PHYSICAL REVIEW E 100, 043205 (2019)

Magnetic stochasticity and diffusion
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We develop a quantitative relationship between magnetic diffusion and the level of randomness, or stochas-
ticity, of the diffusing magnetic field in a magnetized medium. A general mathematical formulation of magnetic
stochasticity in turbulence has been developed in previous work in terms of the £, norm S,(t) = %lll -B,-
B, ||, pth-order magnetic stochasticity of the stochastic field B(x, 1), based on the coarse-grained fields B; and
B, atdifferent scales [ # L. For laminar flows, the stochasticity level becomes the level of field self-entanglement
or spatial complexity. In this paper, we establish a connection between magnetic stochasticity S,(t) and
magnetic diffusion in magnetohydrodynamic (MHD) turbulence and use a homogeneous, incompressible MHD
simulation to test this prediction. Our results agree with the well-known fact that magnetic diffusion in turbulent
media follows the superlinear Richardson dispersion scheme. This is intimately related to stochastic magnetic
reconnection in which superlinear Richardson diffusion broadens the matter outflow width and accelerates the

reconnection process.
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I. INTRODUCTION

In the early 1940s, Onsager pointed out, but never pub-
lished, the remarkable fact that the velocity field in a turbulent
fluid becomes Holder singular! in the limit of vanishing
viscosity; v — 0 ([1-3]). This approach was based on an
exact mathematical analysis of the high Reynolds-number
regime of incompressible hydrodynamic turbulence. Such an
analysis can be called, using a slightly more modern language,
a nonperturbative renormalization group analysis [2]. Both
laboratory experiments and numerical simulations (see, e.g.,
[4,5]; and also [1,2], and references therein) have confirmed
that the kinetic energy dissipation rate in a fluid does not
vanish in the limit of vanishing viscosity v. Such a nonvan-
ishing limit of energy dissipation requires that space gradients
of velocity diverge in the limit v — 0, i.e., Vu — oo([2,3]).
This blowup of velocity gradients resembles ultraviolet singu-
larities encountered in quantum field theory. Therefore, hydro-
dynamic equations will become ill-defined in this limit as they
contain velocity gradients. Turbulent magnetic fields as well
face the same singularity problem in the limit when viscosity
and resistivity tend to zero, v, n — 0, simultaneously. Con-
sequently, magnetohydrodynamic (MHD) equations become
ill-defined in this limit when the flow is turbulent. All in all,
this suggests that the conventional ideal hydrodynamics (HD)
and ideal magnetohydrodynamics may be applied only if the
flows remain laminar and all quantities Lipschitz continuous.
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"The complex (or real) valued function g in R" is Holder continu-
ous if two non-negative and real constants C and & exist such that
lg(x) — g(»)| < Cllx —y||" for all x,y € Domain(g). If the Holder
exponent £ is equal to unity, then g is Lipschitz continuous. Also
g is called Holder singular if 7 < 1.
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In a magnetized fluid, the magnetic diffusivity (resistivity)
and viscosity may be small but finite. In the limit of vanishing
magnetic diffusivity, the magnetic field seems to be frozen
into the fluid. This magnetic flux-freezing principle is widely
applied as an estimate to MHD equations in the laboratory
and astrophysical systems with the presumption that ideal
MHD holds to a good accuracy. With turbulence, ubiquitous
in astrophysical and laboratory systems (see, e.g., [6-9], and
references therein), the velocity and magnetic fields become
singular in the limit v,n — 0 and ideal MHD cannot be
applied. For instance, magnetic (and velocity) field lines are
usually assumed to be well defined in such approaches; how-
ever, mathematically, the existence and uniqueness of integral
curves (field lines) is guaranteed only for Lipschitz continuous
vector fields. What does a magnetic field line mean if the field
is (Holder) singular rather than Lipschitz continuous?

It has been shown that in the limit when the viscosity of
a turbulent fluid tends to zero, its Lagrangian particle trajec-
tories become stochastic (see, e.g., [10-12]). Also, it turns
out that magnetic field lines become stochastic in turbulent,
magnetized fluids in the limit when resistivity and viscosity
tend to zero simultaneously ([6,13—15]). Under such circum-
stances, instead of the conventional magnetic flux freezing
[16] a stochastic version is introduced [13]. Although the
concept of a stochastic magnetic field is used in such contexts,
it is not mathematically obvious at all what a stochastic
vector field really means. In other words, the notion of a
stochastic variable is well known for scalar quantities such
as a fluctuating temperature or the price of certain goods in
the market. However, a vector field assigns a vector, with
magnitude and direction, to every point in space and time
and we need a more general statistical formulation to study
the randomness of a vector field and its relationship with the
topology and other features of the field.

Jafari and Vishniac [3] presented a mathematical formula-
tion for the stochasticity level of magnetic fields in terms of
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the unit vectors tangent to the renormalized fields at different
coarse-graining scales. The time-dependent angle between
such two unit vectors at a space-time point (X, t) provides
a means to define a local stochasticity level (see Sec. II).
The average stochasticity level in an arbitrary volume V
can then be defined using £, norms. The time evolution of
the stochasticity level, defined in this way, would then be
associated with the topological deformations of the magnetic
field.

In the present paper, first we briefly review the concept of
vector field stochasticity developed by Jafari and Vishniac [3]
in Sec. II. In Sec. I1I, we relate magnetic diffusion to magnetic
stochasticity and test the theoretically predicted relationship
using the data extracted from an incompressible, homoge-
neous MHD simulation, archived in an online, web-accessible
database ([17-19]). In Sec. IV, we summarize and discuss
our results. In order to present a more complete discussion
on magnetic diffusion, we have also added an Appendix to
discuss the two-particle Richardson diffusion and the related
scaling laws in MHD turbulence.

II. VECTOR FIELD STOCHASTICITY

In order to remove the singularities of the velocity field
u(x, ) or magnetic field B(x, ) in a turbulent flow, we can
renormalize (coarse-grain) it at a length scale / by multiplying
it by a rapidly decaying function and integrating over a
volume V. For example, for magnetic field B, we have

B(x,1) = f G/(r)B(x +r,1)d’r, (D
v
where G;(r) =1 ‘3G(r/ ) with G(r) being a smooth, rapidly

decaying kernel, e.g., the Gaussian kernel scales as e
Without loss of generality, we may assume

G(r) >0, )
limjp— oo G(r) — O, 3)
/ drGr)=1, 4)

\%4
/ d*rr G(r) =0, (5)

14

and
/d3r|r|2 G(r)=1. (6)
|4

The renormalized field B; represents the average field in a
parcel of fluid of length scale /. It is nonsingular and its spatial
gradients are well defined [3].

The scale-split magnetic energy density, ¥ (X, 1), is defined
[3] as

Y(x,1) = 31Bi(x,1)-BL(x, 1), ©)

which is divided into two scalar fields as Y (x,7) =
¢ (x, 1)x (x, 1) such that

B/(x,1)-Bi(x,r) B.#0andB, #0
0

otherwise,

¢1,L(Xv t) = {
®)

which is called magnetic topology field and
X(x,1) = 3Bi(X, )BL(X, 1), ©)

which is called magnetic energy field. The quantity Bi(x,1)-
]§L (x, 1) is, in fact, the cosine of the angle between two coarse-
grained components B; and B, hence it is a local measure of
the field’s stochasticity level. In order to develop a statistical
measure, we can take the volume average of this quantity in a
volume V at time r which defines magnetic stochasticity level
Sp(t) given by

Sp(t) = 3lld(x, 1) — 1], (10)

where we have used the £, norms for averaging.> The cross
energy is defined using the energy field x (x, 7) as

Ep(t) = Ix X, Dllp, (11

With p =2, the second-order magnetic stochasticity level
S,, magnetic topological deformation 7, = 9,5, (), magnetic
cross energy density E,(¢), and magnetic field dissipation
D, = 0,E,(t) are given by

S2(t) = 3(¢ = Drms, (12)
Tyt = — f(qb—l)% &, (13)
485,() Jv a Vv
Ex(t) = Xms» (14)
and
Dy(t) = %(t)/vxa,xdvﬁ. (15)

II1. DIFFUSION IN TURBULENCE

In a resistive fluid, magnetic field lines will diffuse away
as a result of a nonzero magnetic diffusivity n (which is
proportional to electrical resistivity). This phenomenon is
similar to the diffusion of a passive scalar such as dye in a fluid
like water. In Taylor diffusion (also called normal diffusion;
the diffusion scheme presents also in Brownian motion), the
average (rms) distance of a particle from a fixed point, §(z),
increases with time ¢ as

82(t) = Drt, (16)

where Dy is the (constant) diffusion coefficient. Note that no
matter whether the medium is turbulent or not, this diffusion
scheme will apply but with different diffusion coefficients.
Turbulence will in general increase the diffusion coefficient
Dr making the diffusion process more efficient but the nature
of this normal diffusion will remain linear in time (see below)
at scales much larger than the turbulent inertial range. Because
by definition 82 ~ ¢ is sublinear if y < 1, linear if y =1,
and superlinear if y > 1, hence normal diffusion is a linear
diffusion.

>The L, norm of f:R"™— R™ is the mapping f — |[f], =
[, Ex)IP(d@"x/V)]'/?. In this paper, we will take p =2 for sim-
plicity, and || f|l, = fims, Which is the root-mean-square (rms) value
of f.
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In the presence of turbulence, although the normal diffu-
sion scheme is still valid at scales much larger than the large
eddies in the inertial range, it cannot be applied in the inertial
range of turbulence. In the inertial range, the average (rms)
separation of two diffusing particles grows superlinearly with
time. This corresponds to two-particle Richardson diffusion:

A%(t) = Dgt’, (17)

with diffusion coefficient Dg. This result can be obtained in
several ways discussed in the Appendix (see also [6,7]). The
power of 3 indicates, of course, a superlinear diffusion. It
is important to emphasize that the Richardson diffusion is a
two-particle diffusion (i.e., it is concerned with the average
separation of two particles undergoing diffusion in turbulence)
while the normal (Taylor) diffusion is a one-particle diffusion
scheme (i.e., it is concerned with the average distance of a
diffusing particle from a fixed point). It turns out, as might
be expected, that magnetic field lines undergo Richardson
diffusion in the turbulence inertial range [6].

Spectral analysis (Fourier decomposition) is often used to
study turbulent magnetic fields in which one speaks of parallel
A= k[l and perpendicular A = kll wave-lengths and wave
numbers (k; and k) with respect to the local magnetic field.
In such an approach, general equations (16) and (17) are
translated into the following relationship:

Mo~ an], (18)

with fixed « (for a given turbulence inertial range) as the diffu-
sion coefficient (see Appendix). Note that 8 = 3 corresponds
to the superlinear Richardson diffusion and 8 = 1 to normal,
sublinear dissipative diffusion. How can we relate magnetic
diffusion to the level of randomness in magnetic field?

Consider the coarse-grained magnetic field B; in a region
of length scale /. Denote by A, and A, respectively, the
perpendicular and parallel components of B; with respect to
B, (see Fig. 1). The assumption is that we are in the inertial
range of turbulence and L is slightly larger than /. From
Eq. (18) one can write

A =19, and A, =1(1—¢H?,

where ¢(x,t) = cosf = ﬁl - B,. We have
1*(1 —¢*) = alfyP. (19)

One can relate the stochasticity level, given by Eq. (10), to
the magnetic diffusion, which is related to Eq. (19), by writing
the latter expression as

1 B
—(1—-¢)= glﬂ—2¢_7
2 2 I1+¢
which upon taking £,-norm and using Eq. (10) gives us
P(x,t
s,y = Lpp2| L&D | (20)
2 L+ ¢x, 1),
Taking p = 2, for simplicity, we find
@ g $P(x1)
Sy(t) = 1?2 (———) . 21
20) 2 (1+¢(X,t))rms @

FIG. 1. Parallel, A, and perpendicular, A, wavelengths with
respect to the large-scale magnetic field B, (coarse-grained B on
scale L), in aregion of scale [ < L with local field B, (coarse-grained
B onscale ! < L). The angle 0 is a stochastic variable because of the
randomness inherent in B, hence it can be used to quantify magnetic
stochasticity level. Its local relationship with A; and A ; , on the other
hand, provides a means to relate the stochasticity level S,(z), defined
by Eq. (10), to magnetic diffusion, Eq. (18). This relationship is
quantified by Eq. (21).

First, we note that the dependence on scale / decreases

with increasing the scale since we are coarse-graining using
a rapidly decaying kernel G. Hence with L > [, we expect a
weaker dependence on L in Eq. (21) compared with depen-
dence on [/ < L. The relationship given by Eq. (21) should
hold for the right choice of 8 for magnetic diffusion (i.e., 8 =
1 for resistive diffusion and 8 = 3 for Richardson diffusion)
independent of scales as long as / is small and L is slightly
larger than /. With such a choice, the diffusion coefficient o
can be obtained from this expression by time averaging. If the
diffusion scheme is superlinear Richardson diffusion in the
inertial range, as discussed above, the evaluation of the above
expression should lead to f =3 with a scale-independent
diffusion coefficient .
In order to examine Eq. (21) numerically, we use a homoge-
neous, incompressible MHD numerical simulation archived
in an online, web-accessible database ([17-19]). This is a
direct numerical simulation (DNS), using 10243 nodes, which
solves incompressible MHD equations using a pseudospectral
method. The simulation time is 2.56 s and 1024 time steps are
available (the frames are stored at every ten time steps of the
DNS). Energy is injected using a Taylor-Green flow stirring
force. Let us define

1 S
)= 20 22)

l PP (x,1)
1461 /s

and evaluate the (rms) time average of this function, (f(¢))r,
over the time interval T (simulation time). For the right choice
of B for magnetic diffusion in turbulence, if Eq. (22) holds,
(f(#))r should be a constant independent of /:

(F(O)r = % — const. (23)

043205-3



JAFARI, VISHNIAC, AND VAIKUNDARAMAN

PHYSICAL REVIEW E 100, 043205 (2019)

(a)  x10*
35F ’(‘ =
it
3 f. Ha |
H Pl
§ e Pt i
25 F 1 A
.............................. Sesssssssushonnnnandunnnadgennndd
: g
2 i : Ao f
= v 1
= 5 i i
1.5 ry ] i i
ik 3 : 1
ki ¥ : L ) 1
|-\,,~'. o : -
7 W
0'5__1:.\__:‘......"______’_':___...~.____
! o e Ve’ \
rd e o -
0‘\ L — 1 1 1
0 0.5 1 15 2 25 3
time t (s)
(b) .
0.03 .
0.025 o, I 1
}’II ! \ _"’\\:
N =] A%
002 N SN A
.................. et e oy g
— N 7 =3
e . 4 13 o7
=0.015 U o .
AN ol
W
st \ E
0.01 O ‘| {
: i
. 1
o u"’\l
0.005 ¥+ ! .
0 ‘ ‘ .
15 2 25 3
time t (s)

FIG. 2. Plots of f(¢) (curves) defined by Eq. (22) with respect to
time and its time average (f(z))r (horizontal lines) for [ =3,L =
11 (dotted, cyan), [ =5,L = 11 (dashed, red), and | =7,L = 11
(solid, yellow). For the correct value of B, the time average of
this function, (f(z))r, should be almost independent of scale and
approximately equal to the half of the diffusion coefficient «, defined
by Eq. (18). For different scales, the standard deviation and relative
standard deviation corresponding to 8 = 1 (a) are much larger that
their counterparts for 8 = 3 (b). The numerical values of «, in the
same subvolume, are shown in Table I. This result holds in different
subvolumes of the simulation box.

In Fig. 2, we have plotted f(¢) as a function of time, for differ-
ent values of / and L for both 8 = 1 and B = 3 in a randomly
selected subvolume of the simulation box with size 194 x
42 x 33 in grid units equivalent to 1.2 x 0.26 x 0.20 in phys-
ical units with coordinates [400, 733, 300] — [596, 775, 333]
in the simulation box. Repeating this computation in several
other randomly selected subvolumes of the simulation box
leads to similar results. We have also evaluated other values
of B in the same subvolume; e.g., see Fig. 3 for § = 5, 7. The
numerical values of (f(¢))7 for different scales / and L, along
with the mean value, standard deviation, and relative standard
deviation, are presented in Table I. These results indicate
that 8 = 3 (Richardson diffusion) leads to an almost constant

TABLE I. Numerical values of (f(¢))r for different scales / and
L, which are assumed to be slightly larger than /, for 8 = 1, 3,5, 7 in
a randomly selected subvolume of size 194 x 42 x 33 in grid units
[see Eq. (23)]. The mean, standard deviation (STD), and relative
standard deviation of (f(¢))r are calculated for different scales /
and L. These data, and similar ones for other randomly selected
subvolumes, indicate that 8 = 3 gives the smallest relative standard
deviation for (f(¢))r. Physically, this means that only for superdif-
fusion with B ~ 3 an almost constant, scale-independent diffusion
coefficient can be obtained as @ = 2(f(¢))r.

(f@©))r(107)

I, L B=1 B=3 =5 p=1
3,7 2774 317 36 4
3,9 2128 244 28 3
5,9 5834 241 9 0
3,11 1590 180 20 2
5,11 5087 212 8 0
7,11 8985 189 4 0
Mean 4400 230 18 2
STD 2802 50 12 2
Relative STD 6368 2174 6667 10*

(with respect to scales / and L > [) diffusion coefficient Dy :=
o while the relative standard deviation of the time-averaged
quantity (f(¢))r becomes increasingly larger as B increases
and no constant diffusion coefficient, with respect to scale,
can be defined in these cases.

For any given pair of [/, L, the temporal fluctuations of
f(¢) are statistically independent of 8. Quantitatively, we can
define the mean value of f(¢) as

1 [
n= ?_[,. f(t)dt, (24)

where T =1t; —t; = 2.56 is the total simulation time and
obtain the standard deviation using

1 [ 2\ /2
o=(7£[ﬂn—@d0 , 25)

in order to compare the relative standard deviations o /u for
different choices of 8 for any given pair of /, L. The temporal
relative standard deviation of f(¢) remains independent of S,
while it is smaller for choices of scales /, L for which, as the
theoretical model assumes, L is only slightly larger than [ (see
Table II).

IV. SUMMARY AND CONCLUSIONS

In this paper, we have advanced physical arguments to
relate magnetic stochasticity level S,() to magnetic disper-
sion in MHD turbulence. We have also tested this theoreti-
cal prediction using an incompressible, homogeneous MHD
numerical simulation stored online ([17-19]). Our results
agree with the superlinear, Richardson diffusion scheme for
turbulent magnetic fields.

The stochasticity level of turbulent magnetic fields is
quantified by volume averaging the scalar field ¢(x,?) =
ﬁ, -ﬁL where fi; = B,;/|B;| and B, is the coarse-grained
magnetic field at scale I; B; =7 [, G(r/)B(x +r,1)d’r
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FIG. 3. Same as Fig. 2 but for 8 =5 (a) and g =7 (b) (see
also Table I). The value of f(¢#) becomes smaller by increasing S;
however, its relative standard deviation ramps up indicating that f(¢)
is not a constant for 8 > 3 and thus no constant diffusion coefficient
can be defined. For 8 # 3, in general, a slight change in scale leads
to a large relative change in diffusion coefficient.

with a rapidly decaying kernel G(r) = G(r). Likewise By
can be computed for a larger scale L > /. More specifically,
p-order magnetic stochasticity is defined as the L£,-norm
(volume average) ||¢ — 11|,/2. Hence for p = 2, the second-
order magnetic stochasticity level is given by the rms average
$H(t) = %((ﬁ — Dms [3].

We have shown, using simple scaling laws of MHD turbu-
lence, that stochasticity level S,(¢) is related to the diffusion

power B and diffusion coefficient o in A3 ~ akﬁ by Eq. (20):

P (x, 1)

— Y2
Sp() = 2l 1+ ¢(x,1)

p
We have used the second-order stochasticity level S»(#) to

numerically check the Richardson value 8 = 3 against normal
diffusion associated with 8 = 1. In our statistical analyses

TABLE II. Temporal mean u, Eq. (24), standard deviation o,
Eq. (25), and relative standard deviation o /i of the function f(z),
Eq. (22), for different values of B. Repeating this for other values
of /, L and for other randomly selected subvolumes shows that the
temporal fluctuations of f(¢) are almost independent of 5. Smallest
temporal relative deviations are associated with values of L which
are slightly larger than / in accordance with the theoretical model,
Eq. (20).

B w(x107%) o (x107%) o/n
(I1=3,L=11)

B=1 1109 1140 1.0279
B=3 125 130 1.0400
=5 14 15 1.0714
=1 1 1 1.0000
(I=51L=11)

=1 3677 3516 0.9562
B=3 151 148 0.9811
B=5 6 6 1.0000
B=1 1 1 1.0000
(I=7,L=11)

B=1 7874 4330 0.5499
B=3 165 92 0.5576
B=5 3 2 0.6667
=1 0 0 0.5640

of several subvolumes of the simulation box, superlinear
diffusion with 8 = 3 leads to the smallest standard deviation
with respect to the scales. It should be emphasized that we
have related magnetic stochasticity to magnetic diffusion in
turbulence, whose superlinear nature can be inferred using
any MHD turbulence model such as the Goldreich-Sridhar
model [20] discussed in the Appendix. Our arguments in this
paper are thus quite generally applicable to magnetic fields
in turbulence inertial range and are independent of any MHD
turbulence model.

Finally, we briefly comment on the relationship between
magnetic and kinetic stochasticities. In fact, a similar relation-
ship might exist between kinetic stochasticity corresponding
to turbulent velocity field u(x, ¢) and particle diffusion in
turbulence. A detailed consideration of this problem is out
of the scope of this paper; however, a general comment is
in order. For a given turbulent velocity field u(x, t), renor-
malized at two scales / and L > [ > 0, one defines the scale-
split kinetic energy density as W(x,t) = %u,(x,t)uL(x, 1).
Similar to magnetic scale-split energy, ¥ too can be di-
vided into two scalar fields ®(x,t) = @;(x, ) - 6.(x,t) and
X(x,t) = %ul(x,t)uL(x,t). Thus, the kinetic stochasticity
sp(t) and kinetic cross energy e,(t) are given, respectively,
by s,(t) = %lll — ®(x,1)||,and e, (t) = || X (X, t)]| . This for-
malism, when applied to both velocity and magnetic fields
in a turbulent flow, can quantify the statistical relationship
between the evolution of the turbulent magnetic field and that
of the velocity field. Turbulence generally increases the mag-
netic stochasticity because the magnetic field is stochastically
frozen into the fluid in turbulent flows (i.e., stochastic flux-
freezing; see [13] and [3]). However, the magnetic tension
which resists tangling will at some point lead to the slippage
of the field through the fluid. This field-fluid slippage can
lead to eruptive fluid motions and launch jets of fluid [3],
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i.e., magnetic reconnection (see, e.g., [7,14]), which in turn
increases the kinetic stochasticity. Thus, one expects the local
maxima of magnetic stochasticity, 0;S,(¢) =0, 8,2Sp(t) <0,
to coincide with increasing kinetic stochasticity 9;s,(¢) > 0.

APPENDIX: RICHARDSON DIFFUSION AND MHD
TURBULENCE

In this Appendix, we present well-known theoretical evi-
dence in support of the superlinear nature of magnetic diffu-
sion in the presence of turbulence invoking different method-
ologies. The superlinear nature of magnetic diffusion does not
depend on any MHD turbulence model, rather the implication
is that any successful MHD turbulence model would agree
with the Richardson two-particle diffusion scheme. Super-
linear magnetic diffusion in turbulence inertial range is a
model-independent, universal feature of turbulent magnetic
field. Our arguments in this paper relate this phenomenon
to the stochasticity level of magnetic fields. Analytical and
numerical studies of magnetic diffusion in turbulence inertial
range can be found in, e.g., [6,7,13,15,21], and references
therein.

To estimate the two-particle separation in a turbulent flow
(for a detailed discussion, see [21]), we write the distance
between two arbitrary particles, initially separated by A(r =
0) = Ap = Ay, at time ¢ as

A@) = |X(, 1) — X(et, 1), (A1)

where o' = « + Aa. Assuming a Holder singular velocity

field u, we have
lu(x', 1) —u(x, )] <AlX —x/", (A2)

where A is a constant and % < 1 is the Holder exponent.
Taking the time derivative of Eq. (A1), using the triangular
inequality and Eq. (A2), we find

dA(1)

" <AX(@, 1) — X, 0" =A[ADO]",  (A3)
with the solution
AW < [ASTHAA =@ — )]V (a4

There is a remarkable difference in the above expression
for two different choices 0 < & < 1 and & — 1. It is simple
calculus to show that the latter case leads to

A@t) < AoexplA(t —10)],  h— 1. (AS)

This result implies that for r — oo, we have A(t) ~
Aget=") Therefore we arrive at the important result that in
this case the initial conditions are never forgotten. However,
the choice 0 < h < 1 leads to

At) ~ [A(l — h)(t — t)]V/—P, t—o00. (A6)

This implies that the information about initial conditions, i.e.,
the initial separation of particles, is lost for long times. Using
Kolmogorov’s [22] theory of kinetic turbulence in the inertial
range, we know that iz = 1/3. Therefore, the above expression
yields

A%(t) o (t —19)°. (A7)

The power of 3 indicates, of course, a superlinear diffusion. At
sufficiently large times 7 >> 1y, we recover Eq. (16): A%(t) ~
3.

Historically, however, Richardson took a different ap-
proach to get this result, an understanding of which is both in-
structive and also important for many other problems (see also
[14]). Richardson’s probability density for particle separation
vector 1 = x| — X, with a scale-dependent diffusion coef-
ficient K (1) ~ Kol*/3, satisfies 9,P(1,t) = V,[K(1)V, P(l,1)]
with a similarity solution [13],

A 9]2/3
PA 1) = ——exp(—— ).
0= Kyr exp( 4Kot>

Using this probability density to average /2, one finds
(I*(t)) = (1144/81)K3t3. This is intimately related to
Kolmogorov’s relation

() ~ (goe)t?,

which is a solution to the initial value problem dI(t)/dt =
su(l) = (3/2)(goel)'3, 1(0) = Iy for sufficiently long times
t > to. Here gy is the Richardson-Obukhov constant and € the
mean energy dissipation rate.

In the following we also present a brief discussion of MHD
turbulence scaling laws related to magnetic diffusion in the
turbulence inertial range. We shall see that such considera-
tions generally agree with the result given by Eq. (A9).

In Kolmogorov’s hydrodynamic turbulence [22], the statis-
tics of turbulent motions is determined by the energy transfer
rate € = vg, /y and length scale y at the inertial range, where
the energy is supposedly transferred with no dissipation, and
the energy transfer rate and viscosity v at the dissipative
range, where the energy is dissipated by viscosity (for a
review of MHD turbulence, see e.g., [23,24]). Dimensional
analysis leads to the turbulent velocity v, ~ €'/3y!/? and the
turbulent eddy timescale 7, ~ €~'/3y?/3 in the inertial range.
This scaling leads to the famous velocity spectrum v ~ k~!/3
and energy power spectrum

Exoi(k) ~ k™3,

(A8)

(A9)

(A10)

At the dissipative range, a similar dimensional analysis shows
that vy ~ e /%14 15 ~ e 12012 and y,; ~ v/ V4 =
y(w/yvy )4

Kolmogorov scaling, for hydrodynamic turbulence, can-
not be applied directly to MHD turbulence because of the
complications that a magnetic field introduces. Iroshinkov
[25], and Kraichnan [26] independently developed a model for
incompressible MHD turbulence. Since two-wave interactions
behave as elastic collisions, this picture relies on the inter-
actions of triads of waves [27]. The Iroshinkov-Kraichnan
(IK) model assumes that (a) only oppositely directed waves
interact, (b) turbulence is isotropic, (c) energy cascades from
long to short wavelengths, and finally (d) dominant interac-
tions involve three-wave couplings (triads). The assumption
that interactions are local, i.e., only fluctuations of comparable
sizes interact, then propagating fluctuations behave as Alfvén
wave packets of parallel extent /; and perpendicular extent
1, . Suppose du; ~ 8B;, where du; and 8B are, respectively,
the fluctuations in the velocity and magnetic fields. Two
counterpropagating wave packets would require an Alfvén
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time, T4 ~ [}/ V4, to pass through each other. During this time,
the amplitude of each wave packet will suffer a change Adu,

ASul Sul
TA T

) (ALD)

where t; ~ [/8u; is the eddy turnover time. The assumption
of the local, weak interactions means

Adu; K 0up & 14 L 140 (A12)

The cascade time, t,; is defined as the time that it takes to
change du; by an amount comparable to itself assuming that
the changes accumulate in a random walk manner?;

Tul 1/2
TA [ T
Z Aduy ~ Su;—= (-) ~ Su;. (A13)
T\ T
=0
Thus, we obtain the energy transfer rate
Vs (A14)
Tyl ~ .
Y e

The isotropy assumption means that the power is dis-
tributed isotropically in wave space. Assuming [} ~ [, we
obtain

o
Tk = v_,%’

(A15)

where we have simply used vy, to refer to the rms velocity on
the eddy scale k=1, instead of 8u;. When v, < Vy4, we have
T,y > kv, which implies the reduction of the energy cascade
to higher wave numbers by the magnetic field. Constancy of
the energy transfer rate v,f /Tix = const leads to v, ~ kK~ /4,
Therefore the Kraichnan-Iroshinkov energy power spectrum
is given by

Ex (k) ~ k=32, (A16)

IK theory was the most popular model accepted as MHD
generalization of Kolmogorov’s ideas for about 30 years.
In the 1970s, measurements showed strong anisotropies in
the solar wind with /; > [;. Goldreich and Sridhar ([20]
henceforth GS95; see also [28]) suggested that the effect of
residual three-wave couplings is consistent with Eq. (A14),
for the basic nonlinear timescale, but an anisotropic spectrum
should be considered in which the transfer of power between
modes moves energy toward larger k; with no effect on k.
Here, k; is the wave-vector component perpendicular, and
k; is the wave-vector component parallel, to the direction
of magnetic field. Therefore, using Eq. (Al4), the basic

3The average total length in a random walk with average step
size [ vanishes (X;;) = 0, but ((;;)%) = (%) = NT". The total
number of steps N is the total time #,, divided by the average time of
one step 7, that is, N = f,,, /7. Thus ((Z;1,)*)'/> = (t,,/7)"/?1. For the
velocity fluctuations, Eq. (A11) gives Adu; ~ Su;(ta/7;). To add up
Aé8u;’s during total time 7, that is, > ", ASu; = (ta/T1) Y, Sus,
one replaces the step size with du;, average step time with t4. This
leads to the first part of Eq. (A13).

nonlinear timescale can be written as

k\V,
T = (A17)
kv
where wy = k| V, is the Alfvén wave frequency.
The critical balance requires that k and k, are related as
k”VA ~ kv, (A18)
where V, is the Alfvén speed and vg. This is translated into
the requirement that the field couples to a typical eddy at
a rate approximately equal to the eddy turnover rate. The
second assumption in the GS95 model is that the nonlinear
energy transfer rate is ~k_ vi, similar to that of hydrodynamic
turbulence [22]. These assumptions together lead to a power
spectrum which behaves like hydrodynamic turbulence, i.e.,
U X kIl/ 3, Consequently, the energy power spectrum of
GS95 is given by
Egs(ki) ~ k" (A19)
Suppose that we inject energy into the medium with a
parallel length scale /, with the corresponding perpendicular
scale I} = [jMy (where My = Vr/Vy is the Alfvén Mach
number), that creates an rms velocity Vr. The resulting inertial
turbulent cascade satisfies critical balance at all smaller scales,
therefore
‘L"El x>~ k”VA ~ kJ_Uk, (AZO)
and the constant flow of energy through the sub-Alfvénic
cascade is given by

€~ U—? ~ VTZ ~ U_]%
ZHVA l|| /VA Tnl

~kyv}, (A21)

where v; = 4/VrV, is sometimes defined as the velocity for
isotropic injection of energy which undergoes a weakly turbu-
lent cascade and ends up with a strongly turbulent cascade
(see, e.g., [29,30]). Putting all this together, we find the
following relationship:

(kv
k” ~ ZH 1( ) s

7 (A22)

between parallel and perpendicular wave numbers. Note that
from here we also get 7,,' ~ kVj ~ ‘[/—HA( %)2/ 3 and the rms

velocity in the large-scale eddies, vy =~ VT(%)’I/ 3,

Thus the perpendicular wave number k, scales as k;
kﬁ/ * in terms of the parallel wave number ky. This scaling is
exactly similar to the Richardson scaling given by Eq. (A9).
This result can be presented in terms of the wavelengths
p:;lrallel3 and perpendicular to the local magnetic field as
AL~ A
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