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We present a theory for the rate of energy exchange between electrons and ions—also known as the electron-
ion coupling factor—in physical systems ranging from hot solid metals to plasmas, including liquid metals and
warm dense matter. The paper provides the theoretical foundations of a recent work [J. Simoni and J. Daligault,
Phys. Rev. Lett. 122, 205001 (2019)], where first-principles quantum molecular dynamics calculations based on
this theory were presented for representative materials and conditions. We first derive a general expression for
the electron-ion coupling factor that includes self-consistently the quantum mechanical and statistical nature of
electrons, the thermal and disorder effects, and the correlations between particles. The electron-ion coupling
is related to the friction coefficients felt by individual ions due to their nonadiabatic interactions with the
electrons. Each coefficient satisfies a Kubo relation given by the time integral of the autocorrelation function
of the interaction force of an ion with the electrons. Exact properties and different representations of the general
expressions are discussed. We then show that our theory reduces to well-known models in limiting cases. In
particular, we show that it simplifies to the standard electron-phonon coupling formula in the limit of hot
solids with lattice and electronic temperatures much greater than the Debye temperature, and that it extends
the electron-phonon coupling formula beyond the harmonic phonon approximation. For plasmas, we show that
the theory readily reduces to the well-known Spitzer formula in the hot plasma limit, to the Fermi “golden rule”
formula in the limit of weak electron-ion interactions, and to other models proposed to go beyond the latter
approximation. We explain that the electron-ion coupling is particularly well adapted to average atom models,
which offer an effective way to include nonideal interaction effects to the standard models and at a much reduced
computational cost in comparison to first-principles quantum molecular dynamics simulations.
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I. INTRODUCTION

Nonequilibrium states of matter where the constituent elec-
trons and ions are separately strongly driven out of equilib-
rium are routinely created in the laboratory. Such conditions
typically occur when a material is subjected to an impulsive
perturbation such as caused by an intense femtosecond laser
pulse [1], the irradiation by swift neutrons and charged projec-
tiles [2], or a strong shock wave [3]. Understanding the energy
exchanges between and among the electrons and the ions that
follow the excitation and drive the system towards equilibrium
is a long standing problem in condensed matter [4–22] and
plasma physics [23–44]. Because of the small electron to ion
mass ratio, it is customary to distinguish two distinct time
scales, namely, a short time scale that characterizes the fast
internal thermalization of each particle species and a longer
time scale that characterizes the slower equilibration of the
electron and ion temperatures. The latter, which is the subject
of this paper, is governed by the strength of the electron-ion
coupling factor.

For solids and weakly coupled plasmas, the central mech-
anisms that govern the energy exchanges between electrons
and ions have been known for a long time. In the case of
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solids, the energy exchanges are well described as resulting
from the interactions between electrons and phonons [8,45].
Yet, the modeling of energy exchanges between electrons and
phonons remains an active subject of research driven by in-
creasingly accurate measurements and numerical simulations
[16,18,19,21,22]. In the case of weakly coupled plasmas, the
energy exchanges are well described as resulting from indi-
vidual binary collisions between charged particles screened
by the surrounding plasma [23]. Different methods have been
proposed and validated with simulations to self-consistently
take into account the effects of the plasma on binary collisions
[33–36,38].

For systems at the confluence of solids and plasmas, how-
ever, different models [15,26–29,32,37] have been proposed
that offer diverging predictions even for simple materials
(see Table I in [44]). This intermediate regime, which is
characterized by the coexistence and interplay of significant
quantum, thermal, disorder, and strong Coulomb interaction
effects, challenges the standard simplifying approximations of
both ordinary condensed-matter physics (e.g., band structure,
phonons, etc.) and plasma physics (classical statistics, binary
collisions, etc.) [46]. The last decade has seen remarkable
progress in our ability to form and interrogate in the laboratory
materials under conditions at the confluence of solids and
plasmas [47]. These experiments typically produce transient
nonequilibrium conditions, and measurements may be mis-
leading if recorded while the plasma species are still out of
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equilibrium. Remarkably, the electron-ion energy relaxation
rate is now accessible to experimental measurements thanks
to the diagnostic capabilities offered by the new generation of
x-ray light sources [40–43].

Motivated by these recent developments, we present a
theory for the electron-ion coupling factor, the rate of energy
exchange between electrons and ions, that applies to physical
systems ranging from hot solid metals to plasmas, including
liquid metals and warm dense matter. In a recent paper [44],
we presented first-principles calculations based on this theory
for representative materials of various electronic complexity
and over a range of conditions, but the present theory was
only briefly outlined without justification. The purpose of this
paper is to provide a detailed exposition of the theory, its
properties, and its relation to previous models. We focus on
the theoretical aspects only; the numerical algorithms used
to obtain the results shown in [44] will be presented in
another publication. We do not present calculations on specific
physical systems in this paper and refer the reader to [44] and
future publications for such applications.

The paper is organized as follows.
In Sec. II, we derive the general expression for the electron-

ion coupling factor g. The derivation relies on a recent work
presented in [48], where it was shown, under mild assump-
tions suitable for the physical systems of interest here, that
the coupled dynamics of ions and electrons can be replaced
by a simpler, effective classical-quantum dynamics, in which
the atomic motions are governed by a stochastic Langevin-
like equation and the electron dynamics is described by a
master equation for the populations of the electronic states.
By assuming that the electron and ion systems can be charac-
terized by separate temperatures, the theory implies that the
two temperatures satisfy coupled rate equations and yields an
explicit expression for the relaxation rate—the electron-ion
coupling factor—in terms of the friction coefficients felt by
individual ions due to their nonadiabatic interactions with the
electrons. Each friction coefficient satisfies a Kubo relation
given by the time integral of the autocorrelation function of
the interaction force of an ion with the electrons. Several
equivalent expressions are given for g.

In Sec. III, we recast the general result of Sec. II in
terms of quantities that highlight the many-body screening
and correlation effects, and that are more easily amenable to
theoretical analysis, practical approximations, and numerical
evaluations. We consider three different reformulations, each
being based on a different representation of the many-body
electron response function in terms of reference response
functions, namely, the free-particle, the proper, and the Kohn-
Sham response functions commonly used in condensed matter
and plasma physics. The formulation in terms of the Kohn-
Sham response function is at the basis of the first-principles
molecular dynamics simulations presented in [44], which will
be discussed at length elsewhere.

In Sec. IV, we show that our theory reduces to well-known
models in limiting cases and suggests improved practical
models. We show that it reduces to the traditional Spitzer for-
mula in the hot plasma limit [23], to the Fermi “golden rule”
formula in the limit of weak electron-ion interactions [27],
and to the model of Daligault and Dimonte in their attempt to
include nonlinear electron-ion effects [36]. We then explain

that the electron-ion coupling is particularly well adapted
to average atom models, which have proven to be accurate
and computationally much more expedient than quantum
molecular dynamics simulations. We then demonstrate that
our theory also applies to hot solids, namely, to solid metals
with lattice and electronic temperatures much greater than
the Debye temperature. The theory reduces to the standard
electron-phonon coupling formula [8] in the appropriate limit
and extends the latter by including ionic motions beyond the
harmonic approximation. We finally relate our theory to a
simple model due to Wang et al. [49], which has served as a
reference in recent works on the temperature relaxation rates
in hot solids and warm dense matter [15,41].

For clarity, the technical details are presented in the Appen-
dices. Throughout the paper, h̄ is the reduced Planck constant,
kB is the Boltzmann constant, mu is the atomic mass unit,
and e2 = q2

e/4πε0, where qe is the elementary charge and ε0

is the vacuum permittivity. Rez and Imz denote the real and
imaginary parts of a complex number z. Throughout the paper,
t and ω denote the time and frequency variables and, with no
risk of confusion, f (ω) = ∫ ∞

−∞ dteiωt f (t ) denotes the Fourier
transform of the function f (t ). Finally,

vC(r) = e2

|r| (1)

denotes the Coulomb potential energy.

II. DERIVATION AND GENERAL EXPRESSIONS OF THE
ELECTRON-ION COUPLING FACTOR

A. Definitions and assumptions

We consider a material containing one atomic species
enclosed in a three-dimensional cubic box of volume V =
L3. The material is described as a two-component system
composed of ions (mass mi = Amu, number density ni =
N/V , charge Ze) and of electrons (mass me, density ne =
Zni), where each ion consists of an atomic nucleus and its
most tightly bound, unresponsive core electrons. Throughout
the paper, the calculations are performed by imposing three-
dimensional periodic (Born–von Karman) boundary condi-
tions along each direction of the box; physical results are then
obtained in the thermodynamic limit where both N and V tend
to infinity in such a way that ni remains constant.

The total Hamiltonian of the system is

H =
N∑

I=1

P2
I

2M
+

N∑
I,J �=I=1

vii(RI − RJ )

︸ ︷︷ ︸
≡Vii

+He(R) (2)

with the electron Hamiltonian

He(R) =
Ne∑

i=1

p2
i

2me
+

Ne∑
i=1

N∑
I=1

vie(ri − RI )

︸ ︷︷ ︸
≡Vie

+
Ne∑

i, j �=i

vC (|ri − r j |)
︸ ︷︷ ︸

≡Vee

, (3)
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where vii and vie are the ion-ion and ion-electron interac-
tion energies. For simplicity of exposition, the electron-ion
interaction is described by a local pseudopotential vie(r); in
practice, the formalism allows one to deal with more elaborate
descriptions, e.g., using plane-augmented wave pseudopoten-
tials as will be discussed elsewhere.

Below, Rα=Ix denotes the position of ion I along the x
direction and R = {Rα}α=1,...,3N denotes the set of all ionic
positions.

B. Effective dynamics of ions and electrons

For the metallic systems of interest here, the dynamics
governed by the complete quantum Hamiltonian (2) can be
replaced by a simpler, effective classical-quantum dynamics
by making use of the naturally small electron-ion mass ratio
and the existence of a manifold of infinitesimally separated
electronic excitations. More precisely, we make the following
three assumptions.

(i) The dynamics of each ion can be described by that
of the center Ri(t ) of its narrowly localized wave packet.
This is justified here, since the thermal de Broglie wave-
length � = h̄

√
2π/mikBTi(� 0.3/

√
ATi[eV] Bohr) of ions is

generally much smaller than the spatial variations of forces
acting on them due to their large mass and the relatively high
temperatures.

(ii) The typical ion velocities are small compared to
the typical electronic velocities. For instance, for the two-
temperature systems considered later, we assume Ti/mi �
TF /me or Te/me in the degenerate Te/TF �1 or nondegenerate
limit Te/TF �1, respectively, where TF = h̄2

2mekB
(3π2ne)

2
3 (�

1.69 (ne[cm−3]/1022)
2
3 eV) is the electronic Fermi tempera-

ture. This condition is generally respected due to the natural
smallness of me/mi, and is challenged only if Ti � Te.

(iii) We assume that there is a quasicontinuum of elec-
tronic states, as it is the case for the metallic systems of
interest here.

Under these conditions, the electron and ion dynamics can
be described by the coupled set of equations [48]

dPn

dt
=

∑
m

(WnmPm − WmnPn), (4a)

MR̈α = − ∂Vii

∂Rα

+ F BO
α − M

3N∑
β=1

γ
[R]
αβ Ṙβ + ξ [R]

α . (4b)

The electron dynamics is described by the master equation
(4a) for the populations Pn(t ) of the adiabatic electronic states
|n[R(t )]〉 defined by Ĥe[R(t )]|n[R(t )]〉 = En[R(t )]|n[R(t )]〉.
The transition rates between different electronic states are
given by [50]

Wnm = 2π h̄|dnm · V|2e
− (Em−En )|dnm |2

2M|dnm ·V|2 δ(En − Em), (5)

where V = Ṙ represents the full set of atomic velocities and
the nonadiabatic couplings dnm = 〈n|∇R|m〉.

Each ionic position follows a stochastic Langevin-like
equation (4b), where

F BO
α (t ) =

∑
n

Pn(t ) f α
nn(t )

is the adiabatic Born-Oppenheimer force, which includes
the interactions between ions and with the instanta-
neous electrostatic potential of electrons, where f α

nn(t ) =
〈n|−∇Rα

Ĥe[R(t )]|n〉 represents the force exerted on the de-
gree of freedom Rα by the state |n[R(t )]〉. The other terms
describe the effect of nonadiabatic transitions between closely
spaced electronic states induced by the atomic motions and
electronic excitations. These terms, which are not accounted
for in current quantum molecular dynamics simulations, are
responsible for the constant, nonreversible, energy exchanges
between electron and ions. Like the buffeting of light liquid
particles on a heavy Brownian particle, the nonadiabatic ef-
fects produce the friction forces −Mγ

[R]
αβ Ṙβ , where

γ
[R]
αβ = −π h̄

M

∑
n �=m

Pn − Pm

En − Em
f α
nm f β

mnδ(En − Em). (6)

Here, the out-of-diagonal force matrix elements are defined
as f α

nm = 〈n|−∇Rα
Ĥe[R(t )]|m〉. The symbol [R] is used to

indicate that the quantity depends on the instantaneous atomic
configuration of the system. However, in order to avoid
cluttering the mathematical expressions, we do not always
indicate the dependence on [R].

The second term is a δ-correlated Gaussian random fluctu-
ating force, ξ [R]

α (t ), that satisfies the following two conditions:〈〈
ξ [R]
α (t )

〉〉 = 0, (7)

〈〈
ξ [R]
α (t )ξ [R]

β (t ′)
〉〉 = B[R]

αβ

2
δ(t − t ′), (8)

where 〈〈. . .〉〉 denotes an average over the Gaussian noise, and

B[R]
αβ = π h̄

∑
n �=m

(Pn + Pm) f α
nm f β

mnδ(En − Em). (9)

C. Application to a two-temperature plasma

1. General result

For our present purpose, we assume throughout the rest of
the paper that the material can be described as an isolated,
homogeneous, two-temperature system characterized at all
times t by the temperatures Te(t ) and Ti(t ) of the electronic (e)
and ionic (i) subsystems. (We could in principle relax the ho-
mogeneity condition and add an external energy source, e.g.,
a laser, but this is not necessary here.) The instantaneous elec-
tronic populations are then Pn = e−En/kBTe/Z , with the canon-
ical partition function Z = Tre−Ĥ [R]

e /kBTe = ∑
n e−En/kBTe .

The temporal evolution of the temperatures can be ob-
tained by applying the evolution equations (4a) and (4b) to
the ensemble averaged kinetic energy of the ions Kion(t ) =
〈 1

2 MṘ2(t )〉 and to the internal energy of electrons Eelec(t ) =
〈 ∑

n Pn(t )En(t )〉. As shown below, this yields the rate equa-
tions

c0
i

dTi

dt
= g[Te(t ) − Ti(t )], (10a)

ce
dTe

dt
= −g[Te(t ) − Ti(t )], (10b)

where c0
i = V −1∂[3NkBTi/2]/∂Ti = 3nikB/2 is the ki-

netic component of the heat capacity of the ions, ce =
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V −1∂〈∑
n PnEn〉/∂Te is the electronic heat per unit volume,

and g is the electron-ion coupling factor of interest here given
by

g(Te, Ti ) = 3kBni

〈
1

3N

3N∑
α=1

γ [R]
αα (Te, Ti )

〉
. (11)

We show in Sec. II D that the friction coefficients γ [R]
αα and

the resulting coupling factor g can be written in the form
of standard Kubo relations like the ordinary electronic and
ionic transport coefficients. The physical content of Eq. (11)
is discussed in the following sections. First, we present a
derivation of Eqs. (10) and (11).

2. Proof of Eqs. (10) and (11)

Equation (10a) for the ionic temperature can be read-
ily obtained by recalling the close relationship between the
Langevin equation and the Fokker-Planck-Kramers equation
[51]. The swarm of trajectories generated by Eq. (4b) can be
described by the probability distribution function

f (R, V, t ) = 〈δ[R − R(t )]δ[V − Ṙ(t )]〉, (12)

with R, V ∈ R3N , and 〈. . . 〉 represents the double average
〈〈〈. . . 〉〉〉 over the noise and over the initial distribution func-
tion. The distribution function f satisfies the Fokker-Planck-
Kramers equation

∂ f

∂t
+

3N∑
α=1

Vα

∂ f

∂Rα

+
3N∑
α=1

F BO
α

M

∂ f

∂Vα

=
3N∑

α,β=1

∂

∂Vα

[
γαβ (Vβ f ) + Bα,β

2M2

∂

∂Vβ

f

]
. (13)

Remark that this equation, which governs the full dis-
tribution functions of the ions, should not be confused
with the celebrated Fokker-Planck equation for the single-
particle distribution function that is widely used in ordinary
plasma physics [52]. From this evolution equation, we find
the time evolution of the kinetic energy of ions Kion(t ) =∫∫

1
2 MV2 f (R, V, t )dRdV:

dKion

dt
=

3N∑
α=1

∫∫
VαF BO

α f (R, V, t )dRdV

+
3N∑
α=1

∫∫ [
−γααMV 2

α + Bαα

2M

]
f (R, V, t )dRdV.

(14)

By assuming a Maxwellian velocity distribution at tempera-
ture Ti(t ), i.e., f (R, V, t ) ∝ e−MV2/2kBTi (t ), the kinetic energy
Kion(t ) = 3NkBTi(t )/2 and Eq. (14) simplify to

dKion

dt
= 3NkB

2

dTi(t )

dt

= −
〈

3N∑
α=1

γαα

〉
kBTi +

〈
3N∑
α=1

Bαα

2M

〉
. (15)

Since we also assume a thermal distribution of adiabatic states
at temperature Te, γαα and Bαα satisfy the relation Bαα =
2MkBTeγαα [compare Eqs. (6) and (9); see details in [48]],
and Eq. (15) reduces to the desired result, Eq. (10a).

The equation (10b) for the electronic temperature is ob-
tained by combining Eq. (15) with the conservation equa-
tion d

dt 〈 1
2 MṘ2 + Vii + ∑

n PnEn〉 = 0 and with the property
d〈Vii〉/dt = 0 that is easily shown using the Fokker-Planck-
Kramers equation. A proof of the energy conservation equa-
tion can be found in [48]. This yields the desired result for the
rate of change of the electronic energy Eelec:

1

V

d

dt
〈Eelec〉 = −g(Te − Ti ), (16)

or, with ce ≡ V −1∂〈Eelec〉/∂Te,

ce
dTe

dt
= −g(Te − Ti ). (17)

D. Kubo relations for the friction coefficients and the
electron-ion coupling: Sum rule

Under the two temperature assumptions considered here, the
electronic populations are

Pn = e−En/kBTe

Z , (18)

and the general expression (6) for the friction coefficients can
be effectively written compactly in the form of ordinary Kubo
relations, i.e., as time integrals of correlation functions. The
different expressions below result from well-known relations
between thermal correlation functions, response functions,
and their Lehmann representations [53]; their definitions are
recalled for convenience in Appendix A. Below, 〈. . .〉e =
Tr[ e−Ĥe/kBTe

Z . . . ] indicates the thermal average over the elec-

tronic subsystem.
(i) With Eq. (18), the expression (6) can be written com-

pactly as [see Eq. (A1)]

γ
[R]
αβ = 1

2MkBTe

∫ ∞

−∞
K [R]

αβ (t ) dt = 1

2MkBTe
K [R]

αβ (ω = 0)

(19)

in terms of the Kubo correlation function

K [R]
αβ (t ) = kBTe

∫ 1/kBTe

0
dλ

〈
eλĤ [R]

e δ f̂βe−λĤ [R]
e δ f̂α (t )

〉
e, (20)

where f̂α=Ix(t ) = −eiĤet/h̄ ∂Rα
Ĥe e−iĤet/h̄ is the force operator

at time t between ion I and the electronic subsystem along the
x direction and δ f̂α (t ) indicates the same operator deprived of
its diagonal matrix elements, i.e., (δ fα )nm = f α

nm(1 − δn,m).
(ii) Using the property (A4), the relation (19) can be written

in terms of the electron-ion force-force correlation function
〈 δf̂α (t )δf̂β (0) 〉e:

γ
[R]
αβ = 1

2MkBTe
Re

∫ ∞

0
dt〈 δf̂α (t )δf̂β (0) 〉e. (21)

(iii) Equation (21) can be expressed in terms of the sym-
metric electronic density correlation function S[R]

ee (r1, r2, t ) =

043201-4
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1
2 〈 δn̂e(r1, t )δn̂e(r2, 0) + δn̂e(r2, 0)δn̂e(r1, t ) 〉e as follows:

γ
[R]
αβ = 1

MkBTe

∫
V

dr1

∫
V

dr2 fα (r1)

× S[R]
ee (r1, r2, ω = 0) fβ (r2), (22)

where

fα=Ix(r) = −∇Rα=Ix vie(r − RI ) (23)

is the force along the x direction between the ion I and an
electron located at r. Equation (22) is easily obtained using
∂RI Ĥe = ∫

V dr ∂RI vie(r − RI )n̂e(r) in Eq. (21).
(iv) The expression (19) can also be written in

terms of the electron response function (a.k.a. suscepti-
bility), χ [R]

ee (r1, r2, t ) = − i
h̄θ (t )〈 [δn̂e(r1, t ), δn̂e(r2, 0)] 〉e, of

the electronic subsystem in the frozen ionic configuration R,
as follows:

γ
[R]
αβ = − 1

M

∫
V

dr1

∫
V

dr2 fα (r1)

× ∂ωImχ [R]
ee (r1, r2, ω = 0) fβ (r2). (24)

This is easily found using Eq. (22) and the fluctuation-
dissipation relation (A5) between χ [R]

ee and S[R]
ee . We shall

mainly rely on the expressions (21) and (24) in the remainder
of the paper.

(v) With the help of the previous expressions, the electron-
ion coupling factor (11) reads as

g(Te, Ti ) = 3ni

2MTe

〈
1

3N

3N∑
α=1

Re
∫ ∞

0
dt〈 δ f̂α (t )δ f̂α (0) 〉e

〉

(25a)

= −3kBni

M

〈
1

3N

3N∑
α=1

∫
V

dr1

∫
V

dr2 fα (r1)∂ω

× Imχ [R]
ee (r1, r2, ω = 0) fα (r2)

〉
. (25b)

(vi) The electron-ion coupling (11) equals the trace of the
matrix γ

↔[R] = {γ [R]
α,β } of friction coefficients. Other combina-

tions of matrix elements satisfy remarkable properties. Most
remarkably, ∑

I,J

γ
[R]
Ix,Jy = 0 for all x, y, (26)

and, therefore, ∑
α,β

γ
[R]
αβ = 0 (27)

for the sum of all matrix elements. These sum rules, which
are physically related to the conservation of momentum, are
proven in Appendix C.

III. ELECTRONIC SCREENING, EXCHANGE, AND
CORRELATION EFFECTS

Thus far we have given general expressions for the friction
coefficients and the electron-ion coupling factor in which
the electrons are not described individually but are described

as a single entity. For instance, the electronic states |n(R)〉
in Eq. (6) are many-body states, and the response function
χ [R]

ee in Eq. (24) is the full density-density response func-
tion of the electronic subsystem. In this section, we recast
these results in terms of quantities that instead emphasize
the individual character of electrons. The many-body screen-
ing and correlation effects are displayed more distinctly in
terms of dielectric functions and local-field corrections. To
accomplish this, we express the full density-density response
function χ [R]

ee in terms of the response of a reference system
of independent particles. We shall consider three different
reference response functions that are often used [54], namely,
the proper response function, the noninteracting response
function, and the Kohn-Sham response function. As we shall
show in Sec. IV, previous models for g are easily recovered
from these reformulations.

For pedagogical clarity, we follow the same line of presen-
tation in each case. To this end, we recall that the response
function χ [R]

ee gives the change in the ground-state electronic
density n(0)

e through

δne(r, ω) = ne(r, ω) − n(0)
e (r, ω)

=
∫

V
dr′χ [R]

ee (r, r′; ω)δvext (r′, ω), (28)

when the electron subsystem in the frozen ionic configuration
R is perturbed by a weak time-dependent scalar potential
δvext(r, t ) [54].

A. Relation to the proper response function

The proper density-density response function χ̃ [R] allows
one to write Eq. (28) as [54]

δne(r, ω) =
∫

V
dr′χ̃ [R](r, r′; ω)δvsc(r′, ω) (29)

in terms of the screened potential

δvsc(r, ω) = δvext (r, ω) +
∫

V
dr′vC(r − r′)δne(r′, ω). (30)

This is the potential experienced by a test particle (i.e., a
fictitious particle that does not disturb the system in which
it is embedded) in the electron gas due to both the external
potential and the Coulomb field created by the density pertur-
bation δne induced by δvext. This potential does not account
for the correlation that exists between a given electron of
the electron gas and the other electrons. By definition, these
correlation effects are implicitly incorporated in the proper
response function χ̃ [R].

The proper response function χ̃ [R] is related to the full
response function χ [R]

ee through the integral (Dyson) equation

χ [R]
ee (r1, r2, ω) = χ̃ [R](r1, r2, ω) +

∫
V

dr
∫

V
dr′χ̃ [R]

× (r1, r, ω)vC(r − r′)χ [R]
ee (r′, r2, ω).

(31)
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Using this relation in Eq. (24), it is straightforward to write
the friction coefficient γ

[R]
αβ as (see Appendix B1)

γ
[R]
αβ = − 1

M

∫
V

dr1

∫
V

dr2 f L
α (r1)

× ∂ωImχ̃ [R](r1, r2, ω = 0) f R
β (r2), (32)

where f L(R)
α=Ix represents the force of interaction along the x

direction of ion I and a test charge,

f L
α (r1) =

∫
V

dr fα (r)ε[R]
L (r, r1, ω = 0)−1, (33)

f R
α (r1) =

∫
V

drε[R]
R (r1, r, ω = 0)−1 fα (r), (34)

in terms of the inverse of the left (L) and right (R) dielectric
functions

ε
[R]
L (r, r1, ω) = δ(r − r1) −

∫
V

dr′χ̃ [R](r, r′, ω)vC(r′ − r1),

ε
[R]
R (r, r1, ω) = δ(r − r1) −

∫
V

dr′vC(r − r′)χ̃ [R](r′, r1, ω).

Note that the definition of the left (L) and right (R) dielectric
functions is needed at this level of generality since the system
is embedded in the inhomogeneous background of the ionic
configuration R [for homogeneous systems, εL = εR (see
Sec. IV)].

With Eq. (32), the electron-ion coupling factor becomes

g(Te, Ti ) = −3kBni

M

〈
1

3N

3N∑
α=1

∫∫
V

dr1dr2 f L
α (r1)

× ∂ωImχ̃ [R](r1, r2, ω = 0) f R
α (r2)

〉
. (35)

The expressions (32) and (35) make a good starting point
of further theoretical analysis because the proper response
function—or irreducible response function—lends itself well
to advanced perturbative methods in order to systematically
include the correlation effects beyond the mean-field approx-
imation [54–56]. This goes beyond the scope of the present
paper and, instead, we shall now consider another represen-
tation where these important many-body effects appear even
more visibly in terms of local-field corrections.

B. Relation to the ideal gas response function

It is also common to express the deviation δne as the
induced density of a noninteracting (free) electron gas such
as [54]

δne(r, ω) =
∫

dr′χ [R]
0 (r, r′; ω)δveff (r′, ω) (36)

where χ
[R]
0 is the density-density response function of the

inhomogeneous, free-electron gas in the static ionic config-
uration R, and δveff is the effective potential:

δveff (r, ω) = δvsc(r, ω) −
∫

V
dr1

∫
V

dr2vC(r − r1)

× G[R]
ee (r1, r2, ω)δne(r2, ω). (37)

In contrast with the previous section, here, it is the free-
electron response function that does not include the correla-
tions existing between a given electron and the other electrons
of the gas. These correlations are included through the last
term of the effective potential by means of the so-called local-
field correction G[R]

ee (r1, r2, ω) (we extend standard definitions
for the homogeneous electron gas [54,57] to the nonhomoge-
neous case).

The response functions χ [R]
ee and χ

[R]
0 are related through

the integral equation

χ [R]
ee (r1, r2, ω) = χ

[R]
0 (r1, r2, ω) +

∫
V

dr
∫

V
dr′χ [R]

0 (r1, r, ω)

× K [R](r, r′, ω)χ [R]
ee (r′, r2, ω), (38)

with the interaction kernel

K [R](r, r′, ω) = vC(r − r′)

−
∫

V
dr1vC(r − r1)G[R]

ee (r1, r′, ω). (39)

As shown in Appendix B2, with this relation, the friction
coefficient (24) can be written as the sum of two terms:

γ
[R]
αβ = γ̄

[R]
αβ + δγ̄

[R]
αβ . (40)

The first term reads as

γ̄
[R]
αβ = − 1

M

∫
V

dr
∫

V
dr′ f̄ L

α (r)

× ∂ωImχ
[R]
0 (r, r′, ω = 0) f̄ R

β (r′), (41)

and the spatial derivatives of the effective screened potentials
are given, respectively, by

f̄ L
α (r1) =

∫
V

dr fα (r)ε̄ [R]
L (r, r1, ω = 0)−1, (42)

f̄ R
α (r1) =

∫
V

drε̄ [R]
R (r1, r, ω = 0)−1 fα (r), (43)

where the electronic screening effect is described by the
inverse of the (electron-test charge) dielectric functions

ε̄
[R]
L (r, r1, ω) = δ(r − r1) −

∫
V

dr′χ [R]
0 (r, r′, ω)

× K [R](r′, r1, ω),

ε̄
[R]
R (r, r1, ω) = δ(r − r1) −

∫
V

dr′K [R](r, r′, ω)

×χ
[R]
0 (r′, r1, ω).

By comparison with Eqs. (25), we see that γ̄
[R]
αβ can also be

expressed as

γ̄
[R]
αβ = 1

2MkBTe
Re

∫ ∞

0
dt

〈
δ f̄ L

α (t )δ f̄ R
α (0)

〉
e

in terms of the correlation function 〈 δ f̄ L
α (t )δ f̄ R

α (0) 〉e of the
electron-ion force screened by the electron-test charge di-
electric functions ε̄L,R, where f̄ L,R

α (t ) = eiĥ0
e t/h̄ f̄ L,R

α e−iĥ0
e t/h̄ and

ĥ0
e = p̂2

2me
+ ∑N

I=1 vie(r̂ − RI ) is the Hamiltonian of a free
electron moving in the background of the ionic potential.
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The second term in Eq. (40) reads as

δγ̄
[R]
αβ = − 1

M
Im

∫
V

dr
∫

V
dr′n′

α (r)

× ∂ωK [R](r, r′, ω = 0)n′
β (r′), (44)

where n′
α (r) = ∫

V dr′ fα (r′)χ [R]
ee (r′, r, ω = 0).

We expect that for many systems the second term will be a
small correction to the first term. In practice, the frequency
dependence of the local-field correction is poorly known
and the so-called static approximation G[R]

ee (r1, r2, ω) =
G[R]

ee (r1, r2, ω = 0) is commonly used; in this so-called static
local-field correction approximation, the last term cancels out
and γ

[R]
αβ = γ̄

[R]
αβ .

With Eq. (40), the electron-ion coupling factor becomes

g(Te, Ti ) = −3kBni

M

〈
1

3N

3N∑
α=1

Im
∫∫

V
drdr′ f̄ L

α (r)∂ωχ
[R]
0 (r, r′, ω = 0) f̄ R

β (r′)

〉

− 3kBni

M

〈
1

3N

3N∑
α=1

Im
∫∫

V
drdr′n′

α (r)∂ωK [R](r, r′, ω = 0)n′
α (r′)

〉
. (45)

C. Relation to the Kohn-Sham response function

The previous expressions in terms of the proper response
function or in terms of the local-field corrections are useful for
theoretical analysis using many-body techniques and for the
developments of practical models (see, e.g., Sec. IV). Another
approach consists in expressing Eq. (25) in terms of quantities
directly accessible to ab initio simulations. The formulation
in terms of the Kohn-Sham response function described here
is at the basis of the first-principles molecular dynamics
simulations presented in [44]. We restrict ourselves to the
presentation of the exact expressions; the practical algorithms
used to numerically evaluate them will be discussed at length
elsewhere [58].

The most important among these methods is density func-
tional theory (DFT) [59], in which the density deviation
Eq. (28) can be written as

δne(r, ω) =
∫

dr′χ [R]
KS (r, r′; ω)δvKS

eff (r′, ω)

where the effective interaction

δvKS
eff (r, ω) = δvext (r, ω) +

∫
V

dr1vC(r − r1)δne(r1, ω)

+
∫

V
dr1 f [R]

XC (r, r1, ω)δne(r1, ω)

= δvsc(r, ω) +
∫

V
dr1 f [R]

XC (r, r1, ω)δne(r1, ω)

is the sum of the external perturbation δvext and of the
linearized Kohn-Sham potential. The latter consists of the
sum of the linearized Hartree potential and of the linearized
exchange-correlation potential, where f [R]

XC [ne](r, r′, ω) is the
so-called exchange-correlation kernel [59]. The Kohn-Sham
density-density response function is given by [59]

χ
[R]
KS (r1, r2; ω) = lim

η→0+

∑
i �= j

peq
i − peq

j

h̄ω + εi − ε j + iη

×〈i|n̂e(r1)| j〉〈 j|n̂e(r2)|i〉 (46)

where peq
i = 1/[1 + e−(μ(Te )−εi )/kBTe ] is the Fermi-Dirac func-

tion at temperature Te, and 〈r|i〉 = φi(r) are the Kohn-Sham

wave functions, obtained from the solution of the following
set of equations:[

− h̄2

2m
∇2 + vKS(r)

]
φi(r) = εiφi(r) (47)

where

vKS[ne](r) =
N∑

I=1

vie(r − RI ) + vH[ne](r) + vXC[ne](r)

(48)

is the Kohn-Sham potential, vH[ne](r) = e2
∫

V dr′ ne(r′ )
|r−r′ | is the

Hartree potential, vXC[ne](r) is the exchange-correlation po-
tential, and

ne(r) =
∑

i

peq
i |φi(r)|2 (49)

is the ground-state electron density of the physical system.
The present approach differs from the one of the previous
section in the fact that, unlike χ

[R]
0 that describes the response

of a free-electron gas to the potential δv
[R]
eff (r), the Kohn-Sham

response function is the response of a system of free particles
moving under the effect of the self-consistent Kohn-Sham
potential δvKS(r), Eq. (48).

The response functions χ [R]
ee and χ

[R]
KS are related through

the integral equation [59]

χ [R]
ee (r1, r2, ω) = χ

[R]
KS (r1, r2, ω) +

∫
V

dr
∫

V
dr′χ [R]

KS (r1, r, ω)

× K [R]
KS (r, r′, ω)χ [R]

ee (r′, r2, ω), (50)

where the kernel K [R]
KS (r, r′, ω) is now given by the sum of the

Hartree and exchange-correlation contributions:

K [R]
KS (r, r′, ω) = vC(r − r′) + f [R]

XC [ne](r, r′, ω). (51)

Using Eq. (50) in Eq. (24), each friction coefficient becomes
the sum of two contributions:

γ
[R]
αβ = γ̃

[R]
αβ + δγ̃

[R]
αβ . (52)
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The first term is

γ̃
[R]
αβ = − 1

M
Im

∫
V

dr1

∫
V

dr2 f̃ L
α (r1)

× ∂ωχ
[R]
KS (r1, r2, ω = 0) f̃ R

β (r2), (53)

where the spatial derivatives of the effective screened poten-
tials are given, respectively, by

f̃ L
α (r1) =

∫
V

dr fα (r)ε̃ [R]
L (r, r1, ω = 0)−1,

f̃ R
α (r1) =

∫
V

drε̃ [R]
R (r1, r, ω = 0)−1 fα (r),

and the screening effect of the electronic subsystem is de-
scribed by the inverse of the dielectric functions

ε̃
[R]
L (r, r1, ω) = δ(r − r1) −

∫
V

dr′χ [R]
KS (r, r′, ω)

× K [R]
KS (r′, r1, ω),

ε̃
[R]
R (r, r1, ω) = δ(r − r1) −

∫
V

dr′K [R]
KS (r, r′, ω)

×χ
[R]
KS (r′, r1, ω).

By comparison with Eqs. (25), we see that γ̃
[R]
αβ can also be

expressed as

γ̃
[R]
αβ = 1

2MkBTe
Re

∫ ∞

0
dt

〈
δ f̃ L

α (t )δ f̃ R
α (0)

〉
e, (54)

in terms of the correlation function 〈 δ f̃ L
α (t )δ f̃ R

α (0) 〉e of the
KS particle-ion force screened by the KS particle test charge
dielectric function ε̃L,R, where f̃ L,R

α (t ) = eiĥKSt/h̄ f̃ L,R
α e−iĥKSt/h̄,

and ĥKS = p̂2

2me
+ vKS(r̂) is the KS Hamiltonian.

The second term in the expression (52), instead, represents
a quantum many-body correction including all the memory
effects:

δγ̃
[R]
αβ = − 1

M
Im

∫
V

dr1

∫
V

dr2n′
α (r1)∂ω

× f [R]
XC (r1, r2, ω = 0)n′

β (r2), (55)

where n′
α (r) = ∫

V dr′ fα (r′)χ [R]
ee (r′, r, ω = 0). In practice

[58], the frequency dependence of the exchange-correlation
kernel remains poorly known [60,61]; we expect it to be a
small correction to the first term for many systems.

We note that the sum rules (26) and (27) discussed in
Sec. II D become (see Appendix B2)

N∑
I,J=1

γ̃
[R]
Ix,Jy = 0,

N∑
I,J=1

δγ̃
[R]
Ix,Jy = 0 (56)

for all x, y. In practice, these sum rules provide a useful test of
the accuracy or the consistency of the numerical calculations.

By using Eq. (52), the electron-ion coupling factor be-
comes

g(Te, Ti ) = −3kBni

M

〈
1

3N

3N∑
α=1

Im
∫∫

V
dr1dr2 f̃ L

α (r1)∂ωχ
[R]
KS (r1, r2, ω = 0) f̃ R

β (r2)

〉

− 3kBni

M

〈
1

3N

3N∑
α=1

Im
∫∫

V
dr1dr2n′

α (r1)∂ω f [R]
XC (r1, r2, ω = 0)n′

β (r2)

〉
. (57)

We find it important to remark that Eq. (57) is an exact
rewriting of the Kubo formula (21). It does not correspond
to the Kubo-Greenwood approximation that is widely used
to calculate other transport properties such as the electrical
and thermal conductivities. In the Kubo-Greenwood (KG)
approximation, the Kohn-Sham wave functions are assumed
to represent the single-particle excitations of the electronic
system, i.e., the many-body electronic states are approximated
by the Slater determinant of KS orbitals. Here, this approx-
imation amounts to setting χ [R]

ee in Eq. (24) equal to χ
[R]
KS ,

yielding

γ
[R]
αβ � − 1

M

∫∫
V

dr1dr2 fα (r1)∂ωImχ
[R]
KS (r1, r2, 0) fβ (r2)

= 1

2MkBTe
Re

∫ ∞

0
dt

〈
δ f̂ KG

α (t )δ f̂ KG
α (0)

〉
e (58)

which should be compared with Eq. (52). Here f̂ KG
α (t ) =

−eiĥKSt/h̄∂Rα
V̂iee−iĥKSt/h̄ is the bare electron-ion force propa-

gated by the Kohn-Sham Hamiltonian. Unlike the force f̃α
in Eq. (54), f̂ KG

α fails to include the effects of the electronic
screening on the electron-ion interactions. As a consequence,

the KG approximation (58) can be shown to diverge logarith-
mically at large interparticle distances |r1 − r2|. This is fully
analogous to the well-known infrared divergence that occurs
in the basic calculations of scattering cross sections in plasma
physics when screening effects are neglected [23].

IV. RELATION TO OTHER MODELS

The electron-ion coupling formula (25) includes self-
consistently the quantum mechanical and statistical nature of
electrons, the thermal effects, and the correlations between
all particles. In this section we show that our theory reduces
to well-known models developed in plasma and condensed
matter physics when one or several of these effects are treated
approximately or neglected.

We begin in Secs. IV A and IV B with discussing the
reduction to the Spitzer formula in the hot plasma limit [23],
to the Fermi “golden rule” formula in the limit of weak
electron-ion interactions [27], and to the model developed by
Daligault and Dimonte that includes important electron-ion
correlation effects [36]. We then explain that the problem of
the calculation of the electron-ion coupling is particularly well
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adapted to average atom model calculations. In Sec. IV C,
we show that our theory also applies to hot solids, namely,
to solid metals with lattice and electronic temperatures much
greater than the Debye temperature. When the ionic motions
are described within the phonon approximation, our theory
reproduces the standard electron-phonon coupling formula [8]
in the high temperature limit; the full formula includes effects
beyond the harmonic approximation. Finally, in Sec. IV D, we
relate our theory to a simplified model of the electron-phonon
coupling factor due to Wang et al. [49].

In the following, vie(k) = ∫
drvie(r)e−ik·r and vC (k) =

4πe2/k2 are the spatial Fourier transforms of the electron-ion
and Coulomb interaction potentials.

A. Reduction to the Spitzer model and the Fermi
“golden rule” formula

In the general formula (25), the effects of the interactions
between the ionic and electronic subsystems are included non-
perturbatively. Simpler models are obtained if one assumes
that the interaction vie is weak. Then, to lowest order in
vie, the response function χ [R]

ee can be approximated by the
density-density response function χ jel of the homogeneous
electron gas (a.k.a. jellium) at temperature Te, i.e.,

χ [R]
ee (r, r′, ω) ≈ χ jel (|r − r′|, ω).

With this approximation, the electron-ion coupling formula
(25b) becomes

g(Te, Ti ) = −kBni

M

∫∫
V

dr1dr2 �∇vie(r1) ·

× �∇vie(r2) ∂ωImχ jel (|r1 − r2|, 0). (59)

In the thermodynamic limit, this expression is conveniently
rewritten as

g(Te, Ti ) = − kBni

2π2M

∫ ∞

0
dk|vie(k)|2k4∂ωImχ jel (k, 0),

(60)

where χ jel (k, ω) = ∫
drχ jel (r, ω)e−ik·r. Similarly, the formu-

las (35) and (45) become

g(Te, Ti ) = − kBni

2π2M

∫ ∞

0
dk

∣∣∣∣ vie(k)

1 − vC (k)χ̃ (k, 0)

∣∣∣∣2

× k4∂ωImχ̃ (k, 0) (61)

and

g(Te, Ti )

= − kBni

2π2M

∫ ∞

0
dk

∣∣∣∣ vie(k)

1 − vC (k)[1 − Gee(k, 0)]χ0(k, 0)

∣∣∣∣2

× k4[∂ωImχ0(k, 0) + |χ0(k, 0)|2vC (k)∂ωGee(k, 0)],

(62)

where χ̃ , χ0, and Gee are the proper response function, the
noninteracting (a.k.a. Lindhard) response function, and the
local-field correction of the jellium model [54]. Equations
(60)–(62) correspond to the Fermi “golden rule” formula for
the electron-ion coupling derived in [27] by first calculating

the energy exchanges between the electron and ion subsys-
tems within the framework of linear response theory and then
by taking the small ion to electron velocity ratio into account.

The relation of Eq. (60) to the celebrated Spitzer formula
was discussed elsewhere (e.g., see [36]), and we only briefly
recall the result for completeness. When electron-electron
correlation effects are neglected, χ̃ = χ0 and Gee = 0, and

g(Te, Ti ) = − kBni

2π2M

∫ ∞

0
dk

∣∣∣∣ vie(k)

1 − vC (k)χ0(k, 0)

∣∣∣∣2

× k4∂ωImχ0(k, 0). (63)

The familiar plasma physics results are recovered using the
Coulomb interaction vie(r) = −Ze2/r in Eq. (63), yielding

g(Te, Ti ) = 4niZ
2 (2πmeM )1/2

(MkBTe)3/2
ln � (64)

in terms of the Coulomb logarithm

ln � =
∫ ∞

0

dk

k

k4(
k2 + λ−2

sc
)2 f (k/2) (65)

where the screening length λsc = 1/
√

4πe2χ0(k, 0) and f (k)
is the Fermi-Dirac function [see Eq. (A10)]. In the clas-
sical limit h̄ → 0, f (k) = 1, λsc =

√
kBTe/4πnee2 is the

Debye-Hückel screening length, and Eq. (64) becomes the
celebrated Spitzer formula, which logarithmically diverges
at large k. In the nondegenerate limit, Eq. (65) becomes
ln � = ∫ ∞

0
dk
k

k4

(k2+λ−2
De )2 e−λ2

e k2/8 and is convergent, where λe =
h̄/

√
mekBTe is the electronic thermal de Broglie wavelength.

B. Going beyond the weak electron-ion interaction
approximation using average atom models

In the previous section, we discussed the general expres-
sion (25) in the limit of weak electron-ion interactions. Here,
we discuss approaches to go beyond this approximation. To
this end, we remark that the formula (11) can be written as

g(Te, Ti ) = 3kBni�(Te, Ti ), (66)

where

�(Te, Ti ) =
〈

1

3N

3N∑
α=1

γ [R]
αα (Te, Ti )

〉
(67)

can be regarded as the averaged friction coefficient felt by any
ion in the system along any direction of motion.

A natural approximation for � consists in identifying it
with the friction felt by a single impurity embedded in an
electron gas (jellium) or by a slow projectile (the velocity of
which is much smaller than the electronic velocities):

� = 1

6MkBTe
Re

∫ ∞

0
dt〈 δf̂ (t ) · δf̂ (0) 〉e (68)

where f is the force between the impurity and the electrons.
This problem has been extensively studied in the past (see,
e.g., [62]) and, for completeness, we recall results useful to
the present paper. When the electron-impurity interaction is

043201-9



JÉRÔME DALIGAULT AND JACOPO SIMONI PHYSICAL REVIEW E 100, 043201 (2019)

treated within the framework of linear response,

� = − 1

6π2M

∫ ∞

0
dk|vie(k)|2k4∂ωImχ jel (k, 0). (69)

When we use this in Eq. (66), we, not surprisingly, retrieve the
Fermi “golden rule” formula (60) discussed above.

As suggested in [63], the so-called disconnected approx-
imation can be used to extend Eq. (69) beyond the weak
electron-ion interaction approximation. This approximation,
which originates from works in the classical kinetic theory
of strongly coupled plasmas [64,65], neglects the effect of
the slow impurity on the electron dynamics, but accounts
for the average distortion of the electronic density around
the impurity. It amounts to replacing in Eq. (69) the term
vie(k)2 by vie(k)2[1 − Gie(k)], where Gie is the electron-ion
local-field correction Gie(k), yielding

g(Te, Ti ) = − kBni

2π2M

∫ ∞

0
dk

∣∣∣∣ vie(k)

1−vC (k)[1−Gee(k, 0)]χ0(k, 0)

∣∣∣∣2

× [1 − Gie(k)]k4∂ωImχ0(k,0). (70)

This corresponds to the model derived by Daligault and
Dimonte in [36] using a very different method. We refer to
[36] for a detailed discussion of Eq. (70).

Let us assume for the moment that electron interactions can
be neglected (Vee ≡ 0). Electrons then move independently
in the potential of the ionic impurity and the Kubo relation
(68) can then be expressed in terms of the basic scattering
properties of the electron-ion potential vie (see, e.g., [62]),
which gives

g(Te, Ti ) = h̄2ni

π2meMTe

∫ ∞

0
dk k5nFD(εk )[1 − nFD(εk )]σtr(k)

(71)

where εk = h̄2k2/2me, nFD(ε) = 1/(1 + e−(μ−ε)/kBTe ) is the
Fermi-Dirac distribution, and σtr is the cross section for binary
collisions

σtr(k) = 4π

k2

∑
l

(l + 1) sin2[δl (k) − δl+1(k)], (72)

where δl (k) is the phase shift of the lth partial wave at momen-
tum h̄k calculated for the spherically symmetric vie(r) (see
Appendix E). This formula is applicable to any temperature
Te. In particular, at Te = 0,

g(Te, Ti ) = h̄kBnik4
F

π2M
σtr(kF ), (73)

and, at high Te, the result (71) agrees with that obtained from
the classical Boltzmann-Lorentz kinetic theory [66]:

g(Te, Ti ) = 8πkBnineme

M
(2πmekBTe)3 �(1,1) (74)

with

�(1,1) =
√

kBTe

2πme

∫ ∞

0
dγ e−γ 2

σtr

(√
2mekBTe

h̄
γ

)
. (75)

The result (71) can be effectively used in conjunction with
an average atom model to include the effects of electron and
ion interactions that affect the electron-ion cross section in

a plasma. Average atom models have been a quite popu-
lar approximate method to model both the equation-of-state
and transport properties of dense ionized matter [37,67–69].
They have proven to be accurate enough to be useful while
being computationally much more expedient. An average
atom model assumes that the physical system is spherically
symmetric about a central nucleus and one calculates with
finite-temperature density functional theory the electronic
structure of the central ions and of the surrounding conduction
electrons. As we have seen above, the electron-ion coupling
factor is related to the averaged friction coefficient felt by
any ion in the system along any direction of motion; its
calculation is thus particularly well adapted for this transport
property. Many variations exist that differ in the description
of the surrounding plasma, e.g., via boundary conditions or
by coupling the model with the theory of fluids. Electrons
are treated as independent particles subject to the Kohn-Sham
potential vKS(r) given by the sum of the central nuclear
potential, the spherically averaged distribution of surrounding
ions, and the self-consistent Hartree and exchange-correlation
potentials. The expressions (71) and (72) still apply but should
be computed using the phase shifts δl (k) corresponding to the
effective potential vKS(r). Results for the friction coefficient
felt by a charge immersed in a homogeneous electron gas were
presented in [70].

C. Relation to the electron-phonon coupling factor

In the case of solids, the energy exchanges between elec-
trons and ions are generally described in terms of interactions
between electrons and phonons. In the phonon approximation,
the total Hamiltonian is given by Ĥ = Ĥe(R0) + Ĥph + Ĥe-ph,
where Ĥe(R0) is the electronic Hamiltonian in the potential
of the Bravais lattice (R0 denotes the equilibrium lattice
positions), Ĥph is the Hamiltonian of phonons, and Ĥe-ph is
the electron-phonon Hamiltonian (see Appendix D). Here
we show that, for hot solids, the standard electron-phonon
coupling factor can be readily derived from the electron-ion
coupling formula (25). For simplicity, we use the assump-
tion of thermal phonons characterized by a single tempera-
ture Ti, although recent investigations suggest that it could
lead to marked disagreement with experimental observations
[18,19,21,22].

Most of the works in condensed matter physics rely on a
formula for the electron-ion coupling derived by Allen [8].
Here, we prefer to work with a generalization of Allen’s
formula that, unlike the latter, does not approximate from the
outset the electrons with the Bloch states. This generalized
formula naturally reduces to Allen’s formula in the appropri-
ate limit as shown in Appendix D. As shown in Appendix
D1, the rate of change of the total electron energy due to the
absorption and emission of phonon excitations can be written
as

dEe

dt
= 4h̄

∑
q

∫ ∞

0

dω

2π

∑
G,G′

vie(q + G)∗vie(q + G′)

×ωImχ
[R0]
G,G′ (q, ω)Imχ

ph
G,G′ (q, ω)

×
[

nB

(
h̄ω

kBTi

)
− nB

(
h̄ω

kBTe

)]
(76)
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with nB(x) = 1/(ex − 1). Here χ
ph
G,G′ (q, ω) is the Fourier

transformed density-density response function of the ion sub-
system calculated in the phonon approximation (see Appendix
D5), and χ

[R0]
G,G′ (q, ω) is the Fourier transformed density-

density response function χ [R0]
ee of the electron system de-

scribed by the Hamiltonian Ĥe, i.e., of the system of interact-
ing electrons in the background of the perfect lattice potential:

χ [R0]
ee (r, r′, ω) = 1

V

∑
q

∑
G,G′

ei(q+G)·re−i(q+G′ )·r′
χ

[R0]
GG′ (q, ω).

(77)

As shown in Appendix D4, Eq. (76) reduces to Allen’s work
[see Eq. (6) in [8]] in the limit of Bloch electrons.

Equation (76) is valid for any temperatures Te,i. The rate
of energy change (76) can be simplified at high temperatures,
i.e., for electronic and ion temperatures greater than the Debye
temperature �D [kB�D = h̄ωD with the Debye frequency
ωD = max

q,λ
{ωqλ} (typically 0.01–0.04 eV [71])]. In that limit,

as shown in Appendix D2, Eq. (76) simplifies to

1

V

dEe

dt
= −ge-ph[Te − Ti] (78)

where the electron-phonon coupling factor ge-ph is given by

ge-ph = −kBni

M

1

V

∑
q

∑
G,G′

vie(q + G)∗vie(q + G′)

× (q + G) · (q + G′) ∂ωImχGG′ (q, 0). (79)

Remarkably, this expression is readily obtained from our gen-
eral formula (25) for the electron-ion coupling by substituting
in Eq. (25b) the expression (77) for the electron-electron
density response function (see Appendix D3 for the details).
Since Eq. (25b) is an approximation of the density response
function of electrons in a solid, the formula (25) extends
the electron-phonon coupling formula (79). In particular, it
goes beyond the harmonic phonon approximation as the ionic
configurations R in Eq. (25) include those thermally sampled
that are not described by the small harmonic lattice vibrations.
Such anharmonic motions become increasingly important as
one approaches melting conditions. We refer the reader to [44]
for preliminary first-principle calculations of the electron-
phonon coupling based on Eq. (25).

D. Relation to the Lin et al. model

We finally relate our approach to the following model due
to Wang et al. [15,49],

Ge-ph ≈ Ge-ph
0

∫ ∞

−∞

[
g(ε)

g(εF )

]2(
−∂ nFD(ε)

∂ε

)
dε, (80)

obtained as a simplification valid at high temperatures of
Allen’s electron-phonon coupling formula [8]. Here g(ε) is the
electron density of states (DOS), which is computable with
DFT, and Ge-ph

0 = π h̄kBλ〈ω2〉g(εF ), where εF = kBTF is the
Fermi energy, 〈ω2〉 is the second moment of the phonon spec-
trum, and λ is the electron-phonon mass enhancement factor.
In previous works, the prefactor Ge-ph

0 was either set to match
an experimental measurement at low electronic temperature

[15] or was calculated ab initio [17,19]. Although derived
for crystalline solids, the model (80) was used in recent
works on warm dense matter systems [40–43]. Remarkably,
an expression similar to Eq. (80) also results from Eq. (57)
if one neglects the second term and if one assumes that the
matrix elements between the Kohn-Sham states of the force
operator δ f̃ L,R depend weakly on the energies and spatial
directions, which yields

Gei ≈
〈

Gei
0

∫ ∞

−∞

[
g[R](ε)

g[R](εF )

]2(
−∂ nFD(ε)

∂ε

)
dε

〉
, (81)

as shown in Appendix F. Here Gei
0 = |δ f̃ |2g[R](εF )2, where

g[R](ε) is the density of states of the Kohn-Sham system in
the frozen ionic configuration R, and δ f̃ is the characteristic
matrix element. The formulas (80) and (81) highlight the
interplay between the DOS and the distribution of electronic
states, which, as shown by Lin et al. [15], results in a strong
dependence on the chemical composition and often on sharp
variations with Te. In [44], we have compared our results to
predictions based on (80) reported by others and on Eq. (81)
with Gei

0 set to reproduce the value of Gei at the lowest
Te considered. We find that the simplified models (80) and
(81) tend to overestimate the dependence on Te or predict
variations at odds with the full calculation.

V. SUMMARY

This paper provides the theoretical foundations of calcula-
tions presented in a recently published Letter [44]. A formal
expression was derived for the rate of energy exchanges
between electrons and ions—also known as the electron-ion
coupling factor—in physical systems ranging from hot solid
metals to plasmas, including liquid metals and warm dense
matter. The expression includes self-consistently the quantum
mechanical and statistical nature of electrons, the thermal
and disorder effects, and the correlations between particles.
The rate of energy exchanges is expressed in terms of the
friction coefficients felt by individual ions due to their nonadi-
abatic interactions with the electrons. Each friction coefficient
satisfies a Kubo relation given by the time integral of the
autocorrelation function of the interaction force of an ion with
the electrons. Exact properties and different representations
of the theory were discussed. We then showed that our theory
reduces to well-known models in limiting cases, including the
standard electron-phonon coupling formula in the limit of hot
solids with lattice and electronic temperatures much greater
than the Debye temperature, the Spitzer formula in the hot
plasma limit, the Fermi “golden rule” formula in the limit of
weak electron-ion interactions, and other models proposed to
go beyond the latter approximation.

In a future publication, we will discuss in detail the nu-
merical implementation of the theory using density functional
theory based quantum molecular dynamics simulations that
was used to obtain the results presented in [44] and elsewhere
[72]. An interesting extension of this paper is the study of the
nonadiabatic effects beyond the Born-Oppenheimer approxi-
mation in warm dense matter that are modeled by the friction
and noise terms in the Langevin-like equation (4b).
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APPENDIX A: MISCELLANEOUS PROPERTIES OF
CORRELATION AND RESPONSE FUNCTIONS

A detailed exposition of the definitions and properties re-
called below can be found in standard textbooks, e.g., [53,54].

1. Quantum correlation functions

In quantum statistical mechanics, there are several ways to
measure the temporal correlations between two observables
Â and B̂ at thermal equilibrium. These include the canonical
Kubo relation [53]

K (t ) = 1

β

∫ β

0
dλ

〈
eλĤ [R]

e δB̂e−λĤ [R]
e δÂ(t )

〉
,

the symmetrized correlation function

S(t ) = 1
2 〈 δÂ(t )δB̂ + δB̂δÂ(t ) 〉,

and the unsymmetrized correlation function

C(t ) = 〈 δÂ(t )δB̂ 〉,
where in this Appendix 〈. . . 〉 = Tr(e−βĤ ...)/Tre−βĤ indicates
a canonical thermal average. In the classical limit, the three
definitions are equivalent.

Lehmann representation

By expanding over the eigenspectrum of the Hamiltonian
Ĥ , Ĥ |n〉 = En|n〉, the Fourier transforms of the time correla-
tion functions can be written as

K (ω) = −2π h̄

β

∑
n,m

Peq
n − Peq

m

En − Em

×〈n|δÂ|m〉〈m|δB̂|n〉δ(En − Em − h̄ω), (A1)

S(ω) = π h̄
∑
n,m

(
Peq

n + Peq
m

)
×〈n|δÂ|m〉〈m|δB̂|n〉δ(En − Em − h̄ω), (A2)

and

C(ω) = 2π h̄

×
∑
n,m

Peq
n 〈n|δÂ|m〉〈m|δB̂|n〉δ(En − Em − h̄ω) (A3)

where Peq
n = e−En/kBT /

∑
m e−Em/kBT is the thermal population

of state n. We recall the relation

K (ω) = 2
1 − eh̄ω/kBT

h̄ω/kBT
Re

∫ ∞

0
dteiωtC(t ). (A4)

2. Density correlation and response function

We recall the well-known (fluctuation-dissipation) relation

S(r1, r2, ω) = − h̄

2
coth

( h̄ω

2kBT

)
Imχ (r1, r2, ω) (A5)

between the symmetric density-density correlation function
S(r1, r2, t ) = 1

2 〈 δn̂e(r1, t )δn̂e(r2, 0) + δn̂e(r2, 0) δn̂e(r1, t ) 〉
and the density-density response function χ (r1, r2, t ) =
− i

h̄θ (t )〈 [δn̂e(r1, t ), δn̂e(r2, 0)]〉.

3. Lehmann representations of the density response functions

The Fourier transform of the density-density response
function is

χ (r1, r2; ω) =
∑
n,m

Peq
n − Peq

m

h̄ω + En − Em + iη

×〈n|n̂e(r1)|m〉〈m|n̂e(r2)|n〉. (A6)

For a system of independent particles,

χ (r1, r2; ω) =
∑
n,m

nFD(εn) − nFD(εm)

h̄ω + εn − εm + iη

×〈n|n̂e(r1)|m〉〈m|n̂e(r2)|n〉, (A7)

where nFD(ε) = 1/[1 + e−(μ(T )−ε)/kBT ] is the Fermi-Dirac
population, and μ(T ) is the chemical potential.

4. Lindhard response function

The density-density response function χ0(k, ω) of a non-
interacting electron gas at temperature T is given by [54]

χ0(k, ω) = −
∫

dp
(2π )3

nFD(p + h̄k) − nFD(p)

h̄ω − ε(p + h̄k) + ε(p) + i0+
(A8)

where ε(p) = p2/2m is the energy of a particle of momentum
p. Equation (A8) implies [36]

∂

∂ω
Imχ0(k, ω = 0) = −nβ

√
πmβ

2

1

k
f (k/2), (A9)

with

f (k) ≡ 3
√

π

4
�3/2nFD(h̄k). (A10)

In the classical limit (h̄ → 0),

∂

∂ω
Imχ0(k, ω = 0) = −nβ

√
πmβ

2

1

k
. (A11)

APPENDIX B: DETAILS ON THE DERIVATION OF THE
RELATIONS (32), (40), AND (52)

Here we drop the superscript [R] indicating the depen-
dence on the instantaneous ionic configuration, and the inte-
gral relations between the response functions are written in
operator notations. The identity operator is denoted by I , i.e.,
I (r, r′) = δ(r − r′).
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1. Relation (32) to the proper response

Using obvious notations, the Dyson equation (31) can be
written as

χee(ω) = χ̃ (ω) + χ̃ (ω) ∗ vC ∗ χee(ω)

= χ̃ (ω) + χee(ω) ∗ vC ∗ χ̃ (ω)

= ε−1
L (ω) ∗ χ̃ (ω)

= χ̃ (ω) ∗ ε−1
R (ω) (B1)

where we introduced the left and right dielectric functions

εL(ω) = I − χ̃ (ω) ∗ vC, εR(ω) = I − vC ∗ χ̃ (ω).

with inverses

ε−1
L (ω) = I + χee(ω) ∗ vC, ε−1

R (ω) = I + vC ∗ χee(ω).

The relation εL(ω) ∗ ε−1
L (ω) = I implies

∂ωε−1
L = −ε−1

L ∗ ∂ωεL ∗ ε−1
L = ε−1

L ∗ ∂ωχ̃ (ω) ∗ vC ∗ ε−1
L .

Therefore, from Eq. (B1),

∂ωχee = [
ε−1

L ∗ ∂ωχ̃ ∗ vC ∗ ε−1
L

] ∗ χ̃ + ε−1
L ∗ ∂ωχ̃

= ε−1
L ∗ ∂ωχ̃ ∗ [vC ∗ χee + I]

= ε−1
L ∗ ∂ωχ̃ ∗ ε−1

R . (B2)

By using the above expression in Eq. (24), we obtain the
desired Eq. (32).

2. Relations (40) and (52) to the Lindhard
and Kohn-Sham responses

Because of the close similarity between the Dyson equa-
tions (38) and (50) satisfied by the free-electron and Kohn-
Sham response, the derivations of Eqs. (40) and (52) are anal-
ogous. We here consider the case involving the free-electron
response function. The Dyson equation (40) can be written as

χee(ω) = χ0(ω) + χ0(ω) ∗ K (ω) ∗ χee(ω)

= χ0(ω) + χee(ω) ∗ K (ω) ∗ χ0(ω)

= ε̄ −1
L (ω) ∗ χ̃ (ω)

= χ̃ (ω) ∗ ε̄ −1
R (ω)

with the frequency-dependent kernel

K (ω) = vC ∗ [I + Gee(ω)]

and the left and right dielectric functions

ε̄L(ω) = I − χ0(ω) ∗ K (ω),

ε̄R(ω) = I − K (ω) ∗ χ0(ω),

with inverses

ε̄ −1
L (ω) = I + χee(ω) ∗ K (ω),

ε̄ −1
R (ω) = I + K (ω) ∗ χee(ω).

Following the steps used to derive Eq. (B2), we now obtain

∂ωχee = ε̄ −1
L ∗ ∂ωχ0 ∗ ε̄ −1

R + χee ∗ ∂ωG ∗ χee, (B3)

where the additional term results from the dependence of the
kernel on the frequency. Similarly, we find

∂ωχee = ε̃ −1
L ∗ ∂ωχKS ∗ ε̃ −1

R + χee ∗ ∂ω fXC ∗ χee. (B4)

By introducing the above expressions into Eq. (24), we readily
obtain the desired relations (40) and (52).

3. Homogeneous limit of the response and dielectric functions

We give properties satisfied by the response function χee

and related quantities in the limit of a homogeneous electron
gas. Similar relations are satisfied by χ̃ , χ0, and χKS.

In the limit of a homogeneous electron gas,

χee(r, r′, ω) = χee(r − r′, ω), (B5)

and the left and right dielectric functions are equal:

εL(r, r′, ω) = εR(r, r′, ω) ≡ ε(r − r′, ω). (B6)

The spatial Fourier transform, generally defined as

χee(k, k′, ω) = 1

V

∫
V

dre−ik·r
∫

V
dr′eik′ ·r′

χee(r, r′, ω),

satisfies

χee(k, k′, ω) = χee(k, ω)δk,k′ . (B7)

The inverse dielectric function satisfies

ε−1(k, ω) = 1/ε(k, ω). (B8)

Finally, the integral equations in Appendixes B 1 and B 2
become algebraic equations, e.g.,

χee(k, ω) = χ̃ (k, ω)/ε(k, ω) (B9)
with

ε(k, ω) = 1 − vC (k)χ̃ (k, ω),

χee(k, ω) = χ0(k, ω)/ε̄(k, ω) (B10)
with

ε̄(k, ω) = 1 − K (k, ω)χ0(k, ω),

χee(k, ω) = χKS(k, ω)/ε̃(k, ω) (B11)
with

ε̃(k, ω) = 1 − KKS(k, ω)χKS(k, ω),

with K (k, ω) = vC (k)[1 − Gee(k, ω)] and KKS(k, ω) =
vC (k) + fXC(k, ω)

APPENDIX C: SUM RULES

In this Appendix we provide the proof for a set of sum
rules; the [R] superscript is dropped in order to simplify the
notation. Below,

v(r) =
N∑

I=1

vie(r − RI ).

(i) The force matrix elements and the total linear momentum
matrix elements satisfy

N∑
I=1

f Ix
nm = −i〈n|P̂x|m〉En − Em

h̄
. (C1)
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Proof. By starting from the definition

N∑
I=1

f Ix
nm = 〈n|

∫
V

dr∇xv(r)n̂e(r)|m〉, (C2)

we may rewrite the term on the right hand side as follows:

∫
V

dr∇v(r)n̂e(r) =
Ne∑

i=1

∂v(r̂i )

∂ r̂i
= − 1

ih̄

Ne∑
i=1

[p̂i, v(r̂i )]

= − 1

ih̄

[
Ne∑

i=1

p̂i, Ĥe(R)

]

= − 1

ih̄
[P̂, Ĥe(R)] (C3)

where P̂ = ∑Ne
i=1 p̂i is the linear momentum operator of the

many-body system. In deriving Eq. (C3), we used the rela-
tion [

∑
i p̂i, V̂ee] = 0 that results from the symmetry of the

Coulomb interaction. By substituting the previous result into
Eq. (C2) we easily obtain the final result (C1).

(ii) The density response function satisfies the relations∫
V

dr1∇r1v(r1)χee(r1, r2, ω = 0) = ∇r2 ne(r2), (C4)∫
V

dr2χee(r1, r2, ω = 0)∇r2v(r2) = ∇r1 ne(r1). (C5)

�
Proof. Here we limit ourself to proving the first expression;
for the second one the procedure is completely analogous.
By using the Lehmann representation for the electron-electron
susceptibility (A6),∫

V
dr1∇r1v(r1)χee(r1, r2, ω = 0)

=
∑
n �=m

Peq
n − Peq

m

En − Em
〈n|

∫
V

dr∇rv(r)n̂e(r)|m〉〈m|n̂e(r2)|n〉

= −i

h̄

∑
n,m

(
Peq

n − Peq
m

)〈n|P̂|m〉〈m|n̂e(r2)|n〉 = ∇r2 ne(r2),

where we have used (C1) for the force matrix elements, that
proves Eq. (C4).

(iii) The Kohn-Sham matrix elements satisfy

N∑
I=1

〈n|δ f̃ L,R
Ix |m〉 = −i

εn − εm

h̄
〈n| p̂x|m〉. (C6)

�
Proof. From the definition of the force matrix elements

N∑
I=1

〈n|δ f̃ L,R
Ix |m〉 = 〈n|

∫
V

dr∇xvKS(r)n̂e(r)|m〉,

we rewrite the term on the right hand side as follows:∫
V

dr∇vKS(r)n̂e(r) = −1

ih̄
[p̂, V̂KS(r)] = −1

ih̄
[p̂, ĤKS(R)]

where ĤKS(R) = − h̄2∇2

2m + V̂KS(r) is the Hamiltonian of the
Kohn-Sham system, such that ĤKS(R)|n〉 = εn|n〉. From this
result (C6) then follows immediately.

(iv) The Kohn-Sham density response function satisfies the
relations∫

V
dr1∇r1vKS(r1)χKS(r1, r2, ω = 0) = ∇r2 ne(r2), (C7)∫

V
dr2χKS(r1, r2, ω = 0)∇r2vKS(r2) = ∇r1 ne(r1). (C8)

�
Proof. The procedure is analogous to the one used in (ii),
with the only difference that now we need to use (C6) instead
of (C1):∫

V
dr∇r1vKS(r1)χKS(r1, r2, ω = 0)

=
∑
n �=m

peq
n − peq

m

εn − εm
〈n|

∫
V

dr∇rvKS(r)n̂e(r)|m〉〈m|n̂e(r2)|n〉

= −i

h̄

∑
n,m

(
peq

n − peq
m

)〈n|p̂|m〉〈m|n̂e(r2)|n〉 = ∇r2 ne(r2),

that proves (C7), while for (C8) the proof is identical.
(v) The Kohn-Sham dielectric functions satisfy the rela-

tions∫
V

dr1∇r1v(r1)ε̃L(r1, r2, ω = 0)−1 = ∇r2vKS(r2), (C9)∫
V

dr2ε̃R(r1, r2, ω = 0)−1∇r2v(r2) = ∇r1vKS(r1). (C10)

�
Proof. By using the definition of the left dielectric function,

ε̃L(r1, r2, ω = 0)−1 = I (r1, r2) +
∫

V
dr3χee(r1, r3, ω = 0)

× KKS(r3, r2, ω = 0),

in the left hand side of (C9) we obtain, by using Eq. (C4) (we
omit the frequency dependence in the derivation),∫

V
dr1∇r1v(r1)ε̃L(r1, r2, ω = 0)−1

=∇r2v(r2) +
∫

V
dr1

∫
V

dr3∇r1v(r1)χee(r1, r3)KKS(r3, r2)

= ∇r2v(r2) +
∫

V
dr3∇r3 ne(r3)[vC(r3, r2) + fXC(r3, r2)]

= ∇r2v(r2) + ∇r2vH(r2) + ∇r2vxc(r2)

= ∇r2vKS(r2),

that proves (C9), while (C10) may be obtained in the same
way by using the definition of the right dielectric function, ε̃R.

(vi) The friction coefficients satisfy the sum rule

N∑
I,J=1

γIx,Jy = 0. (C11)

�
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Proof. From the definition of the many-body friction, we can
write

N∑
I,J=1

γIx,Jy = −Im

M

∫
V

dr1

∫
V

dr2∇xv(r1)

× ∂ωχee(r1, r2, ω = 0)∇yv(r2),

while the frequency derivative of the electron-electron suscep-
tibility is

∂ωχee(r1, r2, ω = 0) = −h̄
∑
n �=m

Peq
n − Peq

m

(En − Em)2

×〈n|n̂e(r1)|m〉〈m|n̂e(r2)|n〉,

and by using (C2) the combination of the previous two expres-
sions leads to

N∑
I,J=1

γIx,Jy = h̄Im

M

∑
n �=m

Peq
mn

E2
nm

〈n|
∫

V
dr∇x vn̂e|m〉〈m|

×
∫

V
dr∇y vn̂e|n〉

= 1

Mh̄
Im

∑
n,m

(
Peq

n − Peq
m

)〈n|P̂x|m〉〈m|P̂y|n〉

= 1

Mh̄
Im

∑
n,m

Peq
n 〈∗|n|[P̂x, P̂y]〉n = 0

with Peq
nm = Peq

n − Peq
m and Enm = En − Em, proving the sum

rule (C11).
(vii) An analogous result is valid also for the Kohn-Sham

friction tensor:

N∑
I,J=1

γ̃Ix,Jy = 0. (C12)

�
Proof. From the definition of the Kohn-Sham tensor (53) and
by using the sum rules (C9) and (C10) for the gradient of the
external potential it is easy to write

N∑
I,J=1

γ̃Ix,Jy

= −Im

M

∫
V

dr1

∫
V

dr2∇xvKS(r1)

× ∂ωχKS(r1, r2, 0)∇yvKS(r2),

h̄Im

M

∑
n �=m

peq
mn

ε2
nm

〈n|
∫

V
dr∇xvKSn̂e|m〉〈m|

∫
V

dr∇yvKSn̂e|n〉

= 1

Mh̄
Im

∑
n,m

(
peq

n − peq
m

)〈n| p̂x|m〉〈m| p̂y|n〉

= 1

Mh̄
Im

∑
n,m

peq
n 〈n|[ p̂x, p̂y]|m〉 = 0,

that finally proves (C12). As a consequence of (C12) and (C9)
we also have

N∑
I,J=1

δγ̃Ix,Jy = 0, (C13)

completing the set of sum rules we seek to prove. �

APPENDIX D: THE ELECTRON-PHONON COUPLING
FORMULA

1. Derivation of the electron-phonon coupling formula (76)

We treat the general case of any monatomic Bravais lat-
tice, the ionic equilibrium positions of which are denoted by
R0 = {R0

I }.
The Hamiltonian of an electron gas interacting with a

periodic lattice of ions oscillating around their equilibrium
positions is Ĥ = Ĥe + Ĥph + Ĥe-ph, where [56]

Ĥe(R0) =
Ne∑

i=1

[
p2

i

2me
+

Ni∑
I=1

vie
(
ri − R0

I

)] + Vee (D1)

is the Hamiltonian of the electron gas interacting with the ions
in their equilibrium positions R0,

Ĥph =
∑
λ,q

h̄ωqλ

[
b̂†

qλb̂qλ + 1

2

]
(D2)

is the Hamiltonian of the phonons, and

Ĥe-ph = 1

V

∑
λ,q

∑
G

gq,G,λρ̂−q−G(b̂qλ + b̂†
−qλ) (D3)

is the interaction between electrons and phonons with the
phonon coupling [56]

gq,G,λ = i

√
Nh̄

2Mωq,λ

(q + G) · εqλvie(q + G). (D4)

Here b̂qλ and b̂†
qλ are the annihilation and creation operator of

a phonon of frequency ωq,λ, εqλ are the polarization vectors,
ρ̂k is the Fourier transform of the electron density,

∑
λ is the

sum over polarizabilities,
∑

q denotes q in the first Brillouin
zone,

∑
G denotes G in the reciprocal lattice, k is a Brillouin

zone’s vector, q is localized in the first Brillouin zone, and
G is a reciprocal space’s vector [56]. The interpretation of
the previous expression is straightforward; the electron in fact
can be scattered from any initial state |k〉 to a final state
|k + G + q〉 either by absorbing a phonon in the state |q, λ〉
or by emitting a phonon in the state | − q, λ〉.

We shall apply the Fermi “golden rule” to calculate the rate
of change of the total electron energy:

dEe

dt
=

∑
q,λ

h̄ωqλ[Wabs(q, λ) − Wem(q, λ)] (D5)

where Wabs(q, λ) is the rate of absorption and Wem(q, λ) is the
rate of emission of a phonon of energy h̄ωqλ by the electronic
states |m〉 defined by Ĥe(R0)|m〉 = Em|m〉. We calculate these
rates to lowest order of perturbation theory by applying the

043201-15



JÉRÔME DALIGAULT AND JACOPO SIMONI PHYSICAL REVIEW E 100, 043201 (2019)

Fermi “golden rule”:

b̂qλ| . . . nqλ . . . 〉 = √
nqλ| . . . nqλ . . . 〉. (D6)

The probability per unit time of transition between state
|m′〉 ⊗ | . . . nqλ . . . 〉 and state |m〉 ⊗ | . . . (nqλ − 1) . . . 〉 is

Wabs(|m′, nqλ〉 → |m, nq,λ − 1〉)

= 2π

h̄
|〈m, nqλ − 1|Ĥe-ph|m′, nqλ〉|2δ(Em − Em′ − h̄ωqλ)

= 2π

h̄

∑
G,G′

gq,G,λg∗
q,G′,λ

V 2
〈m|ρ̂−q−G|m′〉〈m′|ρ̂q+G′ |m〉

× nqλδ(Em − Em′ − h̄ωqλ).

By averaging over a thermal distribution of electronic states
at temperature Te and of phonon states at temperature Ti, we
obtain the rate of phonon absorption:

Wabs(q, λ) = 2π

h̄

∑
m,m′

∑
G,G′

gq,G,λg∗
q,G′,λ

V 2
Pm′ 〈m|ρ̂−q−G|m′〉

× 〈m′|ρ̂q+G′ |m〉Nqλδ(Em − Em′ − h̄ωqλ)

= 1

h̄2

∑
G,G′

g∗
q,G,λgq,G′,λ

V 2
CG,G′ (q, ωqλ)Nqλ,

where Nqλ = 1/(eh̄ωq,λ/kBTi − 1) is the Bose population of the
phonon mode (q, λ) at temperature Ti and Pm = e−Em/kBTe/Z is
the thermal population of the electronic state |m〉. In the sec-
ond line, we have introduced the (nonsymmetrical) electron
density correlation function (see also Appendix A)

CG,G′ (q, ω) =
∫ ∞

−∞
dteiωt 〈ρ̂q+G(t )ρ̂−q−G′ 〉e. (D7)

Similarly, the emission calculation gives

Wem(q, λ) = 1

h̄2

∑
G,G′

g∗
q,G,λgq,G′,λ

V 2
CG,G′ (q,−ωqλ)(Nqλ + 1)

= 1

h̄2

∑
G,G′

g∗
q,G,λgq,G′,λ

V 2

× e− h̄ωqλ

kBTe CG,G′ (q, ωqλ)(Nqλ + 1),

where in the second line we used the detailed balance property
[54].

The rate (D5) of energy exchange between electrons and
phonons becomes

1

V

dEe

dt
= 1

V

∑
q,λ

∑
G,G′

h̄ωqλ

h̄2

g∗
q,G,λgq,G′,λ

V 2
CG,G′ (q, ωqλ)

× [Nqλ − e−h̄ωqλ/kBTe (Nqλ + 1)] (D8)

= −2
∑
q,λ

∑
G,G′

ωqλ

g∗
q,G,λgq,G′,λ

V 2
Imχ

[R0]
GG′ (q, ωqλ)

×
[

nB

(
h̄ωqλ

kBTi

)
− nB

(
h̄ωqλ

kBTe

)]
(D9)

= 4

V

∑
q

∫ ∞

0

dω

2π

∑
G,G′

vie(q + G)∗vie(q + G′)

× h̄ωImχ
[R0]
GG′ (q, ω)Imχ

ph
GG′ (q, ω)

×
[

nB

(
h̄ω

kBTi

)
− nB

(
h̄ω

kBTe

)]
. (D10)

In deriving Eq. (D9), we used the simple relation

Nqλ − e−h̄ωqλ/kBTe (Nqλ + 1)

= (1 − e−h̄ωqλ/kBTe )

[
Nqλ − nB

(
h̄ωqλ

kBTe

)]

and the fluctuation-dissipation relation

(1 − e−h̄ω/kBTe )CGG′ (q, ω) = −2h̄V Imχ
[R0]
GG′ (q, ω)

between the correlation function and the density-density re-
sponse function of electrons described by the Hamiltonian
Ĥe(R0) [see Eq. (77)]. In going from Eq. (D9) to the desired
result (D10), we used the expression for the density-density
response of ions in the phonon approximation derived below
in Appendix D 5,

Imχ
ph
G,G′ (q, ω) = − h̄πni

2M

∑
λ

1

ωqλ

(q + G) ·

× εqλ (q + G′) · εqλ Aλ(q, ω) (D11)

in terms of the phonon spectral function Aλ(q, ω) = δ(h̄ω −
h̄ωqλ) − δ(h̄ω + h̄ωqλ).

Equation (D10) was derived by treating the electrons
as a many-body system; i.e., the states |m〉 are the many-
body eigenstates of the Hamiltonian Ĥe(R0), Eq. (D1). The
considerations of Sec. III, where the many-body proper-
ties are expressed in terms of single-particle properties, can
be straightforwardly adapted to effectively deal with elec-
trons in a crystalline solid. For instance, instead of using
the free-electron response function as in Sec. III B, the re-
sponse function χ

[R0]
GG′ (q, ω) can be expressed in terms of

the response function of noninteracting electrons immersed
in the perfect ion lattice R0 described by the single-particle
Hamiltonian

ĤBloch(R0) = p̂2

2me
+

Ni∑
I=1

vie
(
r̂ − R0

I

)
, (D12)

the eigenstates of which are the so-called Bloch electron
states.

2. High temperature limit Ti,e � �D

We show that in the hot solid limit, Ti,e � �D, the relation
(76) simplifies to Eq. (78). The quantity Imχ

ph
G,G′ (q, ω), which

is simply related to the phonon spectrum (D11), is nonzero
only for frequency |ω| smaller than the Debye frequency ωD.
For kBTi,e � h̄ωD and 0 � ω � ωD, we have

nB(h̄ω/kBTi ) − nB(h̄ω/kBTe) ≈ kB(Ti − Te)/h̄ω
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and, as a consequence of the small electron to ion mass ratio,

Imχ
[R0]
GG′ (q, ω) � ω∂ωImχ

[R0]
GG′ (q, 0).

Using these two approximations in Eq. (76), we obtain

dEe

dt
= 4kB(Ti − Te)

∑
q

∑
G,G′

vie(q + G)∗vie(q + G′)

× ∂ωImχ
[R0]
GG′ (q, 0)

∫ ∞

0

dω

2π
ωImχ

ph
GG′ (q, ω). (D13)

The expression (D11) implies the relation∫ ∞

−∞

dω

2π
ωImχ

ph
GG′ (q, ω) = − ni

2M
(q + G) · (q + G′),

which, when introduced in Eq. (D13), implies the desired
results (78) and (79).

3. Derivation of ge-ph, Eq. (79), from the general formula (25)

By introducing the expression (77) in gei, Eq. (25b), the
average over ions disappears (it is set to R0) and we obtain

g(Te, Ti ) = − kB

V M
Im

N∑
I=1

3∑
λ=1

1

V

∑
q

∑
G,G′

∂ωχ
[R0]
GG′ (q, 0)

×
∫

V
dr∇λvie(r − RI )ei(q+G)·r

×
∫

V
dr′∇λvie(r′ − RI )e−i(q+G′ )·r′

= −kBni

M

1

V

∑
q

∑
G,G′

∂ωImχ
[R0]
GG′ (q, 0)vie(q + G)∗

× vie(q + G′)
∑

λ

(q + G) · εqλ (q + G′) · εqλ

= −kBni

M

1

V

∑
q

∑
G,G′

vie(q + G)∗vie(q + G′)

× (q + G) · (q + G′) ∂ωImχ
[R0]
GG′ (q, 0).

4. Reduction to Allen’s formula

In his paper, Allen describes the electrons in terms of Bloch
states ψk , eigenstates of the Hamiltonian (D12):

ĤBloch(R0)ψk = εkψk, (D14)

where k = (n, k, σ ) is short for the Bloch electron quantum
number (k is in the first Brillouin zone, n ∈ N is the band
index, and σ denotes the spin):

ψk (r) = unk(r)eik·rχσ . (D15)

The density response function of Bloch electrons satisfies

ImχBloch
GG′ (q, ω)

= −π

V

∑
k,k′

(pk − pk′ )ρk,k′ (q + G)ρk′,k (−q − G′)

× δ(h̄ω + εk − εk′ )

with ρk,k′ (K) = ∫
V dru∗

k′ (r)uk (r)e−i(k′−k+K)·rδσ,σ ′ ,

1

V

dEe

dt
= 2π

h̄

1

V

∑
q,λ

∑
k,k′

h̄ωqλ|Mλ
k,k′ (q)|2

× Sλ
k,k′δ(h̄ωqλ + εk − εk′ ),

Sλ
k,k′ = (pk − pk′ )

[
nB

(
εk − εk′

kBTi

)
− nB

(
εk − εk′

kBTe

)]
= (pk − pk′ )Nqλ + pk′ (1 − pk ), (D16)

where in the last equation we used the energy conservation
described by the delta function in Eq. (D16), where we have
introduced the scattering amplitude probability

∣∣Mλ
kk′ (q)

∣∣2 =
∣∣∣∣∣ 1

V

∑
G

ρk′,k (−q − G)gq,G,λ

∣∣∣∣∣
2

.

Equation (D16) corresponds to the starting point of Allen’s
derivation [see Eq. (6) in [8]].

5. The ionic density response function
in the phonon approximation

Here we derive an expression for the density-density re-
sponse function of ions,

χ (k, k′, t − t ′) = − i

h̄

1

V
θ (t − t ′)〈[δn̂i(k, t ), δn̂i(−k′, t ′)]〉i,

in a solid at temperature Ti in the phonon approximation,
where ni(k) = ∑

I e−ik·RI is the ion density and 〈. . . 〉i denotes
the thermal average at temperature Ti, and δn̂i = n̂i − 〈n̂i〉i.
In the phonon approximation, RI (t ) = R0

I + uI (t ), where the
harmonic displacement uI of ion I around its equilibrium
position R0

I is given by

uI = 1√
N

∑
q,λ

√
h̄

2Mωq,λ

(b̂qλ + b̂†
−qλ)εqλeiq·R0

I

= 1√
N

∑
q

uqeiq·R0
I (D17)

where q is in the first Brillouin zone. To lowest order in the
displacements,

δn̂i(q + G, t ) � −i(q + G) · uq(t )

= −i

√
h̄

2Mωq,λ

(b̂qλ + b̂†
−qλ)(q + G) · εqλ.

This implies

χ (q + G, q + G′, t )

≡ χ
ph
G,G′ (q, t )

=
∑

λ

h̄ni

2Mωqλ

Dλ
R(q, t )(q + G) · εqλ(q + G′) · εqλ

where Dλ
R(q, t ) = − i

h̄θ (t )〈[Âqλ(t ), Â†
qλ(0)]〉 with Âqλ =

b̂qλ(t ) + b̂†
−qλ is the retarded phonon Green’s function
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[56]. Using the definition of the spectral function
Aλ(q, ω) = −ImDλ

R(q, ω)/π , we find the relation

Imχ
ph
G.G′ (q, ω) = −

∑
λ

π h̄ni

2Mωqλ

Aλ(q, ω)[(q + G) · εqλ]

× [(q + G′) · εqλ] (D18)

used in Appendix D 1.

APPENDIX E: QUICK REMARKS ABOUT EQ. (71)

The passage from Eq. (68) to Eq. (71) in the limit of
noninteracting electrons is nontrivial but can be found in
several papers; e.g., see Sec. III-c of [62]. For completeness,
we recall the main steps, which rely on standard results of
scattering theory. The Kubo relation is developed as follows,

� = − π h̄

3M

∑
x

∫
dε

dnFD(ε)

dε

∑
k,k′

∑
σ,σ ′

× 〈�−
k′σ ′ |F̂x|�+

kσ 〉〈�+
kσ |F̂x|�−

k′σ ′ 〉δ(ε − εk )δ(ε − εk′ ),

over the basis of the so-called scattering states defined as

|�±
kσ 〉 = (1 + Ĝ±t̂±)|kσ 〉. (E1)

Here |kσ 〉 is a plane wave of momentum h̄k, energy εk =
(h̄k)2/2me, and spin σ ; t̂± = t̂ (εk ± 0+) and Ĝ± = Ĝ(εk ±
0+) with the t matrix t̂ (z) and resolvent operator Ĝ(z) =
[z − p̂2

2me
] satisfy the Lippman-Schwinger equation

t̂ (z) = v̂ie + v̂ieĜ(z)t̂ (z). (E2)

We then use the property

〈�±
k′σ ′ |F̂x|�±

kσ 〉 = i(k′
x − kx )〈k′σ ′|t̂±|kσ 〉,

which results from F̂x = i
h̄ [ p̂x, v̂ie] and from properties of

Eq. (E2). We obtain

� = π h̄

MkBTe

∑
kk′

∑
σσ ′

nFD(εk )[1 − nFD(εk )]

× (k′ − k)2|〈k′σ ′|t̂+|kσ 〉|2δ(εk − εk′ ).

Equation (71) is then obtained from the well-known rep-
resentation of the matrix elements 〈k′σ ′|t̂+|kσ 〉 in terms
of the phase shifts δl (k) for the spherically symmetric
potential vie(r):

〈k′σ ′|t̂+|kσ 〉 = −δσσ ′
2π h̄2

meV k

×
∑

l

(2l + 1)eiδl (k) sin δl (k)Pj (cos �)

with cos � = k′ · k/k′k.
The Te = 0 limit (73) is obtained using dnFD(ε)/dε →

δ(ε − εF ) where εF = h̄2k2
F /2me is the Fermi energy.

The nondegenerate limit (74) is obtained using nFD(ε)[1 −
nFD(ε)] ∼ e(μ−ε)/kBTe and eμ/kBTe = ne

(2π h̄)3

2 (2πmekBTe)2/3.

APPENDIX F: DERIVATION OF EQ. (81)

First, we neglect the correction term δγ̃
[R]
αβ in Eq. (57) and

expand the expression (54) for γ̃
[R]
αβ over the Kohn-Sham states

as follows:

γ̃
[R]
αβ = −π h̄

M

∑
n,m

nFD(εn) − nFD(εm)

εn − εm

× (
δ f̃ L

α

)
nm

(
δ f̃ R

β

)
mn

δ(εn − εm)

= −π h̄

M

∫∫
dεdε′ p(ε) − p(ε′)

ε − ε′ δ(ε − ε′)

×
∑
n,m

δ(ε − εn)δ(ε′ − εm)
(
δ f̃ L

α

)
nm

(
δ f̃ R

β

)
mn, (F1)

where the matrix elements f nm
Ix = 〈n| f̂ (sc)

Ix |m〉 and f̂ (sc)
Ix are the

effective force along the x direction between ion I and a Kohn-
Sham electron screened by other electrons. Assuming that the
matrix elements depend weakly on the energies, they can be
factorized outside the sum in Eq. (F1), and we obtain

γ̃
[R]
αβ ∝

∫
dε

(
−dnFD(ε)

dε

)
[g[R](ε)]2,

where g[R](ε) = ∑
n δ(ε − εn) is the density of states of the

Kohn-Sham system in the frozen ionic configuration R.
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