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Transition to bound states for bacteria swimming near surfaces
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It is well known that flagellated bacteria swim in circles near surfaces. However, recent experiments have
shown that a sulfide-oxidizing bacterium named Thiovulum majus can transition from swimming in circles to a
surface bound state where it stops swimming while remaining free to move laterally along the surface. In this
bound state, the cell rotates perpendicular to the surface with its flagella pointing away from it. Using numerical
simulations and theoretical analysis, we demonstrate the existence of a fluid-structure interaction instability that
causes cells with relatively short flagella to become surface bound.
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I. INTRODUCTION

Bacteria constitute the larger of the two domains of
prokaryotic organisms—unicellular organisms lacking a dis-
tinct nucleus and other membrane-bound organelles. Being
one of the first organisms to have appeared on Earth, they have
evolved to thrive in a variety of environments. Their shapes
can range from rods and spirals to spheres, depending on their
surroundings and ecological niches. Though bacteria differ
greatly in size, the majority measure only a few micrometers
and chiefly rely on diffusion to transport metabolites. While
the smallest bacteria, Mycoplasma genitalium, range in size
from 0.2–0.3 μm, a few other bacteria have evolved to a rather
unusual gigantic size [1], sometimes reaching up to 750 μm
[2]. Such exotic bacteria have received far less attention when
compared to the more commonly encountered species such as
Escherichia coli [3]. Bacterial gigantism can be advantageous
for enhanced resistance to predation but it comes at the price
of reduced nutrient uptake due to a lower cellular surface area
to volume ratio and the need for different strategies to cope
with it.

In this article, we focus on the locomotion of one such
outlier species of bacteria named Thiovulum majus (T. majus),
a sulfide-oxidizing organism generally found near hydrogen
sulfide deposits in seas or marshes [4–6]. It is nearly spherical
in shape and has a reasonably large cell body, typically be-
tween 5 and 25 μm (Fig. 1). More importantly, it is the second
fastest swimming bacterium in nature with speeds reaching up
to 615 μm/s [7]. Thus, T. majus cells are able to overcome the
limitations in nutrient diffusion by actively stirring up the fluid
medium. When attached to surfaces via mucus threads, the
cells continue rotating their cell body and flagella to generate
advective oxygen transport about 40 times higher than that
generated by molecular diffusion, thus significantly enhancing
their nutrient uptake [8].
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In homogeneous oxygen concentrations, T. majus swim
in helical trajectories and rarely change their direction [11],
quite unlike the run-and-tumble motion of E. coli. In recent
experiments, the swimming behavior of T. majus cells was
studied near surfaces [12,13] (henceforth, we will use the
words surface and wall interchangeably). Quite surprisingly,
it was found that instead of swimming along the surface
in circles, some freely swimming cells became dynamically
surface bound. In this bound state, cells remained free to
move laterally along the surface and their bodies continuously
rotated around their center in the direction perpendicular to the
surface while their flagellar filaments pointed away from the
surface, rotating in the opposite direction.

The bound state is in stark contrast to bacteria swimming
in circular paths near surfaces [14–16]. The question therefore
arises regarding the mechanism at the origin of this transition
to a bound state. Mathematically, we define the cell to be in the
surface-bound state when the flagellum axis is perpendicular
to the surface, i.e., θ = π/2 (Fig. 2), and consequently, the
radius of circular trajectory is R = 0. In the bound state, a
small perturbation in the tilt angle of the flagellum is expected
to destabilize the cell and cause it to swim parallel to the
surface in circles. So what makes this state stable? Using
a combination of theory and simulations, we show that the
transition from swimming to a bound state can be rationalized
as an instability due to fluid-structure interaction.

Specifically, we show that the flagellum of a freely swim-
ming T. majus cell undergoes slow tilt angular dynamics near
a rigid wall. If the distance between the cell’s surface and
the wall becomes sufficiently small, drag forces acting on
the translating flagellum (which tend to align the flagellum
parallel to the surface) are unable to compensate the large lu-
brication torque exerted on the cell body (which tends to align
the flagellum perpendicular to the surface). In this case, the
cell eventually points perpendicular to the wall and thus stops
swimming, while the cell body and flagella continue rotating
as seen in experiments [12,13]. This bound state is stable
only below a certain critical flagellum axial length Lλ nor-
malized by the radius of the spherical cell body, a, consistent
with experiments, since T. majus cells have relatively short
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FIG. 1. Scanning electron microscope image of a Thiovulum ma-
jus bacterium with a slightly shrunken spherical cell body of radius
a ∼ 4 μm and flagella L ∼ 2 μm long, reproduced with permission
from Ref. [9] (see similar pictures in Ref. [10]).

flagella and large spherical cell bodies, Lλ/a = 0.5 (Figs. 1
and 2).

The article is organized as follows. We first define the
problem in Sec. II, then describe the numerical and theoretical
models in Sec. III and Sec. IV, respectively. Next, we present
the results in Sec. V and finally conclude in Sec. VI.

II. PROBLEM SETUP

The fluid dynamics of bacteria, owing to their relatively
small size, are described by the incompressible Stokes equa-
tions, −∇p + μ∇2u = 0, ∇ · u = 0, where p and u are
the dynamic pressure and velocity of the fluid [17,18]. The
surface of a T. majus cell is covered with about 100 flagella,
but neither their precise number nor their rotation rates have
been measured. However, these spherical cells rotate in a
counterclockwise direction when viewed from the posterior
side [7,12], which motivates us to model the fraction of
flagella on the cell surface that cause propulsion bundled
together as a single right-handed clockwise rotating helix for
the numerics in Sec. III or rigid active pushing rod for the
theory in Sec. IV. The cell body is assumed to be a sphere
of radius a, also chosen as the length scale for the problem.
The sphere is centered at xC while the flagellum is attached
to the cell body surface at the junction point xJ (Fig. 2).
The minimum distance between the spherical surface and the
plane rigid wall is δ and the distance between the center of
the sphere and the wall is d = a + δ. The tilt angle of the
flagellum measured with respect to the horizontal direction
is denoted by θ , so that θ = π/2 and θ �= π/2 correspond to
surface-bound and circular-swimming states, respectively.

III. NUMERICAL MODEL

The flagellum is modeled as a rigid right-handed helix with
tapered ends [19,20],

x = [l, E (l )Rh cos(kl + ψ ), E (l )Rh sin(kl + ψ )], (1)

FIG. 2. Schematic diagram of a flagellated bacterium swimming
near a plane surface. The cell body is modeled as a rigid sphere
and the flagellar filament as either a rigid right-handed helix rotating
along its axis for the numerical simulations in Sec. III or a rod placed
along the helix axis with an active force f a acting along it for the
theoretical model in Sec. IV. The cell body undergoes rigid body
translation and rotation with velocities U and �, respectively. The
flagellum tilt angle is denoted by θ (see Sec. III for description of
other notations). The two possible final steady states of a bacterium
near a surface are shown in the insets, namely, the surface-bound and
circular-swimming states.

where l ∈ [0, Lλ] and k is the helix wave number (Fig. 2).
The tapering function is E (l ) = 1 − e−k2

E l2
, where kE = k is

a constant determining how quickly the helix grows to its
maximum amplitude Rh. The total axial and contour length of
the helix are Lλ and L = Lλ/ cos φ, respectively, where φ =
arctan (Rhk) is the pitch angle. Changing the phase angle ψ

simply rotates the helix around its axis. The axial wavelength
and wave speed are λ = 2π/k and V = ω/k, respectively. The
cross-sectional radius and aspect ratio of the helix are ρ and
ε = ρ/L, respectively.

The hydrodynamics of the effective propelling flagellum
are described using slender-body theory [21]. Under this
framework, the velocity u of the centerline Cf of a slender
helix is related to the hydrodynamic force per unit length f h
acting on it through the integral equation

u(x0) = − 1

8πμ
�[ f h](x0) − 1

8πμ
K[ f h](x0), (2)

where x0 = x0(s, t ) and s ∈ [0, L]. The no-slip boundary con-
dition on the rigid wall is satisfied by using appropriate image
singularities [22]. The exact expressions of � (local operator)
and K (nonlocal operator) are provided in Appendix A.

In recent modeling work involving locomotion of bacteria
and spermatozoa, boundary integral equations for the cell
body combined with slender-body theory for the flagellum
have proved to be accurate and efficient [23,24]. However,
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when resolving cell-wall interactions, extremely fine surface
grid resolution becomes necessary when the cell body gets
very close to the wall, δ∗ ∼ 0.0001 (see discussion in Ap-
pendix B). Hence, dynamical simulations involving iterations
in time become prohibitively expensive. In order to circum-
vent this issue, the hydrodynamics of the spherical cell body
and its interaction with the rigid wall are described using
analytical results in the far-field and lubrication limits. We
switch between the two at a cutoff distance using exact
solutions based on bispherical coordinates, see Appendix C.
The hydrodynamic interactions between the cell body and
flagellum are unaccounted for but are not expected to alter
the physics of the problem. The force and torque on a sphere
are related to the translational and angular velocities about the
junction xJ by a symmetric resistance matrix[

F
T

]
=

[
A B
BT C

][
U
�

]
, (3)

with all matrix elements provided in Appendix B. The kine-
matic boundary condition for the flagella is

u(x0) = U + (� + � f e f ) × (x0 − xJ ), (4)

where U and � are the translational and angular velocities
of the cell body, � f is the angular velocity of the flagellar
filament relative to the cell body, and e f is the helical axis
direction pointing away from the cell body. We prescribe
the dimensionless value � f = −1 that acts as forcing for
the system (a right-handed helical flagellum must rotate in
a clockwise direction when viewed from the posterior end
for the bacterium to be a pusher). The force and torque
balance equations for the whole bacterium computed about
the junction point xJ are

F +
∫

Cf

f h(x0) ds = 0, (5)

T +
∫

Cf

(x0 − xJ ) × f h(x0) ds = 0. (6)

Solving Eqs. (2), (5), and (6) numerically provides us the de-
sired velocities, U and �. When δ∗ � 0.0001, the validity of
Stokes equations becomes questionable at such small scales.
To prevent the cell from getting any closer to the wall, we
add a contact force, acting on it perpendicular to the wall and
passing through the cell body center, to the force and torque
balance equations such that U · ez = 0. Note that there are
no direct experimental measurements of the gap thickness;
however, it has been estimated to range from 4.25 to 140 nm
based on scaling arguments [13]. Once the velocities of the
body are found, the center of the cell body and the position
of the flagellum are advanced in time using a second-order
Runge-Kutta time marching scheme until a dynamical steady
state is reached.

IV. THEORETICAL MODEL

The numerical model can be further simplified to elucidate
analytically the fundamental mechanisms at play behind the
stability of the bound states. Here, the cell body is modeled as
a sphere as in Sec. III while the flagellum is modeled as a rigid

rod with a “active force,” f a, acting on it (Fig. 2). This force
represents the hydrodynamic resistive drag arising from the
rotation of the helical flagellum. Hydrodynamic interactions
between the active rod and the rigid wall are neglected. The
cell-flagellum junction is located at xJ = a(cos θ êx + sin θ êz )
at any given time. The dimensionless gap thickness is set
to δ∗ = 0.0001 and the bacterium is restricted to having a
translational velocity in the x direction only. The position and
instantaneous velocity of points along the active rod are

x f = xC + (a + l )(cos θ êx + sin θ êz ), (7)

u f = [U + �(a + l ) sin θ ]êx − �(a + l ) cos θ êz, (8)

respectively, where l ∈ [0, Lλ]. Also note that according to
our definition θ̇ = −�. The unit tangent and normal to the
rod are t̂ = cos θ êx + sin θ êz and n̂ = − sin θ êx + cos θ êz, re-
spectively. The parallel and perpendicular components of the
drag force d f = d f n + d f t acting on the small element are

d f t = −ct (u f · t̂ ) t̂dl, d f n = −cn(u f · n̂)n̂dl, (9)

which can be decomposed into directions parallel and perpen-
dicular to the wall, d f = dfx êx + dfzêz. The net force and net
torque acting on the rod in the x and y directions are

Ff =
∫ Lλ

0
dfx, Tf =

∫ Lλ

0
[(x f − xC ) × d f n] · êy, (10)

respectively. The mobility matrix of a sphere next to a wall
about xC is written as(

aFx

Ty

)
= −

(
6πμa3F ∗

t 6πμa3F ∗
r

8πμa3T ∗
t 8πμa3T ∗

r

)(
U/a
�

)
. (11)

The expressions for the drag coefficients cn and ct and matrix
elements are provided in Appendix D. The only relevant
equations to capture the tilt dynamics of the cell are the total
force and torque balance equations in the x and y directions,

− U [6πμF ∗
t + (cn sin2 θ + ct cos2 θ )L∗

λ]

− �[6πμF ∗
r + cn(L∗

λ + 1
2 L∗2

λ ) sin θ ] + faL∗
λ cos θ = 0,

(12)
and

− U [8πμT ∗
t + cn sin θ (L∗

λ + 1
2 L∗2)]

− �[8πμT ∗
r + cn(L∗

λ + L∗2
λ + 1

3 L∗3
λ )] = 0, (13)

respectively, where L∗
λ = Lλ/a. Note that the forcing for the

system is the dimensionless active force strength, fa = −1,
for pushers. We can solve the coupled Eqs. (12) and (13)
simultaneously to obtain the body velocities U and � and the
tilt angle θ as a function of time until a steady state is reached.

V. RESULTS

The results of the numerical and theoretical models are
illustrated in Fig. 3.

A. Numerical model

In the numerical simulations, the cell is allowed to swim
in three dimensions. The cell body is placed at a distance
d∗ = 1.1 from the wall (δ∗ = 0.1) with its flagellar filament
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FIG. 3. Temporal evolution plot of (a) the minimum distance between the spherical cell body surface and the rigid wall δ∗, showing
attraction of the bacterium toward the wall for various flagellum axial lengths, L∗

λ = 1–6 (time t is scaled using �−1
f ), and (b) the tilt angle

θ/π . (c) Pitchfork bifurcation of the tilt angle, θ/π , plotted against the flagellum axial length L∗
λ for the numerical simulations (red dashed

lines/circles for sim-I and green dash-dotted lines/triangles for sim-II) and the theoretical model (blue solid lines/squares). The critical
flagellum axial length below which bound state is possible, obtained by Eq. (14), is shown in purple dashed line. Bound and swimming states
are represented by θ = π/2 and θ �= π/2, respectively. (d) Pitchfork bifurcation of the circular radius R traced by the bacteria when it swims
parallel to the wall (numerical simulations).

initially parallel to the wall (θ = 0). Owing to a lack of
experimental data, the geometrical parameters of the flagellar
filament are assumed to be similar to that of E. coli, namely,
ρ = 0.012 μm, λ = 2.22 μm, and Rh = 0.2 μm [10]. In the
first set of simulations (sim-I), the axial length of the filament
is varied from Lλ = 1.0 to 6.75 μm while the cell body radius
is fixed at a = 1 μm. In the second set of simulations (sim-II),
we fix the number of turns at N = 2 and axial length at
Lλ = 4.44 μm while the cell body radius is varied from a = 1
to 4 μm.

The simulations are performed as described in Sec. III until
a dynamical steady state is reached. We plot in Fig. 3(a) the
dynamics of δ(t ) for six values of the flagellum length L∗

λ for
sim-I. In each case, the cell is attracted to the wall regardless
of the flagellar filament length. As the cell gets closer to the
wall the coupling between translation and rotation becomes
stronger which causes the filament to tilt away from the wall.
This is illustrated in Fig. 3(b) where we plot the tilt angle θ (t )
for the same six cases as in Fig. 3(a). This tendency to tilt
away from the wall due to cell body-wall interaction is resisted
by the viscous torque experienced by the translating flagella
as well as an attractive torque (see Appendix E) that tends
to align the helix parallel to the wall arising from helix-wall
hydrodynamic interactions. As a result, the tilt angle reaches
a dynamical steady state whose value depends on L∗

λ.
The steady-state tilt angles θ and the radius of circular

trajectories for the bacterium R are shown in Figs. 3(c) and
3(d), respectively, as a function of the dimensionless flagellar
filament length L∗

λ. In particular, we find that cells with axial
length L∗

λ � 1.5 for sim-I and 1.78 for sim-II tilt up vertically

and become bound to the surface (θ = π/2 and R = 0) while
cells with longer flagellar filaments continue swimming in
circular trajectories. Notably, θ and R appear to undergo a
pitchfork bifurcation at these critical values.

B. Theoretical model

The results from the theoretical model, where motion is
confined to one dimension along the surface, are shown in
Fig. 3(c) with a distance between the cell-surface and the
wall kept fixed at δ∗ = 0.0001. We only use lubrication limit
solutions for the resistance matrix in Eq. (11). The tilt angle θ

plotted against L∗
λ is also seen to undergo a pitchfork bifurca-

tion from a bound to a swimming state. The critical flagellar
length for bound states predicted by the theoretical model
is higher than the numerical model. This is primarily due
to an attractive torque arising from helix-wall hydrodynamic
interaction (see Appendix E) that tends to decrease the tilt
angle of the helix present in the numerical model but absent in
the theoretical one. Nonetheless, the theoretical model is able
to capture the main physics of the transition to a bound state.

C. Stability

We may also use the theoretical model to gain insight into
the stability of the cells swimming near surfaces. To do so, we
linearize Eqs. (12) and (13), and perform a stability analysis
around the bound state with the cell oriented perpendicular
to the surface. Writing θ = π/2 + α, where α is a small
perturbation in tilt angle, we obtain the linear dynamical
equation
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dα

dt
= − faL∗

λ

[
8πμT ∗

t + cn
(
L∗

λ + 1
2 L∗2

λ

)
8πμT ∗

r + cn
(
L∗

λ + L∗2
λ + 1

3 L∗3
λ

)
(6πμF ∗

t + cnL∗
λ ) − {

8πμT ∗
t + cn

(
L∗

λ + 1
2 L∗2

λ

)}2

]
α. (14)

Since fa < 0 for pushers, the critical flagella length is simply
found when the value of the growth term in square brackets
in Eq. (14), denoted σ , changes sign. We find that σ < 0 for
shorter flagella and hence the system is stable in the bound
state, and a transition to σ > 0 occurs at a critical value of L∗

λ.
For the parameters considered here, Eq. (14) predicts the crit-
ical flagella axial length L∗

λ,crit ≈ 3.25 above which the bound
state is unstable. This value obtained from Eq. (14) is shown
as a purple colored vertical line in Fig. 3(c), showing excellent
agreement with that obtained from numerically integrating the
coupled equations (12) and (13).

D. Scaling arguments

The computational and theoretical results showing a fluid-
structure interaction instability leading to the dynamic bound
state of bacteria can be rationalized using simple scaling
arguments. First, let us consider the force balance on the cell
at steady state. The typical magnitude of the propulsive force
acting on the cell in the direction parallel to the surface is
∼ f cos θLλ while the typical drag on the cell is ∼μU (a + Lλ),
with logarithmic corrections arising from lubrication cell-
wall interactions [25] that we ignore from a scaling point of
view. Balancing these forces leads to the first scaling result,
μU (a + Lλ) ∼ f cos θLλ.

The second scaling identity arises from the balance of
torques. The cell body translates along the surface and as a
result experiences a torque (which makes it roll and aligns the
flagellum perpendicular to the surface) of magnitude ∼μUa2,
again with logarithmic corrections that we ignore. In addition,
the propelling flagellum experiences a viscous torque that acts
to sweep it behind the cell body due to the swimming motion
of the whole cell. This torque scales as ∼μULλ(a + Lλ) sin θ

when measured from the center of the cell body. The sin θ

term appears because only the flow perpendicular to the flag-
ellum induces a viscous torque. Balancing these two torques
leads to the second identity, μUa2 ∼ μULλ(a + Lλ) sin θ .

Combining the two relationships obtained from the force
and torque balances, we obtain the identity

a2 cos θ ∼ Lλ(a + Lλ) sin θ cos θ. (15)

This equation has two solutions for the angle θ . The first being
cos θ = 0, corresponding to the surface-bound state with the
flagellum pointing into the surface, and thereby, producing no
motion. The second solution is given by sin θ = a2/(aLλ +
L2

λ), corresponding to a state where the flagellum is tilted,
so the cell swims parallel to the wall and undergoes circular
swimming. It is evident that this equation has no solution if
Lλ is too small, explaining the stability of the surface-bound
state for cells with small flagella, and the existence of a new
state at a critical value of the axial flagellum length Lλ, as
seen in Fig. 3. Furthermore, the scaling arguments predict
θ → 0 for large values of Lλ, in agreement with our numerical
simulations and theoretical model.

VI. CONCLUSION

In this article, we have proposed a model explaining the
ability of spherical shaped motile T. majus bacterial cells to
become surface bound. We have shown how a large ratio of
cell body size to flagellar length can cause transition from
circular swimming along the surface to a bound state. These
results have significant implications on the initial stages of
formation of the white veil, an approximately 0.5-mm-thick
elastic porous medium that is the natural habitat of T. majus
cells [8]. Our results are in agreement with the experiments
in Ref. [13], where about 90% of cells were observed to
be in the surface-bound state while the rest were observed
to swim in circular paths. We attribute the small fraction
of swimming cells to natural variations in flagellar lengths
among cell populations.

Our results also suggest that bacteria can pump fluid nor-
mal to a rigid surface possibly increasing nutrient advection,
as opposed to previous studies where helical pumping due
to stuck bacteria occurred parallel to the surface [26,27].
However, many other questions related to T. majus locomotion
dynamics remain unanswered. How are these cells able to
swim so fast? Do they possess an elastic hook like the well-
studied E. coli and if yes, how do hooks affect the propulsion
of these microorganisms [28,29]? A recent hydrodynamic
study has proposed that fast swimming of T. majus cells occurs
due to multiple rotating flagella present on its surface [30].
However, it is not clear as to why, or how, they must all point
in the same direction. Detailed experimental work is needed in
the future to measure the rotation speed of the flagella, similar
to that done for E. coli [31], as it is possible that fast cell
swimming is a result of fast flagellar rotation. It is instructive
to note that while we have modeled the cell as having a single
flagellum, the presence of multiple propelling flagella can
create wobbling effects, as seen for E. coli [31–33], which
may impact the stability of the surface-bound state.

Finally, we note that the surface-binding phenomena have
been observed with at least two different bacterial species,
namely, E. coli [34,35] and Serratia marcescens [36], both
10 times smaller than T. majus cells but possessing an elon-
gated sphero-cylindrical cell body. Furthermore, in the case
of S. marcescens, the cells became bound to an air-liquid
interface in the same way as T. majus cells, suggesting that
the surface binding mechanism described here is not just
restricted to solid surfaces.

Note Added. Recently, the authors were made aware of
work by K. Ishimoto similar to that presented here [37].
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APPENDIX A: SLENDER-BODY THEORY OPERATORS
AND STOKESLET NEAR A WALL

In Eq. (2) in the main text, the local � and nonlocal K
operators are given by [21]

�[ f h](x0) = [−c(I + ŝŝ) + 2(I − ŝŝ)] · f h(x0), (A1)

K[ f h](x0)=
∫ L

0

(
f h(x) · G(x, x0)− I + ŝŝ

|s − s′| · f h(x0)

)
ds′(x),

(A2)

where c = log (ε2e). The tensor G(x, x0) is the free-space
Green’s function for Stokes equation also called the Oseen-
Burgers tensor, representing fluid flow produced by a point
force,

G(x, x0) = I
|x − x0| + (x − x0)(x − x0)

|x − x0|3 , (A3)

where I is the 3 × 3 identity tensor. To account for the no-slip
velocity condition on the wall, let us consider a Stokeslet
placed at a distance h above the wall at z = 0 such that its
location is (y1, y2, h). The image singularities are then accord-
ingly located below the wall at (y1, y2,−h). Green’s function
[22] due to the Stokeslet at an evaluation point (x1, x2, x3) is

Gw
i j = δi j + r̂i r̂ j

r
− δi j + R̂iR̂ j

R

+ 2h� jk
∂

∂Rk

(
hR̂i

R2
− δi3 + R̂iR̂3

R

)
, (A4)

where the vector pointing from the Stokeslet location to the
evaluation point is ri = (x1 − y1, x2 − y2, x3 − h), the vector
pointing from the image location to the evaluation point is
Ri = (x1 − y1, x2 − y2, x3 + h) and the matrix � jk is

� jk =
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠. (A5)

Note that in this slender-body theory formulation, the
cross-sectional radius of the body varies slowly as

r(s) = 2ε
√

s(L − s) where ε = r(L/2)/L, ensuring
algebraically accurate results. The cross-sectional radius
at the midpoint s = L/2 is taken to be equal to the radius
of the flagellum, i.e., r(L/2) = ρ. The kernel in Eq. (A2)
becomes formally singular when s = s′ and this singularity is
removed by regularizing the integral [38].

APPENDIX B: SUITABILITY OF BOUNDARY ELEMENT
METHOD AT RESOLVING SMALL GAPS

BETWEEN SURFACES

As mentioned in the main text, the boundary element
method (BEM) becomes increasingly untenable as the dis-
tance between the sphere’s surface and the plane wall de-
creases. The discretization error due to BEM using a single
layer potential formulation [39] can be computed by com-
paring the exact solution for the resistance matrix of the
sphere near a wall in bispherical coordinates [40–45]. For
example, a spherical uniform mesh of 5120 elements gener-
ates a grid of size �x ≈ 0.075, which prescribes the mini-
mum distance between the sphere surface and the wall to be
δ ≈ �x/2 = 0.0375 while maintaining reasonable accuracy.
However, these distances are two orders of magnitude higher
than the desired gap height of δ ≈ 0.0001. This issue can
be circumvented slightly by generating a nonuniform mesh
where a higher number of nodes are generated on the sphere’s
surface closer to the wall [46].

Denoting the values at the center with the subscript C and
the values at the junction without any subscript, the resistance
matrix of a sphere near a wall about its center xC is written as

[
FC

TC

]
=

[
AC BC

BT
C CC

][
UC

�C

]
. (B1)

Assuming the wall to be parallel to the x-y plane, the resis-
tance matrix can be expanded as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fx

Fy

Fz

Tx

Ty

Tz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

C

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6πμaF ∗
t 0 0 0 6πμa2F ∗

r 0

0 6πμaF ∗
t 0 −6πμa2F ∗

r 0 0

0 0 6πμaF ∗
t,z 0 0 0

0 −8πμa2T ∗
t 0 8πμa3T ∗

r 0 0

8πμa2T ∗
t 0 0 0 8πμa3T ∗

r 0

0 0 0 0 0 8πμa3T ∗
r,z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ux

Uy

Uz

�x

�y

�z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

C

. (B2)

The relative errors, 1 − Fbem/Fexact, of various elements of the
resistance matrix F ∗

t , F ∗
r , T ∗

r , T ∗
t , F ∗

t,z and T ∗
r,z for a uniform

mesh and a nonuniform mesh obtained by BEM are shown
in Fig. 4. The minimum distance between the sphere surface
and the wall that can be resolved with the nonuniform mesh is
δ ≈ �xmin/2 = 0.002, shown in black dashed line in Fig. 4.
The uniform mesh performs quite poorly compared to the
nonuniform mesh, particularly so for the coefficient F ∗

t,z. In all

the cases, the relative error with the uniform mesh oscillates
rather than varies smoothly with the gap height δ when
compared with the nonuniform mesh. The relative errors are
even higher for a higher grid size or lower number of surface
nodes, not shown here for brevity. The numerical error can
be reduced by using a high-order quadrature for integrating
the kernel G in the boundary integral equation; however, the
number of grid points required for performing dynamical
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FIG. 4. Relative errors of the elements of the resistance matrix of a sphere near a wall computed by boundary element method for a uniform
and non-uniform mesh when compared with exact solutions using bispherical coordinates.

simulations still remains very high. As a consequence, we
cannot use the boundary element method to accurately resolve
hydrodynamics of a body extremely close to a surface, and
instead use the method outlined in Appendix C.

APPENDIX C: FAR-FIELD AND LUBRICATION LIMITS
COMPARED WITH EXACT SOLUTIONS

In order to circumvent the issue described in Appendix B,
we use analytical results in the far-field and lubrication limits.
The coefficients appearing in the resistance matrix (B2) can
be computed exactly in bispherical coordinates. However, it
requires solving a linear system whose size increases with
decreasing gap height δ. Alternatively, they can be derived
using lubrication approximation and far-field approximation.

For a given distance from the wall, we have compared these
coefficients with the exact solutions and determined a cutoff
distance accordingly. The relative errors in the coefficients
obtained by far-field and lubrication theory when compared
to exact solutions are shown in Fig. 5. Specifically, we use

lubrication formulas [42,47] listed below for F ∗
t , F ∗

r , T ∗
t , T ∗

r ,
and F ∗

t,z when δ < 0.1, and T ∗
r,z when δ < 0.03,

F ∗
t = − 8

15
ln(δ) + 0.9588,

F ∗
r = 2

15
ln(δ) + 0.2526,

T ∗
r = −2

5
ln(δ) + 0.3817,

T ∗
t = 1

10
ln(δ) + 0.1895,

F ∗
t,z = 1

δ

[
1 + 1

5
δ ln

(
1

δ

)
+ kδ

]
,

T ∗
r,z = ζ (3) + 3

(
π2

6
− 1

)
δ, (C1)

where k = 0.971624 and ζ is Riemann’s function with ζ (3) �
1.20206. For the complementary values of δ, we use far-field

10−4

10−3

10−2

10−1

1

F
∗ t

(e
rr

or
)

0.0 0.02 0.04 0.06 0.08 0.1
δ

Lubrication

Far-field

(a)

10−4

10−3

10−2

10−1

1

F
∗ r

(e
rr

or
)

0.0 0.02 0.04 0.06 0.08 0.1
δ

(b)

10−4

10−3

10−2

10−1

1

T
∗ r

(e
rr

or
)

0.0 0.02 0.04 0.06 0.08 0.1
δ

(c)

10−7

10−5

10−3

10−1

F
∗ t,
z

(e
rr

or
)

0.0 0.02 0.04 0.06 0.08 0.1
δ

(d)

10−4

10−3

10−2

10−1

1

T
∗ r,
z

(e
rr

or
)

0.0 0.02 0.04 0.06 0.08 0.1
δ

(e)

FIG. 5. Relative errors of the elements of the resistance matrix of a sphere near a wall obtained using lubrication and far-field theory when
compared with exact solutions using bispherical coordinates.
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FIG. 6. Hydrodynamic torque Ty acting on a rotating helix measured about its tapered end for two different heights (a) d = 1.005, and (b)
d = 0.25 above the wall plotted against various tilt angles θ for various flagellar axial lengths Lλ. See the schematic diagram in Fig. 2 for an
illustration of geometrical parameters and coordinate axis definition.

analytical solutions,

F ∗
t =

[
1 − 9

16d
+ 1

8d3
− 45

256d4
− 1

16d5

]−1

,

F ∗
r = − 1

8d4

(
1 − 3

8d

)
,

T ∗
r = 1 + 5

16d3
,

T ∗
t = − 3

32d4

(
1 − 3

8d

)
,

F ∗
t,z =

[
1 − 9

16d
+ 1

8d3

]−1

,

T ∗
r,z =

[
1 − 1

8d3
− 3

256d8

]−1

. (C2)

Note that as F ∗
r /T ∗

t = 3/4, the relative error plot for T ∗
t is

identical to F ∗
r and has not been shown in Fig. 5. If the

translation and rotation are only along the x and y direction,
respectively (as in the theoretical rod model), Eq. (B1) reduces
to Eq. (11).

Lastly, for the numerical model in Sec. III of the main text,
we need a relationship between forces, torques, and velocities
at the junction, provided by rigid-body dynamics,

FC = F, TC = T + r × F, FC = AC · UC,

�C = �, UC = U + r × �, TC = CC · �C,
(C3)

where r = xJ − xC . Manipulating the equations in (C3),
we get the desired resistance matrix computed about the

junction xJ , [
F
T

]
=

[
A B
BT C

][
U
�

]
, (C4)

where A = AC , B = BC + AC · R, and C = CC + BT
C · R +

RT · BC + R · AC · RT . We have introduced the cross-
product matrix R, so that r × v = R · v, where v is any vector,

Rik = εi jkr j =
⎡
⎣ 0 −r3 r2

r3 0 −r1

−r2 r1 0

⎤
⎦. (C5)

APPENDIX D: RESISTANCE COEFFICIENTS OF A ROD

The drag coefficients used in the the rod model in Sec. IV
of the main text are obtained by assuming them to be slender
prolate spheroids [48],

ct = 2πμ

log(L/ρ) − 1/2
, cn = 4πμ

log(L/ρ) + 1/2
. (D1)

APPENDIX E: TORQUE ON A ROTATING HELIX
NEAR A WALL

A rotating helix placed in a semi-infinite fluid medium
experiences a hydrodynamic torque that is mostly attractive
except when the helix is parallel or nearly parallel and placed
above a certain height above the wall (Fig. 6). As mentioned
in the main text, this attractive torque tends to align the helix
parallel to the wall.
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