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It is crucial to properly describe the associating fluids in terms of phase equilibrium behaviors, which are
needed for design, operation, and optimization of various chemical and energy processes. Pseudopotential lattice
Boltzmann method (LBM) appears to be a reliable and efficient approach to study thermodynamic behaviors and
phase transition of complex fluid systems. However, when cubic equations of state (EOSs) are incorporated into
single-component multiphase LBM, simulation results are not well matched with experimental data. This study
presents the utilization of cubic-plus-association (CPA) EOS in the LBM structure to obtain more accurate
modeling results for associating fluids. An approach based on the global search optimization algorithm is
introduced to find the optimal association parameters of CPA EOS for water and primary alcohols in the lattice
units. The thermodynamic consistency is verified by the Maxwell construction and is also improved by the
forcing scheme of [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 86, 016709 (2012)]. The spurious velocity
is reduced with increasing isotropy in the gradient operator. Furthermore, an extended version of CPA EOS
is introduced, which increases the system stability at low reduced temperatures. There is a very good match
between the LBM results and experimental data, confirming the reliability of the model developed in the present
study. The introduced approach has potential to be employed for simulating transport phenomena and interfacial
characteristics of associating fluids in porous systems.
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I. INTRODUCTION

Cubic equations of state (EOSs) such as Peng-Robinson
(PR) [3] and Soave-Redlich-Kwong (SRK) [4] have been
extensively used to model thermodynamic behaviors of hydro-
carbon and nonhydrocarbon fluids, due to their simplicity and
accuracy. Unusual thermodynamic behaviors are generally
observed for fluids with hydrogen bonds while employing
cubic EOSs [5]. Water is an associating component, which
commonly exists in various mixtures such as petroleum reser-
voir fluids as a connate water and injection fluid. Taking
another example, asphaltene molecules as a group of com-
plex components may form aggregates due to the association
forces. The bonding among polar components is stronger than
physical interactions. Therefore, the associating fluids may
not be fully described by cubic EOSs [6]. The cubic-plus-
association (CPA) EOS was introduced by Kontogeorgis et al.
[7] to consider the association effects in associating fluids.
The CPA EOS has both physical and association parts so
that it turns into a cubic EOS in the absence of associating
components. In fact, the additional term in the CPA EOS
exhibits the association impact, which is originated from the
Wertheim theory. This is the same association expression that
is utilized in the statistical association fluid theory (SAFT)
EOS. The CPA EOS has been broadly employed to study the
thermodynamic conditions of complex reservoir fluids. For
example, Li and Firoozabadi introduced a generalized strategy
based on the CPA EOS to determine the amount of asphaltene
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precipitation [8–10]. A general review on the CPA EOS can
be found in the works conducted by Kontogeorgis et al.
[5,11].

On the basis of the Reynolds-averaged Navier-Stokes
(RANS) equations, the computational fluid dynamics methods
have been successfully implemented in several mechanical
and chemical engineering cases. The applications of large
eddy simulation (LES) and direct numerical simulation (DNS)
approaches have been considerably increased due to the strong
computational capability of supercomputers. However, these
methods are based on the continuum assumption. Hence, they
might not be able to capture the (micro-)mesoscale physics
of targeted processes and/or phenomena. On the other hand,
some basic particle-based techniques have been introduced
to provide better physical insights of multiphase flow sys-
tems. For instance, quantum molecular simulation (QMS),
molecular-dynamic simulation (MD), direct simulation Monte
Carlo (DSMC), and dissipative particle dynamics (DPD) ap-
pear to be efficient strategies to explore the molecular interac-
tions and forces as well as detailed mechanisms of phenomena
occurring at (micro-)mesoscales. However, these tools dictate
high computational costs, which may make them unfeasible
and/or uneconomical in practical scenarios.

Figure 1 provides some information such as computational
costs, scale, and physical insights corresponding to the ex-
perimental and modeling techniques with focus on flow in
porous media. The flow regime is also categorized based on
the Knudsen number. In general, the modeling techniques
are divided into the continuum based and particle-dynamic
based modeling approaches. Additionally, the experimental
techniques and their scale are demonstrated. According to
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FIG. 1. Experimental and modeling approaches to investigate transport phenomena in porous media, modified after Refs. [1,2]. (QMS is
the quantum molecular simulation; MD is the molecular-dynamic simulation; DSMC refers to the direct simulation Monte Carlo; DPD is the
dissipative particle dynamics; LBM refers to the lattice Boltzmann method; DNS is the direct numerical simulation; LES represents the large
eddy simulation; RANS refers to the Reynolds-averaged Navier-Stokes; TEM is the transmission electron microscopy; and SEM denotes the
scanning electron microscope.) (The scale of methods is shown approximately and there are overlaps between different methods.)

Fig. 1, as the capability of modeling techniques is increased,
the computational costs will increase.

The lattice Boltzmann method (LBM) as a mesoscale
technique was introduced in the 1980s [12,13]. The LBM
is recognized as a strategy based on a particle picture to
obtain the macroscopic properties of fluids and processes
[14]. Over the past three decades, LBM has been used in a
variety of engineering and science problems such as single-
phase flow [15–17], multiphase flow [1,18–20], phase-change
heat transfer [1,21], and turbulent regime in various transport
phenomena [22–26]. This method can be also utilized as a tool
to solve nonlinear partial differential equations [27–32].

Multiphase (multicomponent) interfaces play a crucial role
in several soft matters and complex fluids. Interfaces are
deformable and not known a priori. Therefore, different tech-
niques have been proposed to study the dynamics of inter-
faces [31]. The methodologies fall into two main categories
[33]. The first category is the interface-tracking methods
such as the front-tracking approach [34], which tracks the
interface by marking a cluster of points. The second class
is the interface-capturing techniques including the level set
method [35], volume of fluid method [36], and phase-filled
approach [37] that capture the interface by evaluating an order
parameter.

Several multiphase LBM approaches have been developed
during the past three decades. The color-gradient method
[38,39], free-energy model [40], interface tracking model

(also known as He-Chen-Zhang (HCZ) technique) [41], and
pseudopotential [42] are the most common multiphase LBMs.
More details about various versions of LBM are provided
in the literature [14,19,20,43–47]. Among different types of
LBM, the pseudopotential approach (also known as Shan-
Chen) has been widely used in some research studies due to
its mesoscopic feature and computational simplicity [43–48].
In this approach, the interactions between molecules are rep-
resented by a pseudopotential, which is density dependent.
Microscopic molecular short-range interactions between dif-
ferent phases are taken into account in this method. There-
fore, the interface capturing or explicit interface tracking
is not required anymore, which leads to different (unique)
features for the pseudopotential model, compared to most
other multiphase models [19]. The pseudopotential LBM has
some drawbacks. For instance, it suffers from high spuri-
ous velocity as the density ratio of two phases is increased
near a curved interface. Shan showed that increasing the
order of isotropic gradient operator can lower the spurious
velocity [49]. The midrange potential can be an alternative
to enlarge the interface thickness and to decrease the spu-
rious velocity by considering the nearest- and next-nearest-
neighbor interactions [50]. Sbragaglia and Shan proposed a
consistent form of the pseudopotential and compared it with
the common form of the pseudopotential function available
in the literature when a simulation was performed using the
eighth order of isotropy [51]. Khajepor et al. introduced a
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multipseudopotential interaction (MPI) scheme to meet the
thermodynamic consistency by determining the interaction
strength pseudopotential constants through a trial and error
procedure [52]. Later on, Khajepor and Chen mapped the
cubic EOS (e.g., SRK and PR) to MPI when the Gou et al.
forcing scheme was employed [53]. Li et al. introduced a new
forcing scheme to meet the thermodynamic consistency when
the Carnahan-Starling EOS was utilized in the pseudopoten-
tial function [54]. The implemented forcing scheme represents
the exact Navier-Stokes equations.

Yuan and Schaefer suggested a method of integrating LBM
with different EOSs [55]. They evaluated the performance
of cubic and noncubic EOSs and determined the maximum
density ratio. The coexistence curves of static bubbles, which
were simulated by LBM, were compared with the coexistence
curves obtained from the Maxwell equal-area construction.
Kupershtokh et al. obtained a higher density ratio by intro-
ducing the exact difference method force scheme [56]. In
the Yuan and Schaefer method, different densities in some
specific ranges might give the same effective mass, where the
physical basis of the original Shan-Chen (SC) pseudopotential
LBM may be lost [55]. Zhang and Tian proposed an extra
parameter to avoid this problem. However, it leads to a high
spurious current and low density ratio and it does not meet
the Galilean invariance [57]. Yuan and Schaefer compared
the LBM results of different EOSs with the experimental
saturated density data of water [55]. An appreciable difference
between the LBM results and real data was reported in the
liquid phase region. In this study, we aim to increase the LBM
accuracy and reliability (or lower the difference between the
LBM outputs and experimental data) for associating fluids by
filling the knowledge gap described above. For this purpose,
CPA EOS is incorporated into the LBM strategy. It should
be noted that the computational cost is lower while using the
CPA EOS, compared to other EOSs such as perturbed-chain
statistical associating-fluid theory (PC-SAFT) that take into
account the associating forces. Further highlighting the main
contribution of the current study, the parameters of CPA EOS
are redefined in the lattice units with the aid of an effective
global optimization search method. We also introduce a per-
turbation, which guarantees the thermodynamic consistency
and/or stability of the model within a broad range of thermo-
dynamic conditions, particularly at low temperatures.

The remainder of this paper is organized as follows. First, a
review on CPA EOS, LBM, framework of their combination,
and the numerical modeling setup are presented in Theory
and Methodology. Then, the model limitations (drawbacks)
are given in Limitations. The modeling validation, results of
numerical runs, and interpretation of the results trends are
reported in Results and Discussion. In fact, the method is
validated through comparing the simulation results with the
Maxwell equal area construction and real data. The ther-
modynamic consistency is improved by using the Li et al.
forcing scheme. The reliability of the introduced CPA EOS-
LBM is also examined where the experimental data of water
and simulation results are compared. By increasing the order
of isotropic gradient operator, the method stability at low
reduced temperatures is also discussed in this section. Lastly,
the main outcomes of the current study are listed in the
Conclusions.

II. THEORY AND METHODOLOGY

First, the structure and theory of LBM and CPA EOS are
briefly presented in this section. We will then describe the
integration of LBM and CPA EOS as well as the setup and
required steps in the numerical modeling approach.

A. Fundamentals of LBM

The Boltzmann equation with the collisional term is ex-
pressed as follows [58]:

∂ f

∂t
+ v

∂ f

∂x
+ F

ρ

∂ f

∂x
= �, (1)

where f (x, v, t ) denotes the particle distribution function; x
refers to the spatial coordination; v is the particle velocity;
t symbolizes the time; ρ represents the fluid density; and F
stands for the force. The parameter � on the right-hand side
of Eq. (1) represents the collision term, which describes the
particle distribution function due to the particle collisions. The
velocity space is discretized into a finite set of vectors, {ei},
along with the lattice structure in the space. Thus, the destruc-
tion density function is discretized { f (x, v)} in the LBM. The
lattice Boltzmann equation (LBE) is a nonlinear differential
integral equation, which is targeted to be approximated by
the LBM from the particle point of view [58]. A common
way to simplify the collisional integral term is using a single
relaxation time toward a suitable local equilibrium, which is
known as Bhatnagar-Gross-Krook (BGK). The LBE can be
written in the lattice based on the BGK approximation, as
given below [58]:

fi(x + eiδt , t + δt ) − fi(x, t )

= δt

τ

(
f eq
i (x, t ) − fi(x, t )

) + Si, i = 0, 1, 2, . . . , (2)

in which Si introduces the forcing source and ei symbolizes
the discrete velocities. The left-hand side of Eq. (2) repre-
sents the molecular free-streaming, and the right-hand side
of Eq. (2) signifies the time relaxation (due to collisions)
toward the local Maxwellian equilibrium f eq

i on a timescale τ

[14,43,47,59]. The Maxwellian equilibrium function is trun-
cated at the second order to recover the correct hydrodynamic
balance in the isothermal regime as follows:

f eq
i = ωiρi

[
1 + uaeia

c2
S

+ uaub
(
eiaeib − c2

s δab
)

2c4
S

]
. (3)

In Eq. (3), cS = c/
√

3 denotes the speed of sound where
c = δx/δt . δt and δx represent the lattice time step and spacing,
respectively; δab is the Kronecker delta where a and b
designate the Cartesian components; u is the velocity; and the
ωis symbolize a set of weights, which impose the isotropy of
the hydrodynamic equations [14,43,47].

Figure 2 demonstrates up to 16th order of the isotropy
and associated weights in a two-dimensional (2D) domain.
Grid points indicate a set of velocity fields, and the size
and color of points represent the magnitude of weights. The
method of calculating the extent of weights for higher orders
of isotropy is explained with details in Refs. [50,60]. One
can calculate the fluid density ρ and velocity u from the first
and second momenta of density distribution function as given
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FIG. 2. Different orders of isotropy in 2D domain. The value of
weights is determined by the size and color of grids.

below:

ρ =
∑

i

fi, (4)

ρu =
∑

i

fi ei. (5)

B. Pseudopotential interactions in LBM

In the pseudopotential LBM, a mean-field interaction force
is employed to mimic the molecular interactions that cause
the phase sepration. Based on the local fluid density, an
interaction potential (ψ) is defined and the interaction force
is calculated from the associations/interconnections that lead
to the phase separation. In the single-component multiphase
(SCMP) LBM, the interparticle force is given as the summa-
tion of the pairwise interactions among a particle at a specified
lattice site and those at neighboring sites. The interparticle
force (Fint) can be defined by the following equation:

F int (x, t ) = −Gψ (x, t )
q∑

i=0

ωiψ (x + ei, t )ei, (6)

where G is a controlling parameter of the interparticle
strength. The interaction force can be expanded through the
Taylor series as follows [54]:

F int = −Gc2
[
ψ∇ψ + 1

2 c2ψ∇(∇2ψ ) + . . .
]
. (7)

To evaluate the mechanical balance at the interface, the pres-
sure tensor should be determined. The following general rule
of the force balance is used to obtain the pressure tensor [61]:

	PA = 	xF. (8)

For the one-dimensional interface, the analytical expression of
the normal pressure tensor (up to the second-order derivative)
is given below [61]:

Pn = c2
s ρ + 1

2
Gc2ψ2(ρ) + Gc4

12

[
α

(
dψ

dn

)2

+ βψ
d2ψ

dn2

]
.

(9)

In Eq. (9), α = 1 − 3e4 and β = 1 + 6e4e4 refers to the
fourth-order tensor associated with the weights, as defined
below [51]:

e4 = ω1

2
+ 2ω2 + 8ω4 + 25ω5 + 32ω8 + . . . . (10)

The first two diagonal terms of the pressure tensor for the
bulk homogeneous phase transition (Pb) are obtained by the
nonideal equation of state as follows [55,62]:

Pb = c2
s ρ + 1

2 Gc2ψ2(ρ). (11)

Therefore, when the density is known, one can calculate the
pressure Pb using the CPA EOS where the association forces
will be considered. The magnitude of G for the SCMP case
is not important as it will be canceled out if the bulk pressure
definition is used to determine the pseudopotential function
[see Eqs. (6) and (11)]. Pn should be equal to a constant static
bulk pressure at the equilibrium, which leads to the following
mechanical stability condition [61]:∫ ρl

ρg

(
p0 − ρc2

s − Gc2

2
ψ2

)
ψ ′

ψ1+ε
d p = 0, (12)

where ε = −2α/β; and ρl and ρg stand for the liquid and gas
density, respectively. Li et al. proposed the following general
forcing scheme [54]:

Si = ωiδt

[
Baeia

c2
s

+ Cab
(
eiaeib − c2

s δab
)

2c4
S

]
, (13)

where

Ba = BeFa, Cab = Ce(vbFa + vaFb). (14)

Be and Ce are the constants, which are determined based on
the forcing scheme. Li et al. introduced a modified velocity
v′, which is defined as v′ = v + σ ′F/(νψ2). ν = (τ − 0.5)
stands for the kinematic viscosity and σ ′ is a constant. In the
case of σ ′ = 0, the forcing scheme will be reduced to the Guo
et al. forcing scheme [63]. Hence, implementing Li et al.’s
forcing approach improves the thermodynamic consistency by
adding an extra term to the Navier-Stokes equations, which is
not dependent on a local quantity.

C. Cubic-plus-association equation of state

The CPA EOS was introduced by Kontogeorgis et al.
[7]. This EOS is a combination of a cubic EOS and an
association term taken from the Wertheim theory. Originally,
the SRK EOS was utilized to describe the physical part of
the CPA EOS. Firoozabadi used PR EOS, which is more
suitable for thermodynamic modeling of reservoir hydrocar-
bon fluids [6]. The association term considers the specific
site-site interactions due to hydrogen bonding, which appears
in two categories, namely, self-association (between the same
species) and cross association (between different species).
The association term is based on the Wertheim first-order
thermodynamic perturbation theory [64]. The system pressure
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FIG. 3. Simple sketch of (a) a 4C model of water molecules and
(b) a 2B model of alcohols.

is represented by the CPA EOS as follows [6]:

P = RT

v − b
− a

v(v + b) + b(v − b)

− 1

2

RT

v

(
1 − v

∂lng

∂v

)
	ixi	Ai(1 − XAi ),

i = 1, 2, . . . , nc, (15)

where P refers to the pressure; R is the universal gas con-
stant; T introduces the absolute temperature; v is the molar
volume; x denotes the mole fraction; a and b are the attraction
and repulsion parameters, respectively; nc is the number of
components; and Ai stands for the active association site. g
signifies the hard-sphere radial distribution function and XAi

represents the fraction of site A on component i that does not
form association with other sites, as defined below:

g ≈ 2 − η

2(1 − η)3 where η = b

4v
, (16)

XAi = 1

1 + 	
nc
j=1

∑
k=A,B,... ρx jXk j�

k j
Ai

, (17)

in which ρ = 1/v refers to the density and �
k j
Ai denotes the

self-association strength between sites A and B, as expressed
below:

�
k j
Ai = g

[
exp

(
εAiKi

RT

)
− 1

]
bi jβ

AiKi , (18)

bi j = bi + b j

2
, (19)

in which εAiKi and βAiKi introduce the self-association energy
and bonding volume parameters, respectively. The association
term in Eq. (15) is derived by Michelsen and Hendriks [65]
and Hendriks et al. [66] to accelerate the computational
process. In this study, we use the four-site model (4C) [see
panel (a) of Fig. 3], which can generate reliable results for
highly hydrogen-bonded substances such as water and glycol
[6]. Two A sites are for two oxygen lone pairs and two B
sites belong to two hydrogen atoms. According to Huang and
Radosz, alcohols can be modeled by two-site scheme (2B):
one site for both oxygen lone pairs and one for the hydrogen
atom, as depicted in Fig. 3(b) [67].

Based on the literature, the attraction, repulsion parame-
ters, and universal gas constant of cubic EOS are generally
kept at a = 2/49, b = 2/21, and R = 1, respectively, in the
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FIG. 4. Work flow for association parameters optimization.

lattice units [52,55]. However, the reduced properties should
be the same, while the units are used based on the law of
corresponding states. Therefore, the critical properties of the
fluid should be updated based on the parameters selected for
CPA EOS in the lattice units. For a single-component system,
the critical condition is defined as follows [6]:

dP

dv

∣∣∣∣
T =Tc

= 0, (20)

and

d2P

dv2

∣∣∣∣
T =Tc

= 0, (21)

where Tc represents the critical temperature. The explicit form
of the first and second derivatives of pressure with respect to
volume is obtained by the MAPLE software [68]. The nonlinear
system of equations [e.g., Eqs. (20) and (21)] is solved by a
MATLAB intrinsic solver (e.g., fzero) [69]. Initial guesses are
selected based on the roots of the PR EOS [69]. When the
critical properties are calculated, the reduced properties can
be determined in the lattice units. Thus, it is possible to make
a comparison between the experimental data and results of
CPA EOS in the lattice units. To determine the association
parameters, the experimental data of coexistence densities and
saturation pressures are used (see Fig. 4). Coexistence densi-
ties are calculated based on the Maxwell construction (see the
Appendix). The objective function is defined as follows:

F = Rsquared
(
Psat

r
exp

, Psat
r

cal) + Rsquared
(
ρsat

r
exp

, ρsat
r

cal)
,

(22)

in which superscripts sat, exp, and cal denote the saturation
condition, experimental data, and calculated results, respec-
tively. A global search optimization is performed to determine
the self-association energy (ε) and bonding volume (β) pa-
rameters.

The global search optimization method is selected to avoid
being stuck in probable local optimum points. More details
about the global search optimization are provided by Ugray
et al. [70].
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D. Customized CPA EOS

Generally, the highest numerical errors happen within the
sharp region of the interfaces, which fall in the unstable
branch of the EOS where ( ∂ p

∂v
)T > 0 (e.g., between the spin-

odal points). The unstable branch can be modified as it is
experimentally unapproachable. As Colosqui et al. reported,
increasing the slope of the unstable branch increases the inter-
nal forces towards the liquid side of spinodal and decreases
the internal forces towards the vapor zone [71]. However,
their proposed piecewise linear EOS had a discontinuity in
the first derivative, which is a serious flaw in the numerical
discretization [71]. In this study, we propose a perturbation
in the unstable branch, which meets the continuity of the
first derivative and increases the slope at the same time, as
expressed below:

PCustomized = PCPA + δP, (23)

where δP is a first derivative continuous function as follows:

δP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if v < vl

κ
(
sin

(
π (v−vl )

L1
+ 3π

2

) + 1
)

if vl < v < vm

κ
(
sin

(
π (v−vl )

L2
+ π

2

) + 1
)

if vm < v < vg

0 if vg < v

. (24)

In Eq. (24), vm = vg − α(vg − vl ). vl and vg stand for the spin-
odal molar volumes on the liquid and gas sides, respectively.
The perturbation is determined by a pair of (α, κ ) uniquely.

E. Numerical modeling setup

In this part, the numerical setup is explained, and a con-
vergence condition is introduced. A 100 × 100 lattice and
periodical boundary conditions are used in the numerical
bubble tests to study the single-component multiphase LBM.
First, a droplet with a radius of Rini = 30 is placed at the center
of the domain. Inside the droplet is the liquid phase and the
vapor phase is placed outside the droplet. The initial densities
are selected based on the Maxwell construction results (see the
Appendix). The initial density distribution, ρ(x, y), is defined
by the following function:

ρ(x, y) = ρliquid + ρgas

2
− ρliquid − ρgas

2

×
[

tanh

(
2
√

(x − x1)2 − (y − y1)2 − R0

w

)]
.

(25)

In Eq. (25), w introduces the initial interface thickness and
R0 refers to the initial radius. Each test is continued un-
til the steady-state condition is established. The maximum
magnitude of spurious velocity, |us|max, is selected as the
convergence condition to ensure that the steady-state con-
dition is reached. As shown in Fig. 5, the spurious current
exhibits high fluctuations. The simulation is conducted at
Tr = 0.8, where the gas and liquid densities calculated by the
Maxwell construction are ρgas = 0.2327 and ρliquid = 7.3347,
respectively. Yuan and Schaefer performed all runs up to
30 000 time steps when the relative difference of spurious
velocity at the time step t and t − 1000 is less than 10−6 [55].

FIG. 5. Fluctuations of the maximum spurious velocity at differ-
ent time steps.

Huang et al. proposed a convergence criterion by evaluating
the relative difference of the entire domain velocity between
2000 time steps [72]. In this study, the relative difference of
|us

max| is calculated every 100 time steps to avoid unnecessary
computational process and/or calculations and local extrema
(due to the high fluctuation behaviors at the maximum mag-
nitude of the spurious velocity). When the maximum spurious
velocity becomes on the order of 10−6 for more than ten times
constantly, the system is assumed to be at the equilibrium
state. The animations of density and pressure variations during
different time steps can visualize and identify this specific
condition. It should be noted that the simulation run (referring
to Fig. 5) is not performed at the same condition that Yuan and
Schaefer conducted their modeling (simulation) work [55].
However, the same order of magnitude for the maximum
spurious velocity in the case of PR EOS was reported by Yuan
and Schaefer.

III. LIMITATIONS

The proposed single-relaxation time collision (BGK) is
appropriate for low Reynolds number (particularly stationary)
cases. To extend the model to high Reynolds number con-
ditions, the multirelaxation time (MRT) collision scheme is
proposed [73,74].

In the CPA EOS, it is assumed that the activity of each
bonding site is independent of other bonding sites in the
molecule, implying negligence of the steric hindrance and co-
operativity effects. The polarity and quadrupolar interactions
are also disregarded in the proposed model [75,76].

IV. RESULTS AND DISCUSSION

In this section, the consistency of the CPA EOS case is
examined. Simulation outputs of the CPA and PR EOSs are
presented and then a comparison between the modeling results
and real saturation data is made. The Li et al. forcing scheme
is employed to achieve an improvement in thermodynamic
consistency and spurious velocity distribution. The discrete
gradient operator with a higher isotropic order is used to
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FIG. 6. Comparison of coexistence curves based on LBM simu-
lations and Maxwell construction.

lower the spurious velocity, while the modified CPA EOS is
implemented to determine the initial density.

The effectiveness and/or reliability of the proposed model
are assessed by comparison of the LBM simulation results
with the outputs of the Maxwell construction approach. Figure
6 illustrates the coexistence of density and/or reduced tem-
perature curves attained from the Maxwell construction and
the LBM simulations when utilizing the CPA EOS. As it is
clear from Fig. 6, an acceptable match is achieved for the
liquid branch; however, the difference between the LBM and
Maxwell construction results is noticeable for the gas phase.

To explain this considerable deviation, the gas branch is
simulated based on both CPA and PR EOSs as shown in
Fig. 7 in the semi-log-scale where the LBM and Maxwell
construction strategies are employed. According to Fig. 7,
the difference between the PR-LBM and CPA-LBM cases
will increase as the temperature decreases. As expected,

FIG. 7. Comparison between the reduced densities of the gas
phase of the coexistence phases determined from the LBM sim-
ulation and Maxwell construction when PR and CPA EOSs are
employed.

FIG. 8. Reduced density of both liquid and gas phases versus
reduced temperature based on LBM simulations and Maxwell con-
struction when the Li et al. forcing scheme is employed.

such a deviation is not observed for the PR and CPA EOSs
while using the Maxwell construction. The relative errors
(|ρLBM − ρMc|/ρMc), where ρLBM and ρMc are the gas density
calculated from the LBM simulation and Maxwell construc-
tion, are 3.3612% and 4.4223% at Tr = 0.65 for the gas
phase modeled by the CPA and PR EOSs, respectively. The
difference between the mechanical stable results (e.g., LBM
results) and thermodynamically stable results (e.g., Maxwell
results) for the gas phase is due to the curved interface of
the droplet and/or additional term which is introduced into
the macroscopic equations when the velocity-shift (or Shan-
Chen) forcing scheme is used. Li et al. showed that ϵ in
Eq. (12) should be between ε = 1 and ε = 2 to obtain a better
agreement with the Maxwell construction [1].

Thus, the thermodynamic inconsistency is tackled through
different approaches such as multipseudopotential interaction
[52,53] and improved force scheme in multirelaxation time
LBM to enhance the model reliability [73,77]. The self-tuning
EOS is also employed to achieve more stable results [71,78].

Through implementation of the Li et al. forcing scheme,
it is expected to improve the thermodynamic consistency.
Figure 8 illustrates the thermodynamic consistency of the
LBM method when CPA EOS is utilized with σ ′ = 0.2885
[see Eq. (13)]. As seen in Fig. 8, there is a very good
match between the LBM and Maxwell construction outputs.
In addition, the thermodynamic consistency in the gas phase is
improved considerably. However, a small deviation in the liq-
uid phase is noticed. The association parameters of CPA EOS
(e.g., εAiKi and βAiKi ) are selected to attain a good match with
the experimental data while employing the velocity-shifting
forcing scheme. Therefore, the thermodynamic consistency in
the liquid phase might decrease slightly when the magnitude
of σ ′ is increased to improve the thermodynamic consistency
in the gas phase. To overcome this problem, the parameter σ ′
is used in the Li et al. forcing scheme to modify the interaction
properties. Li et al. proved that the model will be unstable
when σ ′ = 0 (e.g., the Guo et al. forcing scheme), due to the
high thermodynamic inconsistency.
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FIG. 9. Variation of the maximum magnitude of spurious veloc-
ity with (a) reduced temperature and (b) density ratio for the CPA
and PR EOSs.

The numerical stability of the integrated CPA-LBM model
can be evaluated based on the maximum magnitude of the
spurious velocity, |us|max. Figure 9 compares the |us|max

trends for both CPA-LBM and PR-LBM cases at different
reduced temperatures [panel (a) of Fig. 9] and density ratios
[panel (b) of Fig. 9]. According to Fig. 9, the value of the
spurious velocity is increased with decreasing the reduced
temperature for both CPA and PR EOSs. The lower density
ratio does not reveal the lower capability of the CPA-LBM
approach that might be due to the higher density in the gas
phase (see Fig. 7). The maximum magnitude of spurious
velocity is not changed considerably when the implemented
EOS is switched from PR to CPA, since the extent of spurious
velocity is mainly affected by the order of isotropy in the
gradient operator and the forcing scheme.

The differences between the magnitudes of spurious ve-
locity obtained in the current study (see Fig. 9) and previous
studies might be due to the simulation inputs and stability
condition. Providing more information, Yuan and Schaefer’s
simulations were conducted at a 50 × 50 × 50 lattice domain
with an initial liquid droplet size of rinit = 10 [55]. Also, the
stability condition in their study is assumed as 30 000 time
steps for the initial run as well as for checking the stability

FIG. 11. Comparison of the values of saturated water density
obtained from experiments and LBM strategy based on CPA and PR
EOSs.

condition for each of 1000 time steps. Their steady-state
condition should be met once, which is not appropriate for
such a fluctuating behavior.

It should be noted that the results shown in Fig. 9 are
based on the SC forcing scheme (known as the velocity shift
method). To elaborate the impact of the forcing scheme, the
contour map and velocity field of a static droplet are depicted
in Fig. 10 for both Li et al. and SC forcing schemes when
T/Tc = 0.9 and τ = 1.

As shown in Fig. 10, the Li et al. forcing scheme ex-
hibits lower spurious velocities. Based on the velocity contour
profile, the velocity distribution patterns are also different
for these two different forcing schemes, implying that the
Li et al. forcing scheme is able to better demonstrate the
flow behaviors obtained from the Navier-Stokes equations,
compared to the SC forcing scheme. Hence, it appears to be
a better representation of the isotropy in the LBM discrete
gradient operator.

To examine the capability of the CPA-LBM strategy
to model the real data, a comparison between the ex-
perimental data of water and simulation results is made.
Figure 11 presents the results of the CPA-LBM simulations

FIG. 10. Velocity field and contour for a static droplet on the basis of (a) Li et al. and (b) SC forcing schemes.
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TABLE I. Error comparison of CPA and PR results obtained
from LBM simulation.

EOS Max error (%) Min error (%) Mean-squared error

CPA 76.0435 0.0169 0.0030
PR 87.8518 0.0546 0.0355

for estimation of the liquid phase density, where the SC
forcing scheme is employed. As illustrated in Fig. 11, the
CPA EOS offers a greater precision for both phases, compared
to the PR EOS case. Table I presents a comparison of the
results obtained from both CPA and PR EOSs. According to
Table I, CPA has a lower error percentage (e.g., minimum
error, maximum error, and mean-squared error), compared
to PR. As the parameters for the association part of the
CPA EOS (e.g., ε and β) approach zero, the results of the
CPA EOS become closer to the PR EOS simulation outputs.
Therefore, it is vital to determine the associating parameters
in the lattice units with a high accuracy to attain reliable trends
and/or outcome. As explained in Methodology, the association
parameters for water in the lattice units are ε = 0.1636 and
β = 0.0973. Table II summarizes the self-association energy
and bonding volume parameters for five associating fluids in-
cluding water, methanol, ethanol, 1-propanol, and 1-butanol.
It is worth noting that the global search optimization is chosen
to avoid the local optima, although the initial guesses might
still affect the final optimal points.

Li et al. concluded that a lower value for the attraction
parameter (a) in EOS results in a greater stability at lower
reduced temperatures [73]. Therefore, the CPA EOS associ-
ation parameters are listed in Table III for lower values of
the attraction parameter. As mentioned earlier, the 4C and
2B bonding schemes are employed for water and alcohols,
respectively.

Up to now, all LBM results have been obtained based on
the fourth-order isotropy of the discrete gradient operator. As
it is known, increasing the isotropy order leads to a decrease
in the spurious velocity [49,50]. Our plan is to investigate the
impact of isotropic order of the discrete gradient operator up
to eighth order on the simulation outputs. It was found that
the system becomes unstable due to low interfacial tension at
low reduced temperature and/or high density ratio conditions.
Therefore, an extended version of the CPA EOS is used to
determine the initial density distribution.

TABLE II. Associating parameters in the lattice units suggested
for water and normal alcohols (from methanol to 1-butanol) while
implementing the global search optimization (a = 2/49, b = 2/21,
and R = 1).

Compound ω εAB β Rsquared

Water 0.344 0.1636 0.09730 0.9992
Methanol 0.565 0.5638 0.0733 0.9984
Ethanol 0.643 0.6086 0.0727 0.9979
1-Propanol 0.620 0.5324 0.0877 0.9984
1-Butanol 0.588 0.5994 0.0828 0.9988

TABLE III. Associating parameters in the lattice units for pure
compounds such as water and normal alcohols (from methanol to
1-butanol) using the global search optimization when b = 2/21 and
R = 1.

a = 1/49 a = 1/98

Compound εAB β Rsquared εAB β Rsquared

Water 0.0819 0.0972 0.9992 0.0433 0.0854 0.9992
Methanol 0.3795 0.0505 0.9983 0.2526 0.0372 0.9983
Ethanol 0.3730 0.0569 0.9979 0.2561 0.0401 0.9979
1-Propanol 0.3966 0.0538 0.9983 0.2498 0.0419 0.9983
1-Butanol 0.4247 0.0537 0.9987 0.2522 0.0451 0.9987

Figure 12 presents the LBM results using eighth order of
isotropy. To obtain the initial density distribution function,
(80, 0.5) is selected as the pair of input parameters of the
extended CPA EOS. The Li et al. forcing scheme is applied
to improve the thermodynamic consistency. Considering the
same input parameter of the extended model for the entire
temperature interval can cause high computational costs. Ad-
ditionally, assuming the same σ ′ as an input parameter for
the Li et al. forcing scheme within a broad interval of the
reduced temperature leads to an appreciable departure from
the Maxwell equal area construction (see Fig. 12). Hence, a
smart method can be utilized to choose a suitable pair input
parameter for the extended CPA EOS, (α, κ ), and the input
parameter of Li et al.’s forcing scheme at each temperature.
Such a strategy can decrease the computational costs and
improve the thermodynamic consistency.

To study the capillary effect, the simulation runs need to be
conducted at different droplet radii. The slope of differential
pressure between the gas and liquid phases (e.g., capillary
pressure) versus the inverse of the radius is then related
to the interfacial tension [see Eq. (A6)]. Figure 13 illus-
trates the variations of the capillary pressure with the inverse
of the droplet radius for water at Tr = 0.7929. In other words,

FIG. 12. Coexistence curves results of the LBM simulation and
Maxwell equal area construction with eighth order of isotropy in the
discrete gradient operator.
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FIG. 13. The pressure difference (�p) against 1/r for water at
Tr = 0.7929.

the applicability of the Laplace law, which expresses a linear
relationship between the droplet radius and pressure differ-
ence, is demonstrated in Fig. 13. In spite of the multirange
pseudopotential approach [2–4], the interfacial tension is a
function of the fluid type in this study where the single-range
pseudopotential method is utilized. The interfacial tension can
be tuned by including the multirange potential in the improved
forcing term of MRT LBM [79,80]. The influence of droplet
size can be minimized by the use of self-tuning equation of
state [71]. Li and Luo concluded that the droplet size impact
on the gas-phase density can be reduced by increasing the
slope of EOS in the vapor phase [78].

The same procedure is followed at different reduced tem-
peratures to figure out the trend and/or behaviors of the in-
terfacial tension, σ , with temperature. The interfacial tension
of water versus reduced temperature is shown in Fig. 14.
As it is clear, the interfacial tension results attained from
LBM simulations follow the same trend and/or behaviors

FIG. 14. Interfacial tension versus the reduced temperature in the
lattice units for water.

as the measured values (real data). Due to implementation
of the single-range pseudopotential approach in the current
study, the interfacial tension cannot be tuned. To address
this limitation, the multirange pseudopotential is introduced
[81–83].

Associating fluids play a crucial rule in different pro-
cesses and/or phenomena such as biological processes [84],
oil production (recovery) from hydrocarbon reservoirs [20],
energy systems, and chemical production. Therefore, devel-
opment of a reliable LBM approach to simulate the thermo-
dynamic characteristics of associating fluids seems vital to
better design and operate the corresponding processes. The
methodology proposed in this research work is appropriate
for static problems by using the BGK collision scheme. The
MRT collision scheme can be an appropriate alternative to
extend this approach to the cases at high Reynolds number
conditions. Also, the cascaded model can be used to improve
the ability of the LBM for fluid flow and thermal transport
modeling. The cascaded model, which is also known as the
central-moment-based lattice Boltzmann method, is proposed
to tackle the numerical instability in the zero-viscosity limit.
This generally happens by an insufficient degree of Galilean
invariance of the relaxation-type lattice Boltzmann collision
operation [85].

V. CONCLUSIONS

Some fluids associate due to the hydrogen bonding. This
association results in unusual thermodynamic behaviors. In
this research work, the CPA EOS is included in the LBM to
model the thermodynamic behaviors of this type of fluids. The
method accuracy is verified with the Maxwell construction
approach and experimental data. The main conclusions drawn
based on the study results are listed below:

(i) A more reliable stability condition is proposed to de-
crease the computational costs. Furthermore, a better thermo-
dynamic consistency in the gas phase is attained by imple-
menting the CPA EOS in the LBM.

(ii) An approach based on the global search optimization
method is developed to determine the association parameters
in the lattice units for water and primary alcohols (e.g.,
methanol and 1-butanol).

(iii) There is a very good agreement between the CPA-
LBM results and experimental data, while the PR-LBM case
is not able to simulate the real thermodynamic behaviors with
an acceptable accuracy.

(iv) The thermodynamic consistency is enhanced by em-
ploying the Li et al. forcing scheme. It is also possible to
maintain the stability and thermodynamic consistency at low
reduced temperatures through using higher orders of isotropy
in the gradient operator.

(v) An extended version of CPA EOS is introduced to
determine the initial density distribution, making the compu-
tation faster and more reliable.

(vi) The interfacial tension of water as a function of the
reduced temperature is acceptably simulated with the CPA-
LBM approach.

(vii) In the current study, the single-range approach is
implemented. In the single-range approach, only one strength
parameter is used which is canceled out when an EOS is
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employed. The multirange pseudopotential can handle the
interfacial tension and improve the stability. Modification and
utilization of the multirange pseudopotential approach is the
scope of our future work.
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APPENDIX: MAXWELL CONSTRUCTION AND
COMPUTATION ALGORITHM

The equality of the Gibbs free energy at the saturation point
for a droplet is expressed as follows:

Gl = Gg, (A1)

Al + Plvl = Ag + Pgvg, (A2)

where G and A represent the Gibbs and Helmholtz free
energies, respectively. For flat interfaces, both pressures in the
liquid and gas phases are equal to the saturation pressure, as
shown below:

Pl = Pg = Psat. (A3)

Since dT = 0 (isothermal condition) at the equilibrium, we
can write the following equation:

Ag − Al = −
∫

Pdv. (A4)

Using Eqs. (A2) to (A4), the saturation coexistence densities
can be calculated through using the following equation:

−
∫ vg

vl

Pdv = −Psat (vl − vg). (A5)

To calculate the coexistence volumes (densities), first an initial
saturation pressure is guessed. Based on the initial guess,
the liquid and gas volumes (densities) are calculated using
an EOS. If the left-hand side (LHS) is more than the right-
hand side (RHS), the pressure for the next loop should be
increased to obtain the correct value; otherwise, it should
be decreased. This loop will be repeated until the relative
differences between two loops are very small (10−10).

The guessed initial pressure should be between the spin-
odal points where dP/dv = 0. Due to the nonlinearity of the
CPA EOS, the first spinodal point (e.g., with a lower volume)
is determined by finding the global minimum of CPA EOS.

FIG. 15. Workflow of Maxwell construction while utilizing CPA
EOS (RE stands for the relative error).

Searching the global minimum is started from the repulsion
parameter [e.g., b in Eq. (14)]. The second spinodal point,
which has a higher volume than the first spinodal point, is
then determined through finding the global maximum point.
Searching the global maximum is also commenced from the
first spinodal point. The fminsearch and fminbnd MATLAB

functions are utilized to determine the minimum and maxi-
mum spinodal points, respectively. To obtain the roots of CPA
EOS, a MATLAB intrinsic solver (e.g., fsolve) is employed [69].
The initial guesses for the CPA EOS roots are chosen based
on the roots of the PR EOS. The procedure on the Maxwell
construction is demonstrated in Fig. 15.

When the interface between two phases is curved, the
Young-Laplace equation of capillarity provides the mechan-
ical equilibrium for a droplet, as given below [86]:

Pl − Pg = Pc = 2σ

r
, (A6)

in which Pc is the capillary pressure; Pl is the liquid pressure;
Pg introduces the gas pressure; σ refers to the interfacial
tension; and r stands for the radius of the droplet.
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