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By combining two generalized-ensemble algorithms, the replica-exchange Wang-Landau (REWL) method
and the multicanonical replica-exchange method (MUCAREM), we propose an effective simulation protocol to
determine the density of states with high accuracy. The new protocol is referred to as REWL-MUCAREM, and
REWL is first performed and then MUCAREM is performed. In order to verify the effectiveness of our protocol,
we performed simulations of a square-lattice Ising model using the three methods, namely REWL, MUCAREM,
and REWL-MUCAREM. The results showed that the density of states obtained by REWL-MUCAREM is more
accurate than that is estimated by the two methods separately.
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I. INTRODUCTION

The statistical mechanical expectation value of a physical
quantity can be accurately calculated if the density of states
(DOS) is given. However, in many cases, we do not know
DOS a priori and it is often difficult to obtain it theoretically
or experimentally. In recent decades, many methods were
developed for the determination of DOS by using Monte Carlo
(MC) and/or molecular dynamics (MD) simulations (e.g.,
see Refs. [1–31]). One of the earliest such methods may be
umbrella sampling [1]. Muticanonical algorithm [2–4], simu-
lated tempering [5–7], the replica-exchage method [8–11], the
Wang-Landau method [12,13], and Metadynamics [14–16]
were then developed, and generalizations and extensions of
these methods were further proposed [17–31]. These methods
are closely related. For example, it has been shown that
statistical temperature molecular dynamics [22] is equivalent
to Metadynamics [30]. We also remark that Metadynamics
can be considered to be Wang-Landau method in reaction co-
ordinate space (rather than energy space) [32]. These methods
have been successfully applied to a wide range of problems
in condensed matter and statistical physics including spin
glasses, liquid crystals, polymers, and proteins. Nevertheless,
the problem still remains that the exact calculation of DOS
cannot be achieved when the systems become large and
complex.

In this article, we propose an efficient simulation protocol
to obtain the most precise DOS by combining the replica-
exchange Wang-Landau method (REWL) [28,29] and the mul-
ticanonical replica-exchange method (MUCAREM) [18–20].
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This article is organized as follows. In Sec. II, we explain
the methods. In Sec. III, the computational details are given.
In Sec. IV, the results and discussion are presented. Section V
is devoted to conclusions.

II. COMPUTATIONAL METHODS

We first introduce three basic generalized-ensemble al-
gorithms, the multicanonical algorithm, the Wang-Landau
method, and the replica-exchange method. The multicanon-
ical algorithm (MUCA) [2,3] is one of the representative
methods. A simulation in multicanonical ensemble is based
on a non-Boltzmann weight factor, which we refer to as the
multicanonical weight factor. This is inversely proportional to
the DOS of the system, and a free random walk in potential
energy space is realized so that a wide configurational space
may be sampled. The DOS is often not known a priori.
The multicanonical weight factor is usually determined by
iterations of short trial simulations [4,33]. After a production
run with the determined MUCA weight factor, the single-
histogram reweighting techniques [34] are employed to obtain
an accurate DOS. However, the weight factor determina-
tion process can be tedious and difficult. The Wang-Landau
method (WL) [12,13] solved this problem drastically. In the
WL sampling, the weight factor, which is also inversely
proportional to the DOS, is updated during the simulation by
multiplying a constant to the weight factor. This procedure
leads to a uniform histogram in potential energy space, and
the modified weight factor converges to the inverse of the
DOS. Another powerful algorithm is the replica-exchange
method (REM) [8,9] (it is also referred to as parallel tempering
[35]). A closely related method was independently developed
in Ref. [36]. In this method, several copies (replicas) of
the original system at different temperatures are simulated
independently and simultaneously by conventional canonical
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MC or MD. Every few steps, pairs of replicas are exchanged
with a specified transition probability. This exchange process
realizes a random walk in temperature space, which in turn
induces a random walk in potential energy space. After a
production simulation, the multiple histogram reweighting
techniques [37,38] (an extension of which is also referred to
as the weighted histogram analysis method (WHAM) [38])
are used in order to determine the most accurate DOS from
all the histograms of sampled potential energy at different
temperatures.

These basic simulation methods can be combined for more
effective sampling. One method is referred to as the MU-
CAREM [18–20]. In this method, the total energy range where
we want to calculate the DOS is divided into smaller regions,
each corresponding to a replica, and MUCA simulations are
performed independently and simultaneously in each replica.
Every few steps, a pair of neighboring replicas are exchanged
like REM. The configurations can be sampled more effec-
tively than ordinary MUCA because of replica exchange. The
final, most accurate estimation of the DOS is obtained by the
multiple-histogram reweighting techniques [18–20]. A similar
method is the REWL method [28,29]. The idea is almost
the same as in MUCAREM except for using WL instead
of MUCA for each replica. After a REWL simulation, DOS
pieces are obtained for different energy regions. Connecting
these pieces at the point where the slope of DOS is coincident,
we can obtain the final estimation of DOS over the entire
energy range.

We found that the DOS with the highest accuracy can
be obtained by combining these two methods. The REWL
is employed in the first half of the total number of MC (or
MD) steps in order to get a rough estimate of the MUCAREM
weight factor and the MUCAREM is performed in the second
half in order to refine the DOS. We refer to this protocol
as REWL-MUCAREM. The DOS thus obtained has higher
accuracy than that is estimated by the two methods separately.

A brief explanation of MUCA is now given here. The
multicanonical probability distribution of potential energy
PMUCA(E ) is defined by

PMUCA(E ) ∝ g(E )WMUCA(E ) ≡ const, (1)

where WMUCA(E ) is the multicanonical weight factor and the
function g(E ) is the DOS. E is the total potential energy of a
system. By omitting a constant factor, we have

WMUCA(E ) = 1

g(E )
. (2)

In MUCA MC simulations, the trial moves are accepted with
the following Metropolis transition probability w(E → E ′):

w(E → E ′) = min

[
1,

WMUCA(E ′)
WMUCA(E )

]
= min

[
1,

g(E )

g(E ′)

]
. (3)

Here E is the potential energy of the original configuration and
E ′ is that of a proposed one. After a long production run, the
best estimate of DOS can be obtained by the single-histogram
reweighting techniques:

g(E ) = H (E )

WMUCA(E )
, (4)

where H (E ) is the histogram of sampled potential energy.
Practically, the WMUCA(E ) is set exp[−βE ] at first and mod-
ified by repeating sampling and reweighting. Here β is the
inverse of temperature T (β = 1/kBT with kB being the
Boltzmann constant).

The WL also uses 1/g(E ) as the weight factor and the
Metropolis criterion is the same as in Eq. (3). However, g(E )
is updated dynamically as g(E ) → f × g(E ) during the sim-
ulation when the simulation visits a certain energy value E .
f is a modification factor. We continue the updating until the
energy histogram becomes flat. If H (E ) is flat enough, then
a next simulation begins after resetting the histogram to zero
and reducing the modification factor (usually, f → √

f ). The
flatness evaluation can be done in various ways. In this article,
we considered that the histogram is sufficiently flat when

Hmin

Hmax
> 0.5, (5)

where Hmin and Hmax are the least number and the largest num-
ber of nonzero entries in the histogram, respectively [39]. This
process is terminated when the modification factor attains
a predetermined value ffinal and exp(10−8) � 1.000 000 01
is often used as ffinal. Hence, the estimated g(E ) tends to
converge to the true DOS of the system within this much
accuracy set by ffinal. (Several reports argue that there is a
possibility that conventional WL algorithm has a systematic
error which does not decrease any more. See, e.g., Ref. [24]).

In MUCAREM, the entire energy range of interest
[Emin, Emax] is divided into M subregions, E {m}

min � E �
E {m}

max(m = 1, 2, . . . , M ), where E {1}
min = Emin and E {M}

max = Emax.
There should be some overlap between the adjacent regions.
MUCAREM uses M replicas of the original system. The
weight factor for subregion m is defined by [18–20]:

W {m}
MUCA(E ) =

⎧⎪⎪⎨
⎪⎪⎩

e−β
{m}
L E , for E < E {m}

min

1
gm (E ) , for E {m}

min � E � E {m}
max

e−β
{m}
H E , for E > E {m}

max

, (6)

where gm(E ) is the DOS for E {m}
min � E � E {m}

max in subre-
gion m, β

{m}
L = d log [gm(E )]/dE (E = E {m}

min ) and, β
{m}
H =

d log [gm(E )]/dE (E = E {m}
max). The MUCAREM weight fac-

tor WMUCAREM(E ) for the entire energy range is expressed by
the following formula:

WMUCAREM(E ) =
M∏

m=1

W {m}
MUCA(E ). (7)

After a certain number of independent MC steps, replica
exchange is proposed between two replicas, i and j, in neigh-
boring subregions, m and m + 1, respectively. The transition
probability, wMUCAREM, of this replica exchange is given by

wMUCAREM = min

[
1,

W {m}
MUCA(Ej )W

{m+1}
MUCA(Ei )

W {m}
MUCA(Ei )W

{m+1}
MUCA(Ej )

]
, (8)

where Ei and Ej are the energy of replicas i and j before
the replica exchange, respectively. If replica exchange is ac-
cepted, then the two replicas exchange their weight factors
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TABLE I. Conditions of the present simulations.

Frequency (in MC sweeps)
Number of spins Number of replicas of flatness evaluation Total MC sweeps

Methods N M in Eq. (5) per replica

MUCAREM 64 4 NA 200 000
256 8 200 000
1024 16 200 000
4096 32 500 000

16 384 64 3 000 000
REWL 64 4 1000 200 000

256 8 200 000
1024 16 200 000
4096 32 500 000

16 384 64 3 000 000
REWL−MUCAREM 64 4 1000−NA 100 000−100 000

256 8 100 000−100 000
1024 16 100 000−100 000
4096 32 250 000−250 000

16 384 64 1 500 000−1 500 000

W {m}
MUCA(E ) and W {m+1}

MUCA(E ) and energy histogram Hm(E ) and
Hm+1(E ). The final estimation of DOS can be obtained from
Hm(E ) after a simulation by the multiple-histogram reweight-
ing techniques or WHAM. Let nm be the total number of
samples for the m-th energy subregion. The final estimation
of DOS, g(E ), is obtained by solving the following WHAM
equations self-consistently by iteration [19]:

⎧⎨
⎩

g(E ) =
∑M

m=1Hm (E )∑M
m=1nm exp ( fm )W {m}

MUCA(E )

exp (− fm) = ∑
E g(E )W {m}

MUCA(E )
. (9)

These MUCAREM sampling and WHAM reweighting pro-
cesses can, in principle, be repeated to obtain more accurate
DOS [20]. We remark that REM is often used to obtain the
first estimate of DOS in the MUCAREM iterations. We also
remark that when REM instead of MUCAREM is performed,
the best estimate of DOS can be obtained by solving Eq. (9),
where W {m}

MUCA(E ) is replaced by exp(−βmE ) with temperature
Tm (βm = 1/kBTm) for (m = 1, 2, . . . M).

The REWL method is essentially based on the same weight
factors as in MUCAREM, while the WL simulations replace
the MUCA simulations for each replica. This simulation is
terminated when the modification factors on all subregions
attain a certain minimum value ffinal. After a REWL simu-
lation, M pieces of DOS fragments with overlapping energy
intervals are obtained. The fragments need to be connected in
order to determine the final DOS in the entire energy range
[Emin, Emax]. The joining point for any two overlapping DOS
pieces is chosen where the inverse microcanonical tempera-
ture β = d log [g(E )]/dE coincides best [28,29].

III. COMPUTATIONAL DETAILS

In order to compare the effectiveness of the REWL-
MUCAREM with other methods, we performed simulations
of a two-dimensional Ising model with periodic boundary
conditions.

In a square-lattice Ising model, the total energy E is
defined by

E = −J
∑
〈i, j〉

SiS j, (10)

where i and j are labels for lattice points. J is the magnitude
of interaction between neighboring spins. In this article, J and
kB are set to 1 for simplicity. 〈i, j〉 represents pairs of nearest-
neighbor spins. Si is the state of spin on a lattice point i and
takes on values of ±1. Beale calculated the exact DOS of the
model of finite sizes [40,41].

Table I lists the conditions of our simulations. The total
number of spins N is L2, where L is the length of a side of the
square lattice, The total number of spins considered was N =
64, 256, 1024, 4096, and 16 384. One MC sweep is defined
as an evaluation of Metropolis criteria N times. The cost of
computations (for example, the total number of MC sweeps)
was set equal. However, we should point out that while the
ordinary REWL algorithm is terminated when the recursion
factor f converged to ffinal, our REWL simulations were
finished after a certain fixed number of flatness evaluations
had been made.

A Marsaglia random number generator was employed and
we used the program code on open source [33,42]. The num-
ber of replicas was set equal to L/2. Each replica performed
a MUCA simulation in MUCAREM or a WL simulation in
REWL within their energy subregions, which had an overlap
of about 80% between neighboring subregions. In the cases of
REWL and REWL-MUCAREM simulations, the WL flatness
criterion was tested every 1000 MC sweeps. If the histogram
of energy distribution is sufficiently flat at this time, then
the WL recursion factor was reduced. Replica exchange was
tried every 100 MC sweeps. The cost of calculation in our
simulations was measured by the total number of MC sweeps
because we spend most of computational time to perform
MC simulations. With the conditions in Table I, we made
n = 25 independent runs with different initial random number
seeds. In this work, we did not iterate the DOS evaluation

043304-3



TAKUYA HAYASHI AND YUKO OKAMOTO PHYSICAL REVIEW E 100, 043304 (2019)

C
 / 

N
C

 / 
N

T T

C
 / 

N

T

(a)
(b)

(1)

(2)

(3)

(4)

(1)

(3)

(2)

FIG. 1. The specific heat. Panel (1) in (a) gives the exact solutions which were calculated by the exact DOS [40,41]. Panels (2), (3), and
(4) were obtained by simulations with L = 8, 16, 32, 64, and 128 by MUCAREM, REWL, and REWL-MUCAREM, respectively. (b) shows
the differences between the simulation results and exact one, �C(T ) = Csim(T ) − CEXACT(T ).

during the MUCAREM simulations for simplicity. In the
present MUCAREM simulation, the first half of the total
MC sweeps was run with REM and the remaining of the
simulation was MUCAREM with the DOS obtained from the
REM simulation. We evaluated the effectiveness of iterations
of MUCAREM and WHAM (see Appendix A). In the REM
simulation, M temperature values were evenly distributed
between β1 = 1.0 and βM = 0.01.

IV. RESULTS AND DISCUSSION

The four figures in Fig. 1(a) shows the specific heat
which was calculated from the estimated DOS by using the
following equation:

C(T ) = 〈E2〉T − 〈E〉2
T

T 2
, (11)

where

〈A〉T =
∑

E A(E )g(E )e−βE∑
E g(E )e−βE

, (12)

and A(E ) is any physical quantity that depends on E . The
errors were obtained by the standard error estimation:

εA =
√∑n

i=1(A{i} − A)2

n(n − 1)
, A =

∑n
i=1A{i}

n
. (13)

Here A{i} is obtained from the ith simulation (i = 1, 2, . . . , n).
Although the exact values of specific heat in finite sizes
were obtained by Ferdinand and Fisher [43], we calculated
the exact specific heat in Fig. 1(a) (1) from the exact DOS,
gEXACT(E ), of Beale [40,41] by using Eqs. (11) and (12). We
used the Mathematica code, which is given in Ref. [41], for the
calculations of gEXACT(E ). All the algorithms could reproduce
the exact solutions very well.

The differences between exact values and simulation re-
sults are shown in Fig. 1(b). Note that |�C(T )| takes max-
imum values around the phase transition temperature Tc =
2/ log(1 + √

2) � 2.269 in each method. The results imply
that the results of the three methods agree with the exact
ones in the order of REWL-MUCAREM, REWL, and MU-
CAREM. It means that REWL-MUCAREM could get more
accurate DOS than the other two methods.

In order to directly compare the accuracy of DOS among
the three methods, we show the mean local flatness G(E ) in
Fig. 2 for the system of N = 32 × 32, where⎧⎨

⎩
G(E ) = 1

n

∑n
i=1 G{i}(E )

G{i}(E ) = g{i}
sim (E )

gEXACT(E )

. (14)

Here g{i}
sim is the DOS estimated from the ith simulation (i =

1, 2, . . . , n). We matched log gEXACT(E ) and log g{i}
sim(E ) at

E/N = −0.5. If g{i}
sim(E ) is equal to gEXACT(E ), then G{i}(E )

becomes flat (=1) ideally in the entire energy range. The
red curves and the yellow vertical bars in Fig. 2 are the
values of G(E ) and the error bars, respectively. The errors
were also estimated by the standard error estimation. The
difference between red curve and black base line became
large at lower energy region. The tendency became stronger
in larger systems, where the phase transition became stronger
(see Fig. 1). Because the error bars are the smallest at a lower
energy region among the three methods, REWL-MUCAREM
could obtain more precise DOS than REWL and MUCAREM.

In order to examine the accuracy of DOS further, we define
the degree of global flatness F by the following formula:

F ≡ Gmin

Gmax
, (15)

where Gmin is the minimum value of G(E ) over the entire
energy range and Gmax is the maximum one. F takes on
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G

E / N

FIG. 2. Mean local flatness G(E ) in Eq. (14) (red curves). The
total number of spins is N = 32 × 32. G(E ) were obtained from
the simulations by (a) MUCAREM, (b) REWL, and (c) REWL-
MUCAREM. The error bars (vertical yellow bars) were obtained
by the standard error estimation. The best estimated DOS will give
G(E ) = 1.

values between 0 and 1. The closer the calculated g{i}
sim(E ) is

to gEXACT(E ) globally, the closer F is to 1. Figure 3 shows
the measured flatness F . As a measure of errors, we define the
minimum value of F and maximum one by⎧⎪⎨

⎪⎩
Fmin = Gmin− 1

2 ε(Eglmin )

Gmax+ 1
2 ε(Eglmax )

Fmax = Gmin+ 1
2 ε(Eglmin )

Gmax− 1
2 ε(Eglmax )

. (16)

F

N

FIG. 3. Global flatness F defined in Eq. (15) as a function of the
total number of spins, N . If g{i}

sim(E ) is equal to gEXACT(E ) in the entire
energy range, then F takes a value 1.

Here ε(E ) is the standard error of G(E ), and Eglmin and Eglmax

are the energy values where Gmin and Gmax are obtained,
respectively. It is obvious that the value deteriorates as the size
of system gets larger. This means that it was difficult to esti-
mate the DOS of large systems because of the large degrees of
freedom. We needed more samples in order to obtain DOS for
larger systems. We could not find much differences among the
three methods up to N = 16 × 16. One bad datum was found
in MUCAREM for the size of N = 32 × 32, and it made the
error bar larger than the other methods. If we consider the
system larger than N = 32 × 32, then REWL-MUCAREM
gave the best results among the three methods.

In the present implementation of MUCAREM, we per-
formed two multiple-histogram reweighting (WHAM) oper-
ations: first after the REM simulation in the first half of
the run and, second, after the MUCAREM simulation in the
second half of the run. Although a second WHAM operation
converges quickly, the calculation cost of the first WHAM
operation can become non-negligible in large systems. The
REWL-MUCAREM uses only the second WHAM and this
WHAM converges even more quickly than in MUCAREM,
because a good estimate of DOS is already prepared by
the preceding REWL simulation. Hence, REWL first and
MUCAREM second is the order that we want to adopt in
REWL-MUCAREM. Note also that in REWL-MUCAREM,
we do not need the piece-connecting process of DOS required
in REWL, because WHAM automatically gives DOS in the
entire energy range of interest.

V. CONCLUSIONS

In this article, we investigated an effective simulation
protocol to estimate the density of states with highest ac-
curacy. We proposed REWL-MUCAREM, which combines
the advantages of REWL and MUCAREM, where REWL
is performed first and MUCAREM is performed next. This
protocol was compared with the existing two methods in
a square-lattice Ising model, and the results showed that
REWL-MUCAREM gave the most accurate density of states.

REWL-MUCAREM is effective with other systems and
it can be extended to the MD simulation, because MUCA
MD [44,45] and WL MD [46] have already been developed.
We have already calculated the residual entropy of Ice Ih
[47] and we applied the protocol to helix-coil transitions of
homopolymers [48]. The previews of these results are given in
Appendix B. REWL-MUCAREM MD simulations of protein
folding are now underway. We remark that there is an article
which says that improvements can be transferred between
MC and MD broad histogram methods [30]. The protocol
of REWL-MUCAREM is easy to implement and it can give
more reliable results.
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TABLE II. Conditions of MUCAREM simulations.

Number of spins MUCAREM Number of MC sweeps
Methods N iterations Number of replicas per replica Total MC sweeps

REM MUCAREM REM MUCAREM
MUCAREM1 64 1 4 4 100 000 100 000 200 000 × 4

256 8 8 100 000 100 000 200 000 × 8
1024 16 16 100 000 100 000 200 000 × 16
4096 32 32 250 000 250 000 500 000 × 32

16 384 64 64 1 500 000 1 500 000 3 000 000 × 64
MUCAREM2 64 1 8 4 10 000 180 000 200 000 × 4

256 16 8 10 000 180 000 200 000 × 8
1024 32 16 10 000 180 000 200 000 × 16
4096 64 32 25 000 450 000 500 000 × 32

16 384 128 64 150 000 2 700 000 3 000 000 × 64
MUCAREM3 64 2 8 4 10 000 90 000 200 000 × 4

256 16 8 10 000 90 000 200 000 × 8
1024 32 16 10 000 90 000 200 000 × 16
4096 64 32 25 000 225 000 500 000 × 32

16 384 128 64 150 000 1 350 000 3 000 000 × 64

APPENDIX A: OPTIMIZATION OF CONDITIONS
IN MUCAREM

We discuss the optimization conditions in MUCAREM in
order to obtain more accurate DOS in REWL-MUCAREM.
We performed two more MUCAREM simulations with
different conditions. Table II lists the conditions of the addi-
tional simulations (MUCAREM2 and MUCAREM3) together
with the first MUCAREM in Table I (which is now referred
to as MUCAREM1). The major differences of the additional
MUCAREM simulations from the previous MUCAREM sim-
ulation lies in the following: number of MC sweeps for
REM and MUCAREM, number of replicas used for REM,
and number of iterations of MUCAREM. In the additional
MUCAREM simulations, 10% of the total MC sweeps was
run with REM and the remaining 90% of the simulation
was MUCAREM with the DOS obtained from the preceding
REM simulation. In REM simulations in MUCAREM2 and
MUCAREM3, replica exchange was proposed every 10 MC
sweeps. On the other hand, in MUCAREM in MUCAREM2
and MUCAREM3, replica exchange was proposed every 100
MC sweeps.

It is often said that the DOS obtained by MUCAREM sim-
ulations becomes better by iterating MUCAREM and WHAM
reweighting [20]. We iterated MUCAREM simulations once
for MUCAREM3. It should be mentioned that because we
obtained clearly wrong DOS, we performed one extra run
for each system N = 32 × 32 and N = 128 × 128 in MU-
CAREM2 and simply discarded these apparently bad runs.
(We did not find a bad run in REWL and REWL-MUCAREM
simulations.) We think the problem came from the difficulty
of uniformly sampling over a wide energy range in REM.
The rough DOS obtained from the first REM was not good
and the inaccuracy had a bad influence to the sampling of the
following MUCAREM. Giving apparently wrong results sug-
gests that MUCAREM simulations are unstable comparing to
REWL and REWL-MUCAREM simulations, which implies
that the total number of MC sweeps and/or the number of runs

n should be larger for MUCAREM simulations to conclude
with confidence.

Figure 4 shows the global flatness F in Eq. (15). Although
there are few differences in F among the three MUCAREM
simulations up to the system N = 64 × 64, we found a large
difference in the system N = 128 × 128. MUCAREM3 could
obtain a good estimate of DOS compared with MUCAREM1
and MUCAREM2. It implies that the DOS became better by
iterating MUCAREM simulations rather than by using more
sampling obtained from a single, long run of MUCAREM.
The error bar for the system N = 64 × 64 is large if it was
compared to other size of systems in MUCAREM3. We found
a bad result from one run of the 25 runs, which made the error
bar larger. These again suggest that MUCAREM simulations

F

N

FIG. 4. Global flatness F defined in Eq. (15) as a function of the
total number of spins, N . The error bars of MUCAREM3 except for
N = 64 × 64 were sufficiently small compared to the symbols.
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W
1

1/N

FIG. 5. (a) The number of degrees of orientation per water molecule W1 as a function of the inverse of the number of total water molecules.
The purple data points correspond to N = 1600, 2880, 4704. The green fit curve was estimated by Eq. (B2). (b) The temperature dependence
of average helix length of deca-alanine. Deca-alanine takes a coil structure at high temperatures (see, e.g., the right structure) and takes an
α-helix structure at low temperatures (see, e.g., the left structure).

are unstable compared to REWL and REWL-MUCAREM
simulations. Note that the estimation of DOS under the condi-
tions of MUCAREM3 for N = 128 × 128 is even better than
that of REWL-MUCAREM in Fig. 3, although MUCAREM
seems to be unstable. We expect that REWL-MUCAREM
could remove the instability of MUCAREM and it would
give better DOS if its MUCAREM simulation in REWL-
MUCAREM was also iterated.

We can obtain good estimate of DOS under appropriate
conditions and the DOS becomes more accurate by iterat-
ing the MUCAREM and WHAM reweighting operations.
Although the most suitable conditions will depend on sys-
tems and methods, the combination of REWL and MU-
CAREM can give accurate DOS without worrying about bad
data.

APPENDIX B: APPLICATIONS OF REWL-MUCAREM

We applied the REWL-MUCAREM MC protocol to two
characteristic systems, Ice Ih and biopolymer. In this Ap-
pendix, we show some preliminary results.

The first example is the estimation of the residual en-
tropy of Ice Ih by REWL-MUCAREM [47]. According to
Pauling’s theory, the residual entropy is obtained from the
degrees of freedom of orientations of water molecules which
are observed in the ground state [49]. Two simple Potts-
like models, which are referred to as the two-site model
and six-state model, with nearest-neighbor interactions on
three-dimensional hexagonal lattice were introduced and the
residual entropy was estimated by a MUCA simulation [39].
We applied our protocol to the two-site model for obtaining
the residual entropy with high accuracy. The final estimation
of the residual entropy is estimated by extrapolation, taking
the thermodynamic limit.

The estimations of the degrees of freedom of orientations
of one water molecule W1(1/N ) are shown in Fig. 5(a). Here N
stands for the total number of water molecules of the system.

The relationship between the degrees of freedom W1(1/N ) and
the residual entropy S1(1/N ) is given by

S1

(
1

N

)
= kB logW1

(
1

N

)
. (B1)

In Fig. 5(a), three data points (N = 1600, 2880, 4704) are
plotted. It was not possible to obtain the value for N = 4704
by the previous MUCA simulations [39,50], and we needed
the REWL-MUCAREM to obtain this new value. A fit [the
green curve in Fig. 5(a)] for the data to the form

W1

(
1

N

)
= W0 + a1

(
1

N

)θ

(B2)

is shown. Here W0, a1, and θ are fitting parameters and W0

converts to the final estimation of the residual entropy S0 in
the thermodynamical limit (N → ∞).

Our final estimation of W0 is [47]

W0 = 1.507480 ± 0.000048, (B3)

and the final residual entropy S0 is

S0 = 0.815627 ± 0.000063 (cal/deg mole). (B4)

These results agree well with the other results in Refs. [51,52],
which were estimated by other simulation methods.

Another example is a folding simulation of a simple
biopolymer [48]. In order to examine the effectiveness of our
protocol for protein folding simulation, we studied the helix-
coil transition of a deca-alanine (which is a helix former) with
AMBER99/GBSA force field. The REWL-MUCAREM MC
protocol was employed and the dihedral angles were updated
by the Metropolis criterion during simulations.

The temperature dependence of the average helix length of
deca-alanine is shown in Fig. 5(b). Because the structures of
the terminal residues are frayed, the maximum helix length
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is 8. The deca-alanine is in a coil state above the transition
temperature of Tc ≈ 350 K and in a helix state below Tc.

Folding simulations of larger and more complex proteins are
under way [48].
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