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The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated
many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite
its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter
phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via
time-dependent density functional theory, and illustrate the importance of including local field corrections, core
polarization, and self-energy corrections. Our calculations for ground-state Al are shown to agree well with
experimental opacity measurements performed on the Artemis laser facility across a wide range of extreme
ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, finding
good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.
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I. INTRODUCTION

The mechanisms by which free electrons in a plasma
absorb and emit radiation are of key importance to a range of
applications, from investigations of laser-plasma interactions
to astrophysics and inertial confinement fusion research. The
free-free opacity in classical plasmas is generally described
using the inverse bremsstrahlung (IB) formalism, initially
treated classically by Kramers [1], and later modified to
include a range of additional corrections to the absorption
cross section including quantum effects [2], multiphoton
contributions [3], relativistic corrections [4], electron degen-
eracy [5], and collective phenomena [6–8]. These models
contain Coulomb logarithm terms to describe electron inter-
actions and are typically limited in applicability to plasmas
where small-angle collisions dominate energy transfer in the
electron subsystem, i.e., plasmas at high temperatures and low
densities.

Dense plasmas, in turn, have proven far more challeng-
ing both to model and to investigate experimentally [9–14].
Perhaps surprisingly, similar difficulties are encountered in
condensed matter systems such as ground-state and liquid
metals. Here the absorption process is generally treated us-
ing linear response theory via calculations of the dielectric
function or the complex conductivity [15,16]. Because the di-
electric function provides a full description of the system’s re-
sponse, opacity investigations can be used to validate ab initio
models more generally, and provide stringent constraints on
the approximations deployed to study correlated many-body
systems [17–21]. In particular, simple metals irradiated at
photon energies below their bound-state ionization edges are
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ideal candidates to investigate the fundamental mechanisms
of free-free opacity, and therefore of the dielectric response.
Such systems are essentially ground-state plasmas, both sim-
ple to manipulate and investigate experimentally, and are
present in well-defined conditions of temperature, density, and
ionization.

Density functional theory (DFT) calculations are invalu-
able for providing a single computational framework in which
to model quantum mechanical systems across a wide variety
of temperatures and densities. More explicitly, multi-atom
Kohn-Sham DFT calculations coupled with quantum molec-
ular dynamics (MD) have provided accurate simulations of
equilibrium properties within both periodic and disordered
systems through the use of large supercells. Excited states and
response properties are also accessible via time-dependent
DFT and perturbation theory. DFT is thus well placed as a
natural starting point when looking for a single framework,
and associated set of approximations, in which to consistently
model multiple physical properties across a range of experi-
mentally accessible conditions.

Despite this, both the theoretical and the experimental
free-free absorption cross sections in Al, a simple metal,
remain poorly understood. While calculations based on the
random phase approximation (RPA) are seen to be in good
agreement with bound-state opacity measurements, the RPA
performs poorly in the free-free regime for ground-state Al
[18]. Furthermore, there is a significant discrepancy in the
experimental free-free opacity in the XUV photon energy
range between the Al plasma frequency at 15 eV and the Al
L-edge at 73 eV. The widely used Centre for X-Ray Optics
online database (CXRO) [22] uses the experimental data of
Gullikson et al. [23] for this energy range; results which dis-
agree by as much as a factor of 2 with measurements by Henke
et al. [24] and Keenan et al. [25]. Given that thin Al foils are
commonly used as filters in the XUV, such discrepancies can
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FIG. 1. Experimental setup for the opacity measurement on the
Artemis facility.

have a large effect on the calculated spectral brightnesses of
XUV sources created via high harmonic generation (HHG) or
other techniques.

Here we present experimental measurements and ab initio
results for the ground-state Al free-free opacity. Our cal-
culations are based on a first principles simulations of the
electronic response tensor using DFT. By contrast, in the
literature macroscopic, optical properties of warm-dense mat-
ter systems are routinely computed inserting the Kohn-Sham
states into the long-wavelength limit of the Kubo-Greenwood
formula alone. Our calculations move beyond this approxima-
tion by incorporating both local field corrections (LFC) and a
finite-temperature, many-body theory treatment of the single-
particle self-energy: neither of which have been typically ac-
counted for in standard, DFT Kubo-Greenwood calculations
for the dynamic conductivity warm-dense matter.

Our calculations are compared to new experimental results
obtained by measuring the attenuation of an HHG source
through stepped targets. In this manner, we may clearly dis-
tinguish absorption by the target from that due to impuri-
ties or oxide layers that exist on the surface [26]. Excellent
agreement is found when we account for LFC and many-body
corrections to the energy of the Al L-edge; the second of these
being underestimated in the DFT-only calculation.

The consequences of LFC and finite-temperature quasipar-
ticle corrections for the free-free opacity are examined for
warm dense matter conditions of solid density Al at tempera-
tures of 1, 5, 10, and 15 eV. We find our calculations approach
advanced IB-based plasma models at higher temperatures.
The inclusion of finite-temperature many-body corrections
has necessitated the modification of the standard ABINIT DFT
code, within which we have implemented our own version of
a finite-temperature G0W0 quasiparticle code.

II. EXPERIMENTAL MEASUREMENTS

The experiment was conducted at the HHG Artemis facility
[27] of the Rutherford Appleton Laboratory, UK, capable of
delivering XUV pulses in the XUV spectral range between
15–60 eV. The setup is shown schematically in Fig. 1. Here,
a 1-kHz Ti:sapphire CPA laser system provided short (30-fs
FWHM) infrared pulses at a wavelength of 780 nm. These
pulses were focused onto an Ar or Ne gas jet within a dif-
ferentially pumped gas cell at intensities around 1014 W/cm2

to produce high harmonics over a relatively broad spectrum,

with an energy efficiency of order 10−6. Individual harmonics
were picked out from the HHG spectrum via a time-preserving
XUV monochromator with a resolving power λ/�λ ≈ 100
and peak transmissivity of 20% [27], and were steered onto an
Al target using a gold mirror. The transmitted beam through
the target hits a microchannel plate (MCP) detector and
was imaged with a standard optical system and camera. The
background signal and spatial profile of the HHG pulses was
determined by imaging the beam in the absence of the sample.
The linearity of the optical system was verified during the
experiment across the entire dynamic range of transmitted
signals and for all exposure time durations. Typical exposure
times ranged from 1–5 seconds, so the data integrates over
several thousand shots for each experimental opacity data
point.

The target sample is a free-standing five-step foil with
the different thicknesses of Al deposited in a single process
to ensure there are no layers of spurious materials between
the individual steps. The target size is about 3 by 4 mm,
and is fully illuminated by the diverging HHG beam from
the source (Fig. 1). Thicknesses of the various steps vary
slightly with position but are on average 100, 315, 560,
810, and 1165 nm, measured via profilometry to an accuracy
better than 2 nm. Using a single Al sample with a range of
thicknesses is crucial because surface contaminants and oxide
layers can have a large effect on the absorption, given the
vastly different attenuation lengths in the XUV regime. By
looking at the differential absorption across the steps we can
overcome the well-known difficulties related to surface oxide
layers and other contaminants commonly present on thin foils.
The absorption of XUV light in the low-intensity limit follows
the Beer-Lambert law:

T (x, y) = exp (−κ (ω)d (x, y) − α(ω)). (1)

Here T is the experimentally measured transmission through
a specific point of the target denominated by (x, y). The thick-
ness of the absorbing Al target at that point is d (x, y), κ (ω)
is the frequency-dependent absorption coefficient of Al, and
α(ω) is the frequency-dependent absorption term (including
thickness) representing any additional contributions to the
absorption, here predominantly arising from the aluminum
oxide layer. We implicitly assume that there is no variation
in oxide thickness across the target.

By taking the negative logarithm of the transmission we
can write a linear equation for the absorption coefficients as a
function of the variable d , the thicknesses of the Al step target:

κ (ω)d + α(ω) = − log(T ). (2)

We show the measured attenuation through the sample in
Fig. 2 for the 15th laser harmonic. The steps in the sample
can easily be observed in the three-dimensional (3D) plot of
the transmission. Because the sample thickness is accurately
known before the experiment, we can extract experimental
values for both κ (ω) and α(ω) by fitting the data using the
linear function of sample thickness given in Eq. (2). We
show this procedure in Fig. 3, again for the 15th harmonic.
From this analysis we find an absorption coefficient to be
κ (ω) = 5.1×106 m−1, with an uncertainty of 0.9×106 m−1,
where we quote a 95% confidence interval, i.e., ±2σ . The
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FIG. 2. Measurement of the transmission through the Al step
target for the 15th laser harmonic around 24 eV. The top panels show
the spatial intensity distribution of the HHG beam without a target
(full beam), and the transmitted intensity through the step target.
The natural log of the ratio of the two yields the total absorption
[see Eq. (2)], which when plotted in 3D to illustrate that the steps of
the target are clearly visible in the absorption measurement.

same procedure was repeated for harmonics 11–37, yielding
an opacity dataset across the XUV range of the spectrum that
we will discuss in what follows. Importantly, to obtain the
experimental absorption coefficient using our approach it is
only necessary to know the difference in thicknesses of the
various steps, while their absolute values are inconsequential.
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FIG. 3. Observed transmission of the 15th harmonic through the
Al step target sample. Following Eq. (2) we perform a linear fit to the
five data points to extract κ (ω) (the slope), α(ω) (the y intercept), and
related errors. Fitted lines corresponding to the largest and smallest
slopes are shown.

By extension, we can actually use our measured offset
coefficient α(ω) to determine the oxide thickness if we
assume the dominant contribution to α(ω) is a layer of
Al2O3 of known opacity, such as that taken from the CXRO
database [22]. Following this approach we find the thickness
of the total oxide layer to be (15 ± 6)nm.

III. DFT SIMULATIONS

To determine the long wavelength absorption opacity
we first consider the macroscopic dielectric function of the
plasma εM , from which the absorption coefficient follows via
κ (ω) = 2ω

c Im
√

εM (ω). Our calculations begin with multicen-
tred DFT simulations, solving the finite-temperature Kohn-
Sham equations[−h̄2

2me
∇2 + vH + vxc

]
ψKS

n = εKS
n ψKS

n . (3)

Where vH and vxc are the Hartree and exchange-correlation
potentials. Electron-ion interactions are modelled using pro-
jector augmented wave (PAW) [28,29] pseudopotentials with
the 1s electrons frozen in the Al core. Up to 1500 bands are
calculated in 32 atom unit cells with a 2×2×2 k-point grid
Brillouin zone sampling and a planewave cutoff of 400 eV. An
ensemble of ion positions is obtained by evolving the system
in time for 3 ps in the Born-Oppenheimer approximation
while coupled to a Nosé-Hoover thermostat. We compare the
results of these MD simulations to those average-atom and
multicentred simulations for the equation of state of solid
density Al (Fig. 4) as an additional verification.

At this point, the Kubo-Greenwood forumula is often ap-
plied to calculating the real part of the dynamic conductivity:

σ (ω) = 2π

3ωV

∑
i, j=1

3∑
α=1

[
F

(
εKS

i,k

) − F
(
εKS

j,k

)]

× ∣∣〈ψKS
j,k

∣∣∇α

∣∣ψKS
i,k

〉∣∣2
δ
(
εKS

j,k − εKS
i,k − ω

)
. (4)

The imaginary component may then be obtained via
a Kramer-Kronig transform, and the dielectric function
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FIG. 4. Comparison of the equation of state for solid density,
warm dense Al as predicted following our MD simulations, con-
firming consistency with previously published average-atom and
multicentred Kohn-Sham calculations [30].
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determined through the relation

ε(q → 0, ω) = 1 + iσ (ω)

ω
. (5)

This procedure, however, does not account for two important
contributions to the macroscopic dielectric functions that ap-
pear in a rigorous approach based on a time-dependent DFT
response theory, namely the role of LFC and changes in the
exchange-correlation potential.

Starting with the former, we can elucidate the role of LFC
if we first note that in our calculations we have access to
the full dielectric tensor for a given snapshot during the MD
simulation. In a periodic system we can write this in the form
εGG′ (q, ω), where G and G′ are reciprocal lattice vectors, and
q lies within the first Brillouin zone. εM is then defined via

εmac(ω) = 1

ε−1
00 (q → 0, ω)

�= ε00(q → 0, ω). (6)

By contrast, the Kubo-Greenwood formula even with the
exact many-body eigenstates �(r1, r2, r3, . . . ,) provides only
the head of the tensor ε00.

The difference between the left and right sides of the
inequality in Eq. (6) comprises the LFC contribution, and
vanishes only in the limit that the dielectric tensor is a function
of separation distance, or alternatively q, only. For a molten
system, once we average over an ensemble of nuclei positions
taken from an MD simulation no particular position should
be special. Thus in the thermodynamic limit quantities must
depend only on relative distance. However, provided that the
absorption takes place on a timescale much shorter than nuclei
motion, each instantaneous configuration of nuclei positions
during the MD corresponds to a specific external potential,
one “local” to that state in the thermodynamic ensemble,
generated by a specific spatial configuration of nuclei under
which the absorption takes place. Physically, ignoring LFC in
this context is equivalent to applying a form of random phase
approximation (RPA) to electron-nuclei scattering; thereby
neglecting the instantaneous nuclei-nuclei spatial correlations
as has been previously done, for example, in Ref. [18].

In addition to LFC, a complete calculation of linear re-
sponse properties must include changes in the exchange-
correlation potential to account for the difference between
the Kohn-Sham orbitals and the true many-body states. Time-
dependent DFT provides such a means to formally calcu-
late the first order, dynamic response properties of finite-
temperature systems via the exchange-correlation kernel fxc.
If we define the linear density response function of the
(noninteracting) Kohn-Sham system as χ0, then the correct,
interacting density response χ can be obtained from

χ = χ0

1 − Kχ0
, K = Vc + fxc. (7)

Here Vc is the Hartree-Coulomb term, and both frequency
dependence and the tensor nature of the quantities is sup-
pressed for brevity. In reality, response function calculations
are limited by the availability of suitable approximations
to fxc, which is, in general, temperature dependent, time-
energy dependent, and a functional of the current density.
This is particularly relevant when dealing with dynamic
properties of systems at finite temperatures [21,31], which

require explicitly time [32–34] and temperature-dependent
functionals [35–39]. Furthermore, from a practical perspective
whether or not common static exchange-correlation kernels
(for example, local density and generalized gradient approx-
imations) provide any advantage over completely neglecting
this term is somewhat situation dependent.

Rather than rely on approximate DFT exchange-correlation
kernels in the next section we will instead use many-body
theory to correct the Kohn-Sham states and raise them to the
a physical level of quasiparticles. To do this, however, and for
comparative purposes with the final result, we first calculate
the response properties neglecting the exchange-correlation
kernel fxc ≈ 0.

χ = χ0

1 − Vcχ0
, K ≈ Vc

ε−1 = 1 + Vcχ ⇒ ε = 1 − Vcχ
0. (8)

By keeping only the Hartree-Coulomb contribution to the
kernel K , Eq. (8) is in effect an RPA approximation with
respect to electron-electron correlations during the dynamic
response. Note that these electron-electron correlations are
still, albeit approximately, accounted for during the initial
DFT calculation for the Kohn-Sham system. Aside from the
aforementioned ambiguous nature of the benefits of available
exchange-correlation functions, the approximation of fxc ≈ 0
at this stage is taken also with the knowledge that much of the
relevant exchange-correlation physics will be restored when
the resulting dielectric tensor is used to perform quasiparticle
calculations in the next section.

We used the ABINIT code [40,41] to calculate the Kohn-
Sham wave functions via Eq. (3) and to compute the dielectric
function [42,43] using the above response theory formalism.
Special care was taken in dealing with the long wavelength
limit of intraband contributions to the dielectric function for
the purpose of satisfying sum rules. To this end, we explic-
itly calculated the limit of ε(q → 0, ω → 0)00 by fitting the
low-frequency response of the dielectric function at finite
wavevector using a single plasmon-pole approximation

ε−1(q, ω) = 1 +
(
ω0

p

)2

ω(ω + iνq) − (
ω

q
p
)2 , (9)

where the plasma frequency ω
q
p and broadening νq are q-

dependent. We found the dielectric response at low frequen-
cies to be well fitted by this functional form for all conditions
studied. The q → 0 plasma frequency, including both inter
and intraband contributions, was then obtained by fitting for
ω

q
p and extrapolating via our calculated Bohm-Gross relation

for ω
q
p to q = 0.

IV. FINITE-TEMPERATURE QUASIPARTICLE
CORRECTIONS

LFC effects may physically be expected to be important
for systems with strong electron-nuclei and nuclei-nuclei cor-
relations. As mentioned, electron-electron correlations can,
in principle, be taken into account with suitable exchange-
correlation kernels, the development and testing of which
continues. However, within condensed matter an established
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and accurate alternative has been to use DFT calculations
as the starting point for many-body theory calculations. In
particular, the GW approximation for the single-particle self-
energy has been widely applied to fixing the so-called band-
gap problem of DFT in which the Kohn-Sham eigenvalues
regularly underestimate energy gaps in the density of states of
extended systems [44]. In the context of our calculations here,
this applies most immediately to the position of the absorption
L-edge in the opacity of Al, a transition featuring bound
states strongly coupling to the nuclei and thus, perhaps more
susceptible to LFC than contributions from valence-valence
transitions in our free-electron-like metal.

The simplest many-body correction we can perform is
a “one-shot” cycle of Hedin’s equations [45,46] referred
to as the G0W0 correction to the Kohn-Sham states. Such
calculations are relatively standard for ground-state systems,
however, here we apply them at finite temperatures [47] using
our custom code to study warm dense matter systems via
many-body theory corrections to initial DFT calculations. GW
and other approximations for the self-energy have, however,
previously been applied to plasma physics independently of
DFT [48–55].

The primary computational hurdle of the many-body ap-
proach is the calculation of the correlation energy �C (ω), with
which we can define the self-energy � = �X + �C , where
�X is the finite-temperature exchange term. This then features
in the effective Schrödinger equation for quasiparticle states
ψQP:[−h̄2

2me
∇2 + vH

]
ψQP

n +
∫

dr′�(r, r′, εn)ψQP
n (r′) = εnψ

QP
n .

(10)

For our single-shot G0W0 calculations we approximate the
self-energy � as a small perturbation to the Kohn-Sham
exchange correlation potential vXC of Eq. (3). The effect
of which on the density of states is described through the
diagonal elements of the spectral function Ann(ω) in the Kohn-
Sham basis ψKS

n :

Ann(ω) = Im �nn(ω)

[ε̂n + Re �nn(ω) − ω]2 + [Im �nn(ω)]2
. (11)

Here ε̂n are the Kohn-Sham eigenvalues minus the contribu-
tions to from the exchange-correlation potential.

In our calculations we make use of the Matsubara formal-
ism to first express �C (z) for points z = iνn′ = (2n′ + 1)π i
along the imaginary axis in terms of the dielectric function at
frequencies iωn = 2nπ i:

�C
nnk(iνn′ ) = iT

2π

∑
GG′,m,iωn

[
Mmn

G (k)
]∗

Mmn
G′ (k)W C

GG′ (ωn)

iνn′ + iωn − εKS
m (k)

, (12)

where the Kohn-Sham matrix elements are Mmn
G = 〈ψKS

m (k)|
eiGr |ψKS

n (k)〉, the screened Coulomb interaction is given by
W C

GG′ (ω) = [ε−1
GG′ (ω) − 1]V C

GG′ , and where we set the chemical
potential μ = 0 for convenience.

The retarded self-energy �(ω + i0+) is then obtained by
analytical continuation from the upper-half plane to the real
axis. In our calculation we achieve this numerically by fit-
ting to a Padé approximant. In condensed matter systems
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edge 
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¯ ω

FIG. 5. Spectral function for the 2p bound state and the lowest
lying continuum state for T = 15 eV. Restriction to single shot G0W0

combined with a finite-order Padé approximant for the analytic con-
tinuation results in broad quasiparticle peaks lacking clear satellite
features.

this method of numerical analytic continuation is normally
considered to be a less accurate, but quicker, alternative to the
contour deformation method [56]. We find it to be sufficient
for its primary purpose here of correcting the position of the
L-edge.

In Fig. 5 we plot example spectral function matrix elements
Ann(ω) corresponding to the bound 2p and lowest energy
continuum state in 15 eV Al plasma. The spectral function de-
scribes the contribution from each single particle wave func-
tion to the density of states. Restriction to single shot G0W0

combined with a finite-order Padé approximant for the ana-
lytic continuation results in overly broad quasiparticle peaks
lacking clear satellite features. As such, considering that our
primary motivation here is to correct band gaps, we thereby
choose to neglect quasiparticle lifetimes in our calculations
and instead use the calculated spectral function to determine
new, G0W0 corrected, single particle energies by fitting each
quasiparticle peak to a Lorentzian. On the same note, while
GW is frequently used in the ground state to correct band gaps
to sub-eV accuracy [44], a detailed study of finite-temperature
many-body effects on the structure within the continuum,
which may well require a much more accurate treatment of
the spectral function shape than that afforded by our Padé
approximant [55,57–59], is beyond the scope of this paper.

Having now obtained the G0W0 corrected, single particle
energies, we can then recalculate the dielectric function, and
thus determine the opacity, following the formalism of the
previous section. Our quasiparticle calculation allows for an
account of exchange and correlation physics not easily mod-
elled in DFT, such as when determining energy gaps. As such,
while neglecting fxc in the initial dielectric function calcula-
tion may be considered an approximation, when recalculating
the dielectric function with our quasiparticle eigenenergies it
would be incorrect to include a DFT kernels fxc.

V. RESULTS AND DISCUSSION

We plot our experimental results alongside previous mea-
surements and our DFT-based many-body-theory calculations
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(b)

Calculated

6

FIG. 6. (a) Calculated opacity for room temperature Al along
with our own measurements and those of previous studies. (b) LFC
increases absorption between the plasma frequency and the L-edge,
while the primary effect of the G0W0 correction is to shift the energy
of the L-shell reducing the opacity.

in Fig. 6(a). We note good agreement between our measure-
ments and those of Henke et al. [24], and Birken et al. [26],
but a clear disagreement with the recently reported measure-
ment of Kettle et al. [12], and with the data by Gullikson
et al. [23] (CXRO) at photon energies below ∼30–40 eV.
Our results also appear broadly consistent with the recently
reported cold opacity measurements by Williams et al. [14]
(κ = 2.5×106 m−1), though as the latter measurement was
not frequency resolved a more complete comparison is not
possible.

The contribution of the LFC and of G0W0 on the room-
temperature opacity calculations is shown in Fig. 6(b). The
LFC overall raises the opacity between the plasma frequency
and the L-edge, while the effect of the G0W0 correction is
to shift the L-edge to the correct L-shell binding energy, and
to slightly decrease the opacity. The full calculation including
LFC and G0W0 agrees well with our measured free-free opac-
ity and the experimental position of the L-edge. However, our
calculations appear to underestimate the opacity immediately
above the L-edge but show signs of approaching the CXRO
database values at higher photon energies.

We show in Fig. 7 our calculations extended into the warm
dense matter regime and plot the predicted opacity for equilib-
rium, solid density Al at T = 1, 5, 10, and 15 eV. In moving
from room temperature to T = 1 eV the free-free opacity
increases considerably. This is in contrast to previous average-
atom [13], as well as predicting a greater increase compared
to recent IB calculations [10], and being in disagreement
with the recent measurement of Kettle et al. [12]. We note,

FIG. 7. Calculated opacity for equilibrated warm dense Al up
to T = 15 eV along with the single data point of Kettle et al.
(Te ≈ 1 eV).

however, that the cold opacity result from the same authors
is also in disagreement with several experimental datasets, as
well as with our theoretical predictions.

Calculations performed using room temperature ion con-
figurations, but with the electrons heated to 1 eV, suggest a
breakdown of the regular crystalline lattice to be responsible
for the sudden increase in free-free absorption at T = 1 eV.
This may explain why such an increase was not predicted by
the previous IB theory (in which the role of ion-ion corre-
lations was only estimated) or average-atom calculations. A
key difference between this last and our calculations is the
use here of periodic supercells, well suited to representing the
periodic Al fcc crystal structure in the cold limit, and capable
of dealing with nonspherically symmetric ion distributions.
The discrepancies between these three models suggest the
ion distribution, boundary conditions, and symmetries of the
system may have a significant impact on the absorption in
warm dense matter at low temperatures.

This observation of significant changes to the free-free
opacity induced by melting is consistent with the recent
measurements of Williams et al. [14], who also attributed
their observation to the breakdown of the crystal structure.
However, here we predict larger opacity increases than those
reported by Williams et al., by about a factor of 2. We note
that our calculated opacities are also larger than those previ-
ously published by Vinko et al. [9] for both cold and warm
systems.

For h̄ω < 25 eV the temperature dependence of the opac-
ity is consistent with plasmon broadening due to increased
electron-ion collisions [31]. For 35 < h̄ω < 60 eV only a
relatively weak temperature dependence is predicted with the
exception of the 2s-2p resonance (h̄ω ≈ 42 eV) owing to
thermal ionization of the L-shell at the highest temperatures.
We identify this weak dependence as partly a consequence
of LFC effects enhancing the opacity at T = 1 eV. The strong
impact of LFC at T = 1 eV further suggests the importance of
ion-ion correlations at this temperature. Close to the L-edge,
significant pre-edge features are predicted to develop as low
lying continuum states are thermally depopulated. This should
be distinguished from changes in the continuum lowering
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FIG. 8. Comparison of our calculated opacity with the inverse
bremsstrahlung (IB) model of Ref. [10] at high temperatures. Our
results appear to approach the IB model both in slope and absolute
value.

which remains relatively constant, only changing by ≈4 eV
for the highest temperature of 15 eV.

Large scale DFT, and in particular G0W0, calculations are
expensive at higher temperatures. As such, there is a clear
incentive to establish under what conditions simpler models,
such as IB calculations, may be sufficiently accurate. In Fig. 8
we plot our finite-temperature calculations for 1 and 10 eV
along with the IB model of Ref. [10]. The authors of Ref. [10]
used a frozen core pseudopotential and therefore cannot be ex-
pected to replicate the L-edge features or effects due to L-shell
ionization such as the appearance of the 2s-2p bound-bound
transition. Nonetheless, the IB calculations closely agree with
our results for h̄ω < 25 eV at a temperature of 1 eV where
the opacity is dominated by the plasmon feature. At higher
temperatures, but still sufficiently cool that thermal ionisation

of the L-shell remains low, our calculations do appear to be
approaching the IB opacity model both in slope and absolute
values.

In conclusion, we present measurements and calculations
of the free-free opacity in Al between the plasma frequency
and the L-shell absorption edge. Our experimental data
shows good agreement with previous measurements by Henke
et al. [24] and Birken et al. [26], and disagrees with the mea-
surements by Kettle et al. [12], and with Gullikson et al. [23]
at lower photon energies. We find excellent agreement be-
tween our measurements and full time-dependent DFT cal-
culations of the free-free opacity. We extend our simulations
up to temperatures of 15 eV, demonstrating and quantify-
ing the influence of finite-temperature G0W0 corrections in
warm dense matter conditions. IB-based plasma models show
good agreement with our calculations for temperatures above
around 10 eV. This result is particularly encouraging given
the substantial difficulties in conducting full GW-DFT-MD
simulations at higher temperatures and provides confidence
in more approximate but faster plasma models for radiative
properties of warm dense matter. Finally, our results demon-
strate the importance of finite-temperature quasiparticle and
LFC in DFT-based modeling, with important implications
for the evaluation of the ab initio dielectric response more
generally, including calculations of dynamic structure factors
and stopping powers.
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