured velocity mesh for C-DUGKS.

The density, temperature, velocity magnitude
√

u2
x + u2

y ,
and streamlines at t = 0.15 are shown in Fig. 13. The results
of C-DUGKS with both structured and unstructured mesh
match well with the results from the solution of the collision-
less Boltzmann equation. Table IV is the number of discrete
velocity points and the computation time of the C-DUGKS
with both structured and unstructured mesh, respectively. It
is found that the speedup ratio is the same as the ratio of
the mesh numbers (the number of structured velocity mesh
over the number of unstructured velocity mesh). Although the
velocity space is unstructured, the algorithm of C-DUGKS
only uses the information of the coordinates of the discrete
velocity points (the centers of the mesh cells) and their
weights [the areas (2D) of the mesh cells]; other information,
such as the face-node connection, face-cell connection, etc.,
are not used. As a result, the efficiencies of structured and
unstructured mesh are almost the same if used as the discrete
velocity space. Moreover, since the unstructured mesh is more
flexible, the number of discrete velocity points can be reduced
significantly, leading to a large speedup ratio.
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FIG. 15. Flow variables along the stagnation line for the case of Kn = 0.1. (a) Density, (b) pressure, (c) temperature, and (d) horizontal
velocity. C-DUGKS(U) and C-DUGKS(S) represent C-DUGKS with unstructured and structured velocity mesh, respectively.
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FIG. 16. Flow variables along the surface of the cylinder for the case of Kn = 0.1. (a) Heat flux, (b) pressure, and (c) shear stress.
C-DUGKS(U) and C-DUGKS(S) represent C-DUGKS with unstructured and structured velocity mesh, respectively.

D. Supersonic flow over a cylinder

To examine the accuracy and efficiency of the present
C-DUGKS method for predicting high-speed nonequilibrium
flows, the supersonic flow over a circular cylinder is con-
ducted. The working gas is argon for which the VHS molecu-
lar model is chosen. The velocity and temperature of the free
stream are 1538.18 m/s and 273 K, respectively, yielding a
free-stream Mach number equal to 5. The temperature on the
wall of the cylinder is a constant at 273 K. The above setting
is identical to that in Ref. [29]. The radius R of the cylinder
is taken as the reference length. Two Kn numbers 0.1 and 1.0
in transition regime are chosen for simulation. The computa-
tional domain of physical space, which is a circle with a radius
of 15R, is discretized using a mesh of 64×61 cells. In order
to capture the boundary layer correctly, the mesh near the
cylinder wall is refined in the normal direction. The height of
the first layer near the solid boundary is set as 0.005 and 0.01
for Kn = 0.1 and 1, respectively, since the thickness of the

boundary layer decreases as the Kn number decreases. During
the simulation, the reference temperature and velocity are
Tref = 273 K and Uref = √

2RTref = 337.00 m/s, respectively.
Therefore, the dimensionless free-stream temperature and the
wall temperature are both 1.0, the free-stream density is 1.0,
and the free-stream velocity is 4.56. The dimensionless den-
sity and temperature of the initial flow field are ρ0 = 1.0
and T0 = 1.0, respectively. The unstructured velocity mesh
(3045 points) used in C-DUGKS is shown in Fig. 14, which
is centered at (0, 0) with a radius of 10. Note that, since the
free-stream velocity is 4.56, the unstructured velocity mesh is
refined near both the origin (0, 0) and the point (4.56, 0). For
the structured velocity mesh, 89×89 (7921) points is used,
and the range of discrete velocity is [−10, 10]×[−10, 10].

The flow variables along the stagnation line in front of the
cylinder in the Kn = 0.1 case are illustrated in Fig. 15. The
results of C-DUGKS with both structured and unstructured
mesh match well the UGKS and DSMC results in Ref. [21].
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FIG. 17. Flow variables along the stagnation line for the case of Kn = 1.0. (a) Density, (b) pressure, (c) temperature, and (d) horizontal
velocity. C-DUGKS(U) and C-DUGKS(S) represent C-DUGKS with unstructured and structured velocity mesh, respectively.

In Fig. 15(c), the temperature profile predicted by both the
UGKS and the C-DUGKS deviate slightly from the DSMC
result in the front of the bow shock. This deviation is due
to the chosen of the Shakhov model equation [2], and the
same phenomenon can be found in the profiles of the normal
shock structures [45]. Figure 16 is the profiles of the heat
flux, pressure, and shear stress on the surface of a cylinder.
It is found that the results of C-DUGKS match well with

TABLE V. Convergence time of C-DUGKS with both structured
and unstructured velocity meshes (in seconds) for the hypersonic
cylinder case.

Structured Unstructured Ratio
mesh (A) mesh (B) (A/B)

Discrete velocity points 7921 3045 2.6
Convergence time (Kn = 0.1) 45664.0 17596.4 2.6
Convergence time (Kn = 1) 13352.4 5312.2 2.5

those of UGKS and DSMC. For the Kn = 1 case, the flow
variables along the stagnation line in front of the cylinder
are illustrated in Fig. 17; the heat flux, pressure, and shear
stress on the surface of a cylinder are illustrated in Fig. 18.
Being the same as the Kn = 0.1 case, the C-DUGKS results
for the Kn = 1 case match well with those from the UGKS
and DSMC methods. With the increase of the Kn number, the
nonequilibrium effect becomes stronger, and the deviations
of the C-DUGKS and UGKS temperature profiles from the
DSMC one become more obvious. Table V is the convergence
time of C-DUGKS with both structured and unstructured
mesh. It is found that the speedup ratios benefiting from the
unstructured velocity space are 2.6 and 2.5 for Kn 0.1 and 1,
respectively, which are almost the same as the ratio of discrete
velocity points.

IV. CONCLUSION

In this paper, the coupled mass and energy distributions
are introduced into the isothermal C-DUGKS, expanding its
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FIG. 18. Flow variables along the surface of the cylinder for the case of Kn = 1.0. (a) Heat flux, (b) pressure, and (c) shear stress.
C-DUGKS(U) and C-DUGKS(S) represent C-DUGKS with unstructured and structured velocity mesh, respectively.

scope of simulation to nonisothermal and compressible flows
in all flow regimes. Moreover, to relieve the dimensional
crisis adjoint to discrete velocity space of the C-DUGKS
method, an unstructured velocity space with triangular ele-
ments, which is developed for the UGKS method earlier, is
introduced in this paper. The validity of the present method
is proved by a series of test cases with a wide range of Kn
numbers, including the Couette flow, lid-driven cavity flow,
two-dimensional rarefied Rieman problem, and hypersonic
flow over a circular cylinder. Specifically, the validity of the
present method for compressible and nonisothermal flows
is verified by its precise prediction of the two-dimensional
rarefied Riemann problem and hypersonic cylinder flows. One
important advantage of the structured uniform mesh is that
high-order integration methods can be used, leading to less
discrete points, while, since the present unstructured velocity
mesh can adjust the mesh density wherever the physical
problem needs, the number of discrete velocities used can
be further reduced, and is significantly less than that of the

structured mesh with high-order integration methods. This
improvement leads to a large speedup in the two-dimensional
cases of this paper. For high Mach number, this speedup
ratio will further increase, since the unstructured mesh can
be made dense easily for high-speed molecules concentrated
in a small region of velocity space (such as hypersonic
inflow).
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