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Electrospray cone-jet mode for weakly viscoelastic liquids
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We study theoretically the influence of viscoelasticity on the steady cone-jet mode of electrospray for small
stress relaxation times. For this purpose, we numerically integrate the leaky-dielectric model together with the
Oldroyd-B constitutive relationship and calculate both the base flow and linear eigenmodes characterizing its
stability as a function of the governing parameters. We describe the effect of the polymeric stresses on both
the cone-jet mode and the minimum flow rate stability limit. There are considerable differences between the
Newtonian and viscoelastic electrospray realizations even for relatively small stress relaxation times due to
the intense extensional deformation suffered by the fluid particles in the cone-jet transition region The axial
polymeric stress shrinks the liquid meniscus and stabilizes it by pushing the fluid particle in the cone-to-jet
transition region.
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I. INTRODUCTION

Electrospinning of polymer solutions is a widely used
technique for the fabrication of polymer fibers with diameters
ranging from tens of microns down to a few nanometers [1].
Several medical areas, like tissue engineering or drug delivery
[2], benefit from this technique. Electrospinning produces
nanofibers with specific photonic, electronic, magnetic and
photocatalytic properties demanded in a number of technical
fields. Areas like textile and filter applications have benefited
from electrospinning as well [3].

Despite its wide applicability, the liquid ejection in elec-
trospinning is far from being fully understood. Most theo-
retical studies are based on the 1D (slenderness) approxima-
tion for the axial momentum equation [4,5], which allows
for a simple description of the balance between the forces
driving and opposing the liquid motion. Carroll and Joo [6]
conducted a “hybrid” local-global linear stability analysis
for low-conductivity viscoelastic liquids in which the axially
non-uniform base flow was numerically calculated from the
1D model, and was perturbed with normal modes. The analy-
sis was subsequently extended to highly-conducting polymer
solutions [7]. If the stress relaxation time is large enough
for the polymer coil-stretch transition to take place in the
unperturbed state, then the axisymmetric mode drastically sta-
bilizes. This mode has a capillary and electrical origin for low
and high conductivities, respectively. Dharmansh and Chokshi
[8] conducted the global linear stability analysis of a low-
conductivity Newtonian jet in the framework of the 1D model
too. They showed the stabilizing effect of the jet thinning, and
attributed that effect to both the variation of the surface charge
density and the extensional deformation rate in the base flow.
Similar conclusions were obtained when rheological effects
were considered [9]. To the best of our knowledge, there is

neither analytical nor numerical 2D (axisymmetric) solution
of the cone-jet mode in electrospinning. The calculation of
the scaling laws for the jet diameter and current intensity
commonly applied in electrospray of Newtonian liquids [10]
does not have its counterpart in electrospinning either.

Weakly viscoelastic polymer solutions with quasimonodis-
perse molecular weight distributions exhibit a constant vis-
cosity μ0 over a wide interval of shear rates (shear thinning
can be neglected) and elastic properties that can be approx-
imately quantified by a single characteristic relaxation time
λ̃s [11]. The Oldroyd-B model [12] is one of the simplest
approximations for calculating the total extra stress tensor of
this type of non-Newtonian liquids because it assumes a linear
relationship between the polymer stress and conformation ten-
sor, and a linear relaxation law for the latter. This simplicity,
and the fact that it can be derived from kinetic theory for a
fluid filled with elastic beads and spring dumbbells [13], has
conferred remarkable popularity upon this model [14]. One of
its fundamental limitations is the fact that it does not take into
account the finite extensibility of the polymers, and, therefore,
it cannot describe phenomena like the appearance of blistering
in capillary thinning [15,16].

The Taylor-Melcher leaky-dielectric model [17,18] has
been successfully applied to the description of the steady
cone-jet mode of electrospray [19–22]. In this approximation,
the net free charge accumulates within a very thin Debye layer
formed at the free surface, which collects free charge from
the bulk at a rate given by a constant electrical conductivity.
A natural question is whether this last condition still holds
under the anisotropic conditions arising in electrospray with
polymer solutions. In this case, the electrical conductivity
probably becomes a non-uniform tensorial quantity related to
the local value of the polymer conformation tensor, which
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accounts for the expected difference between the electrical
resistivity along the radial and axial directions of electrospray.
Given the absence of experimental measurements to support
this or any other correlation, researchers have simply extended
the Newtonian leaky-dielectric model to the viscoelastic case
by replacing the Newtonian constitutive relationship by the
Oldroyd-B or FENE-P model [4,5,9].

The cone-jet mode of electrospray is intrinsically unstable
because the breakup of the emitted jet into drops is always an
energetically favorable process. The question is whether one
can identify a fluid domain portion, which includes an ejected
thread long as compared to its diameter, where the flow
remains essentially steady. The most accurate approach to
address this question is the global linear stability analysis [23].
In this analysis, one asks the system whether small-amplitude
perturbations introduced at a given instant in the considered
fluid domain decay asymptotically on time in the Eulerian
frame of reference. For this purpose, one firstly calculates the
axisymmetric stationary solution U0(r, z) framed within the
considered fluid domain, and then obtains the global modes{

δU (k)(r, z) exp
[
i
(
mθ − ω(k)

m t
)]}

(k = 1, 2, . . . , N ) (1)

of that base flow. Here, the symbol U represents any hydrody-
namic quantity, r and z are the cylindrical coordinates (z is the
symmetry axis), and ω(k)

m = ω(k)
mr + iω(k)

mi is the eigenfrequency
characterizing the temporal evolution of the linear mode with
azimuthal number m. If all the growth factors {ω(k)

mi } are
negative, then any perturbation decays for long times, and the
base flow is asymptotically stable [23]. The linear superposi-
tion of decaying modes excited by a given perturbation may
lead to the short-term growth of that perturbation. In some
cases, this effect can destabilize an asymptotically stable flow
[24], as occurs in gaseous flow focusing [25]. However, this
possibility has not been observed in Newtonian electrospray,
where the minimum flow rates predicted by the global stability
analysis agree fairly well with the experimental values [21].
Therefore, it is reasonable to identify asymptotic stability with
linear stability in the weakly viscoelastic case too.

This work can be regarded as a first attempt to extend
the 2D numerical analyses of electrospray for Newtonian
liquids [19–22] to weakly viscoelastic fluids. We will study
how elasticity influences the flow pattern, meniscus shape,
superficial electric field, and both driving and resistant forces
arising in the cone-jet mode of electrospray. We will examine
the effect of elasticity on the linear stability of this mode under
axisymmetric m = 0 perturbations.

II. THE CONE-JET MODE OF ELECTROSPRAY

To gain insight into the time and spatial scales character-
izing the weakly viscoelastic electrospray, we here borrow
some well-established results from the Newtonian case. The
parameters which essentially characterize the steady cone-jet
mode of electrospray are the issued flow rate Q and both the
liquid and outer environment properties. The properties of
a leaky-dielectric Oldroyd-B liquid are the density ρ, (zero-
shear) viscosity μ0, stress (polymer) relaxation time λ̃s, retar-
dation time λ̃r , surface tension γ , electrical permittivity εi, and
electrical conductivity K . As can be seen, we assume that the

presence of macromolecules does not significantly alter the
isotropic character of electric conduction. This approximation
applies to viscoelastic solutions whose molecular composition
leads to significant mechanical anisotropy but quasi-isotropic
ionic diffusion. If the outer environment is either vacuum or a
gas, then its dynamical effect on the liquid can be neglected,
and the only parameter characterizing its electrical influence
is its permittivity εo.

There is a narrow interval of the applied voltage V within
which the steady cone-jet mode can be established. For this
reason, and as a first approximation, one does not regard
this quantity as a governing parameter. In the steady cone-jet
mode, conduction gives way to dominant charge convection
over the liquid surface within the so-called cone-jet transition
region [10]. Forces driving and opposing the fluid motion
emerge in this critical region, whose size is typically much
smaller than that of the electrospray device. Due to the local
character of electrospray, the device geometrical features and
associated lengths play a secondary role in this phenomenon.

Under the above conditions, one defines the char-
acteristic radial length do = [γ ε2

o/(ρK2)]1/3, axial veloc-
ity vo = [γ K/(ρεo)]1/3, electric relaxation time to = εi/K ,
electric field Eo = (γ 2ρK2/ε5

o )1/6 and current intensity
Io = γ ρ−1/2ε1/2

o in terms of the electrodynamic proper-
ties of the fluids exclusively. Five dimensionless parame-
ters can be formed with the first three characteristic quan-
tities introduced above and the liquid density and vis-
cosity: the relative permittivity β = voto/do = εi/εo, the
electrohydrodynamic Reynolds number δμ = ρvodo/μ0 =
[γ 2ρεo/(μ3K )]1/3, the dimensionless stress relaxation time
λs = λ̃s/to = λ̃s/(βdo/vo), the dimensionless retardation time
λr = λ̃r /̃λs, and the relative flow rate Qr = Q/Qo, where
Qo = vod2

o = γ εo/(ρK ).
The characteristic axial length L of the cone-jet transition

region in Newtonian electrospray can be estimated as L ∼
doQr [10], while the liquid velocity in that region scales as
vo. Therefore, the residence time tr in the cone-jet transi-
tion region scales as tr ∼ L/vo ∼ doQr/vo. The fluid particle
accelerates from a negligible velocity up to the jet speed
v j ∼ vo within the cone-jet transition region. Therefore, the
axial strain rate ε̇ in the critical region scales as ε̇ ∼ v j/L ∼
v0/(d0Qr ) [21].

The minimum flow rate stability limit is probably the
most relevant parameter region at the practical level, because
relatively monodisperse streams of droplets are produced
with their minimum size in that region. The Buckingham π

theorem [26] shows that any dimensionless number describ-
ing the steady cone-jet mode behavior must be a function
of the above-introduced governing parameters. In particu-
lar, Qrmin = Qrmin(β, δμ, λs, λr ), where Qrmin = Qmin/Qo and
Qmin is the minimum flow rate. In the Newtonian inviscid
(polarity-dominated) limit βδμ � 1, a simple scaling analysis
shows that Qrmin ∼ β [27]. Then, the residence time in the
cone-jet transition region becomes tr ∼ doβ/vo = to. There-
fore, and under the conditions mentioned above, the dimen-
sionless stress relaxation time λs = λ̃s/to can be interpreted
as the Deborah number, i.e., the stress relaxation time λ̃s

measured in terms of the residence time tr in the critical
cone-jet transition region. In addition, the axial strain rate
in that region scales as ε̇ ∼ v0/(d0β ) = t−1

o , and, therefore,
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FIG. 1. Sketch of the problem’s formulation. The rectangle (red
online) denotes the limits of the computational domain.

λs can also be regarded as the Weissenberg number, i.e., the
strain rate times the stress relaxation time.

When the radial and/or axial dimension of the cone-jet
transition region are commensurate with the Taylor meniscus
size, the latter may affect some features of the cone-jet mode.
In this case, one defines the diameter ratio � = 2Ri/do =
2[ρK2R3

i /(γ ε2
o )]1/3, where Ri is the radius of the triple contact

line anchored at the feeding capillary end. For � � 102,
the cone-jet mode stability can be influenced by the feeding
capillary size [28]. This may occur, for instance, in the cone-
jet mode of nanoelectrospray [29,30].

III. THE LEAKY-DIELECTRIC OLDROYD-B MODEL

In this section, we present the equations defining the
leaky-dielectric Oldroyd-B model and describe the numerical
method used to calculate both the base flows and their linear
stability. In this work, we restrict ourselves to the analysis of
the m = 0 mode, and, therefore, the model is axisymmetric.
Both the model and the numerical method are the natural
extensions of those recently used to study the cone-jet mode
of Newtonian electrospray [21].

Figure 1 represents the geometrical and electrical configu-
rations considered in the simulations. The red rectangle cor-
responds to the computational domain. A cylindrical capillary
is held at a constant voltage V . The capillary is brought face
to face up close to a planar grounded electrode located at a
distance H ′. A liquid is injected through the capillary at a
constant flow rate Q. The flow is fully developed inside the
capillary, so that there is a parabolic Hagen-Poiseuille velocity
profile upstream at a distance Ln from the capillary’s exit. The
triple contact line anchors at a distance Ri from the capillary
axis. The ambient medium is a perfect dielectric gas whose
dynamic effects are neglected. To analyze the global stability
of the jetting regime, we set a boundary in the downstream
direction and apply outflow (passive) boundary conditions at
that cutoff. The gravitational Bond number takes sufficiently
small values for the gravity effects to be inconsequential.
In what follows, all the quantities are made dimensionless
with the triple contact line radius Ri, the liquid density ρ,
the surface tension γ , and the applied voltage V , which
yields the characteristic time, velocity, pressure and electric

field scales tc = (ρR3
i /γ )1/2, vc = Ri/tc, pc = γ /Ri and Ec =

V/Ri, respectively. It must be noted that theses quantities
differ from those defined in Sec. II to describe the critical
cone-jet transition region because the present model considers
the entire fluid configuration.

The (dimensionless) velocity v(r, t ) = u(r, z, t )er +
w(r, z, t )ez and reduced pressure p(r, z, t ) fields are calculated
from the continuity and momentum equations:

∇ · v = 0, (2)

∂v
∂t

+ v · ∇v = −∇p + ∇ · T. (3)

The extra stress tensor T in the Oldroyd-B model can be seen
as the sum of the solvent contribution and that due to the
presence of polymers, which is given by the Maxwell model
[31]. The result is

(1 + λ∗
s G)T = Oh0(1 + λ∗

r G)[∇v + (∇v)T ] , (4)

where λ∗
s = λ̃s/tc is the stress relaxation time defined in terms

of the capillary time [32], G[A] the upper convected derivative
operator, Oh0 = μ0(ρRiγ )−1/2 the Ohnesorge number, λ∗

r =
λ∗

s μ
(s)/μ0 the dimensionless retardation time, and μ(s) the

solvent viscosity. In most viscoelastic liquids, the solution
viscosity considerably increases when the polymer is added
to the solvent. For this reason, we will assume that μ(s) � μ0

and, therefore, λ∗
r � 0.

In the leaky-dielectric model, the bulk net free charge is
assumed to be negligible, and, therefore, the electric potentials
φi and φo in both the inner (liquid) and outer (gas) domains
obey the Laplace equation

φi,o
zz + φi,o

rr + φi,o
r

/
r = 0. (5)

The subscripts r and z here and henceforth denote the partial
derivatives with respect to the corresponding spatial variables.

The free surface location is defined by the equation r =
F (z, t ). The boundary conditions at that surface are

∂F

∂t
+ Fzw − u = 0, (6)

p + FFzz − 1 − F 2
z

F
(
1 + F 2

z

)3/2 + n · T · n

= χ

2

[(
Eo

n

)2 − β
(
Ei

n

)2] + χ
β − 1

2
(Et )

2, (7)

t · T · n = χσEt , (8)

where n is the unit outward normal vector, χ = εoV 2/(Riγ )
is the electric Bond number, Ei and Eo stand for the inner and
outer electric field, respectively, t is the unit vector tangential
to the free surface meridians, and σ the superficial charge
density. Equation (6) is the kinematic compatibility condi-
tion, while Eqs. (7) and (8) express the balance of normal
and tangential stresses on the two sides of the free surface,
respectively. The right-hand sides of these equations are the
Maxwell stresses resulting from both the accumulation of free
electric charges at the interface and the jump of permittivity
across that surface.
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The electric field at the free surface and the surface charge
density are calculated as

Ei
n = Fzφ

i
z − φi

r√
1 + F 2

z

, Eo
n = Fzφ

o
z − φo

r√
1 + F 2

z

, (9)

Et = −Fzφ
o
r + φo

z√
1 + F 2

z

= −Fzφ
i
r + φi

z√
1 + F 2

z

, (10)

σ = χ
(
Eo

n − βEi
n

)
. (11)

It must be noted that the continuity of the electric potential
across the free surface, φi = φo, has been considered in
Eq. (10).

The free surface equations are completed by imposing the
surface charge conservation at r = F (z, t ),

∂σ

∂t
+ ∇s · (σv) = χαEi

n, (12)

where ∇s is the tangential intrinsic gradient along the free sur-
face, and α = K[ρR3

i /(γ ε2
o )]1/2 is the dimensionless electrical

conductivity.
As mentioned above, the Hagen-Poiseuille velocity profile

is prescribed at the entrance of the liquid domain z = 0:

u = 0, w = 2Q(1 − r2), (13)

where Q = Q/(πR2
i vc). At the capillary wall, we fix the

electric potential and impose no-slip boundary conditions, i.e.,

φi = φe = 1 and u = w = 0. (14)

The triple contact line is anchored at the end of the capillary:

F = 1 at z = Ln. (15)

The standard regularity conditions

φi
r = u = wr = 0 (16)

are prescribed on the symmetry axis, and the outflow condi-
tions

uz = wz = Fz = σz = 0 (17)

are considered at the right-hand end ze = H + Ln of the
computational domain.

The analytical solution for the far-field electric potential
[33],

φ1(r′, z′) = −Kv

log(4H ′)
log

{
[r′2 + (1 − z′)2]1/2 + (1 − z′)
[r′2 + (1 + z′)2]1/2 + (1 + z′)

}
,

(18)

is imposed at the boundary r = Re. Here, r′ and z′ are cylin-
drical coordinates with origin at the intersection between the
symmetry axis and the grounded planar electrode (see Fig. 1),
while Kv is a dimensionless constant which depends on H ′. A
logarithmic drop of voltage

φ2 = 1 − [1 − φ1(re, z′
e)] log r/ log Re, z′

e ≡ H ′ + Ln, (19)

is applied at the boundary z = 0 and 1 < r < Re. Finally, the
condition

φz = (φ1)z (20)

is imposed at the right-hand end z = ze of both the liquid and
gas computational domains.

The base flow of the steady cone-jet mode is calculated
as the solution of the above equations eliminating the partial
derivatives of the unknowns with respect to time. The simu-
lation allows one to obtain the total current intensity I as the
sum of the contributions due to the bulk conduction Ib and
surface convection Is. These contributions can be calculated
at any axial position z along the cone-jet as

Ib(z)=2παχ

∫ F (z)

0
Ei

z (r, z) r dr, Is(z) = 2πF (z)σ (z)vs(z),

(21)

where Ei
z is the axial component of the inner electric field, and

vs(z) is the free surface velocity. Both the free surface position
and current intensity have been calculated and compared with
experimental data for 1-octanol, showing good agreement
[20].

To calculate the linear axisymmetric global modes, one
assumes the temporal dependence

U (r, z; t ) = U0(r, z) + εδU (k)(r, z) e−iω(k)t (ε � 1). (22)

Here, U (r, z; t ) represents any hydrodynamic quantity,
U0(r, z) and δU (k)(r, z) stand for the base (steady) solution
and the spatial dependence of the kth eigenmode, respec-
tively, while ω(k) = ω(k)

r + iω(k)
i is the eigenfrequency. Both

the eigenfrequencies and the corresponding eigenmodes are
calculated as a function of the governing parameters. The
dominant eigenmode is that with the largest growth factor. If
that growth factor is positive, then the base flow is asymp-
totically unstable [23]. We restrict our study to the dominant
mode, whose eigenfrequency is ω = ωr + iωi.

The governing equations are formulated in terms of the
dimensionless numbers {Oh0, λ∗

s , λ∗
r , β, χ , α, Q} and those

characterizing the rest of boundary conditions. The parame-
ters of the first set can be combined to get the dimensionless
numbers {β, δμ, λs, λr , Qr} introduced in Sec. II; specifically,

δμ = α−1/3Oh1/2
0 , λs = αβ−1λ∗

s ,

λr = αβ−1λ∗
r , Qr = π αQ. (23)

The dimensionless conductivity α = βtc/to takes values much
greater than unity because the electric relaxation time to is
much smaller than the capillary one tc. This implies that
λs � λ∗

s . It must be noted that the effect of viscoelasticity in
electrospray is better quantified by the dimensionless relax-
ation time λs, because it measures the time for the polymer to
relax to its coiling state in terms of the residence time to in the
stretching region.

Most polymeric solutions exhibit zero-shear viscosities
much larger than those of their corresponding solvents. For
this reason, we will take λ∗

r � 0 in our calculations. As ex-
plained in Sec. II, the influence of the geometrical parameters
can be neglected if one takes into account both the locality
of the jet emission phenomenon and the secondary role of the
electrical potential. In particular, the results are not expected
to depend on the length H of the computational domain for
sufficiently large values of this parameter. We set H = 12
and verified that neither the base flow nor its eigenmodes
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FIG. 2. Base flows for β = 10, δμ = 2.29, χ = 7.92, Qr = 7.72,
λr = 0.0926λs, and λs = 0 (a) and 2.656 (λ∗

s = 0.108) (b). The lines
in the inner and outer domains correspond to the streamlines and
equipotential lines, respectively.

significantly varied when that parameter was considerably
increased. In addition, the length of the feeding capillary
was Ln = 1.5, the distance between the two electrodes was
H ′ = 20, and the radial distance of the outer boundary from
the symmetry axis was Re = 6.

We use the numerical method proposed by Herrada and
Montanero [34] to solve the model described in this section.
The application of that model to the electrospray configura-
tion, as well as its validation for Newtonian liquids, have been
recently described by Ponce-Torres et al. [21]. The inclusion
of the polymeric stresses does not modify any substantial
aspect of the numerical method. We refer interested readers
to that work for more details of the procedure.

The addition of elastic stresses limits the numerical stabil-
ity of the algorithm used to find the base flow solution. As
mentioned in Sec. II, the strain rate in the cone-jet transition
region of Newtonian electrospray scales as ε̇ ∼∼ v0/(d0Qr ).
This means that the polymeric stress increases in that critical
region as the flow rate decreases. This sets an upper limit to
the stress relaxation time for a fixed flow rate, and a lower
limit for the flow rate for a fixed stress relaxation time. In
addition, the retardation time somehow quantifies the energy
dissipation due to the solvent viscosity. Numerical instabilities
are damped out by the solvent viscous stresses, which sets a
lower limit for the retardation time too.

IV. RESULTS

In this section, we study the effects of viscoelasticity on
the electrospray cone-jet mode of 1-octanol (ρ = 827 kg/m3,
μ = 7.20 mPa s, γ = 23.5 mN/m, K = 9.0 × 10−7, β = 10,
δμ = 2.29), whose numerical simulation has been validated
experimentally [20,21]. This liquid corresponds to a mod-
erately low-viscosity (polarity-dominated) case. The feeding
capillary radius Ri = 550 μm is sufficiently large for the jet
emission to be regarded as a local phenomenon [21]. All
the simulations are conducted for the electric Bond number
χ = 7.92. In Figs. 2–7, we examine the effect of viscoelas-
ticity by considering the stress relaxation time λ̃s = 261 μs,
which is sufficiently large to produce noticeable effects, and
small enough for the liquid to be considered as a weakly
viscoelastic solution [35]. We take the retardation time value

2

4

6

8 (a)

1 10 100

-1

0

ω
r

ω
i

Q
r

(b)

FIG. 3. Real (a) and imaginary (b) part of the eigenvalue respon-
sible for instability as a function of Qr . The results were calculated
for β = 10, δμ = 2.29, χ = 7.92, λr = 0.0926λs, and λs = 0 (open
symbols) and λs = 2.656 (λ∗

s = 0.108) (solid symbols).

λ̃r = 24.2 μs, which is much smaller than λ̃s but sufficiently
large to damp out numerical instabilities. The influence of
viscoelasticity on the minimum flow rate stability limit is
studied in Fig. 8 for different stress relaxation times λs while
keeping constant the ratio λr/λs, i.e., for a fixed solution
viscosity.

There is a considerable difference between the flow pat-
terns of the Newtonian and viscoelastic cone-jet modes
(Fig. 2). When viscoelasticity is added to the electrosprayed
liquid, the meniscus shrinks significantly. For sufficiently
small flow rates, a recirculation cell appears in the cone. As
can be observed, that cell also shrinks in the non-Newtonian
case.

Figure 3 shows the real and imaginary parts of the eigen-
value responsible for the instability of the base flow as a
function of the flow rate Qr . In the Newtonian case, there
is an interval of flow rates for which the growth rates are
negative, which means that the system is asymptotically stable
in that interval. The maximum flow rate is roughly ten times
the minimum one. The loss of stability at the minimum and
maximum flow rates is caused by the same eigenmode. The
perturbation responsible for instability grows in amplitude
while oscillating with a frequency of the order of the capillary
time. We do not observe any bifurcation of the base flow
when the numerical solution crosses the stability limits. The
lowest flow rate explored for the non-Newtonian liquid was
limited by numerical instabilities, as explained in Sec. III.
For this reason, the minimum flow rate stability limit could
not be reached in this case. The dominant eigenmode in the
viscoelastic case changes for Qr � 10, which explains the
jump of the oscillation frequency at that flow rate. There is
little influence of viscoelasticity on both the maximum flow
rate and the oscillation frequency of the mode responsible for
the instability.

Fluid particles undergo an intense extensional flow when
crossing the cone-jet transition region, where the velocity
increases from very small values up to the jet speed. This
extensional flow stretches the polymers dissolved in the
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FIG. 4. (a) Free surface position F and strain rate ε̇ as a function
of the axial position z. (b) Components T (p)

zz and T (p)
rz of the polymeric

stress tensor and solvent contribution T (s)
zz as a function of the axial

position z. The results were calculated for β = 10, δμ = 2.29, χ =
7.92, Qr = 7.72, λr = 0.0926λs and λs = 2.656 (λ∗

s = 0.108).

liquid, which tend to relax to their coiling state on a timescale
given by λ∗

s . If this characteristic time is sufficiently large
as compared to the axial strain rate, then the stretch-to-
coil transition is prevented, and polymers keep on stretching
over the cone-jet region. In an uniaxial extensional flow,
this occurs for ε̇λ∗

s > 1/2. To examine this aspect of the
problem, we have measured the strain rate ε̇ and both the sol-
vent T (s)

zz = Ohs ∂w/∂z (Ohs = μs(ρRiγ )−1/2) and polymeric
T (p)

zz = Tzz − T (s)
zz contributions to the extra stress tensor along

the symmetry axis. Figure 4 shows the results for the case
considered in this section. As can be seen, ε̇λ∗

s > 1/2 in the
cone-jet transition region, which makes the polymer stress
sharply increase in that region. For z � 2.6, the strain rate
falls below that critical value mentioned above, and both T (p)

zz

and T (p)
rz decay exponentially. As can be observed, T (p)

rz takes
relatively small but non-negligible values. The existence of
a noticeable off-diagonal stress component of the polymeric
stress tensor has also been observed in the later stages of
Oldroyd-B filament thinning [36]. The contribution of the
solvent viscous stress is hardly noticeable due to the smallness
of the retardation time.

Figure 5 compares the tangential and normal components
of the inner and outer electric fields at the free surface for
the Newtonian liquid and its viscoelastic counterpart. In both
cases, Eo

n is around three times larger than βEi
n in the cone-jet

transition region, and, therefore, one can conclude that the
superficial charge is not fully relaxed to its local electrostatic
value within that region. The outer normal component Eo

n of
the electric field in the Newtonian cone-jet transition region
takes values significantly larger than those of the viscoelastic
case, which indicates that the energy transmitted by the dom-
inant shear electric stress to the liquid is larger in the absence
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FIG. 5. Free surface position F , bulk current intensity Ib and
surface current intensity Is as a function of the axial position z
[(a) and (c)]. Tangential Et and normal components Ei

n and Eo
n of

the inner and outer electric fields at the free surface [(b) and (d)]. The
results were calculated for β = 10, δμ = 2.29, χ = 7.92, Qr = 7.72,
λr = 0.0926λs, and λs = 0 (left) and 2.656 (λ∗

s = 0.108) (right).

of elasticity. This is linked to the more stretched shape taken
by the Newtonian liquid meniscus. The component Eo

n reaches
similar values downstream, which means that the superficial
charge density transported by the viscoelastic jet is essentially
the same as that convected by the Newtonian one.

In the 1D (slender) approximation, the momentum equa-
tion in the z-direction becomes [4]:

χ

2

[(
Eo

n

)2 − β
(
Ei

n

)2]
z︸ ︷︷ ︸

I

+χ
β − 1

2
[(Et )2]z︸ ︷︷ ︸

II

+ 2σEt

F︸ ︷︷ ︸
III

=
(

1

F

)
z︸ ︷︷ ︸

IV

+
( Q2

2F 4

)
z︸ ︷︷ ︸

V

+ 6OhsQ
F 2

(
Fz

F

)
z︸ ︷︷ ︸

VI

+ 1

F 2

[
F 2

(
T (p)

rr − T (p)
zz

)]
z︸ ︷︷ ︸

VII

. (24)

The terms of Eq. (24) have been grouped into electric (left-
hand side) and hydrodynamic (right-hand side) forces. The ad-
dends I, II, and III are generally referred to as the electrostatic,
polarization, and electric tangential forces per unit volume,
respectively [10]. The terms IV, V, VI, and VII correspond
to surface tension, inertia, solvent viscosity, and polymeric
stress, respectively.

Figure 6 shows the values taken by all the terms of the
1D model Eq. (24) as a function of the axial position z.
The electric tangential force (III) is the main driving force
and acts not only in the jet emission region but also along
the ejected liquid thread. As mentioned above, this force
takes considerably larger values in the Newtonian case. The
electrostatic suction (I) supplies much less energy, but it plays
a relevant role in shaping the cone-jet transition region to
produce the liquid ejection. It hinders the flow behind the
cone-jet transition region only in the absence of viscoelas-
ticity. Finally, the polarization force pushes the fluid in front
of the cone-jet transition region, while opposes the liquid
ejection behind that point in the two cases. Most of the work
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FIG. 6. [Graphs (a), (b), and (c)] Terms I–VII of the slenderness
model Eq. (24) as a function of the axial position z. [Graph (d)] Free
surface position F , bulk current intensity Ib and surface current inten-
sity Is as a function of the axial position z. The results were calculated
for β = 10, δμ = 2.29, χ = 7.92, Qr = 7.72, λr = 0.0926λs, and
λs = 0 (left) and 2.656 (λ∗

s = 0.108) (right).

done by the electric field on the Newtonian liquid converts into
kinetic energy. Polymers pull from the liquid while stretching
in the meniscus apex, and exert a resistant force throughout
the jet as they relax to their coiling state. The pulling exerted
by the dissolved polymers increases the liquid acceleration,
which flattens the meniscus. For this reason, the surface
tension constitutes the main energy sink in the viscoelastic
cone-jet transition region, and the 1D approximation provides
less accurate predictions in that region [see Fig. 6(c)]. In
fact, this model does not even contemplate the off-diagonal
polymeric stress T (p)

rz , which takes smaller but nonnegligible
values as compared to those of T (p)

zz (Fig. 4). The fact that the
maximum of |VII| exceeds the maximum of III reveals the
importance of the polymeric axial stress in this flow, despite
the smallness of the stress relaxation time.

Figure 7 shows the diameter dout at the outlet section and
the current intensity I transported by the liquid as a function of
the dimensionless flow rate Qr for the linearly stable configu-
rations. The diameter of the Newtonian cases is smaller than

FIG. 7. Jet diameter dout (a) and current intensity I (b) as a func-
tion of the dimensionless flow rate Qr . The results were calculated
for β = 10, δμ = 2.29, χ = 7.92, λr = 0.0926λs, and λs = 0 (open
symbols) and 2.656 (λ∗

s = 0.108) (solid symbols). The line in the
right-hand graph is the law I/Io = 2.1Q1/2

r .
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FIG. 8. Dimensionless flow rate Qr at the minimum flow rate
stability limit as a function of the stress relaxation time λs. The
results were calculated for β = 10, δμ = 2.29, χ = 7.92, and λr =
0.0926λs.

those of their viscoelastic counterparts, essentially because,
as mentioned above, the shear electric stress is larger in
the former case. The diameters do not scale as Q1/2

r in the
Newtonian case [10,37] because the jet is still accelerating
at the outlet section for large flow rates. On the contrary, the
current intensity transported by the Newtonian jet does follow
the scaling law I/Io ∼ Q1/2

r [10,37], while it considerably
deviates from that prediction when small viscoelasticity is
considered. The electric current convected by the viscoelastic
jet is smaller than that transported by its Newtonian counter-
part because the speed of the former is smaller than that of the
latter.

The minimum flow rate stability limit is a very attractive
parameter region of electrospray at the practical level because
it leads to the continuous production of the smallest droplets
while keeping a high degree of monodispersity. The effect
of viscoelasticity on the minimum flow rate stability limit
is shown in Fig. 8. The ratio λr/λs = μ(s)/μ0, and there-
fore the solution viscosity μ0, were kept constant in all the
simulations. Despite the smallness of the stress relaxation
time (λs = 0.5 corresponds to λ̃s = 49.2 μs), viscoelasticity
significantly reduces the minimum flow rate. This stabilizing
effect can be understood in terms of the polymeric force
appearing in the cone-jet transition region (Fig. 6). This force
collaborates with the incipient shear electric stress in pushing
the liquid throughout this critical cone-jet region, which helps
the fluid to overcome the resistant forces emerging in that
region. The polymeric force hinders the liquid motion beyond
the cone-jet transition region, where the fluid particle moves
faster driven by the shear electric stress. In this sense, one may
say that the liquid borrows energy from the polymeric stress
in the most unstable region and returns it when safely moving
downstream.

V. CONCLUSIONS

We analyzed theoretically the influence of viscoelasticity
on the steady cone-jet mode of electrospray for small stress
relaxation times. To this end, we numerically solved the
leaky-dielectric model and calculated both the base flow and
the eigenmodes characterizing its linear stability as a func-
tion of the governing parameters. We selected a well-known
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Newtonian electrospray realization and introduced polymeric
stresses modeled by the Oldroyd-B approximation. The stress
relaxation time was varied to examine the influence of those
stresses on the cone-jet mode stability.

When the stress relaxation time is of the order of the
residence time in the cone-jet region, fluid particles undergo
an extensional deformation in that region sufficiently intense
for the dissolved polymers to stretch continuously, preventing
their relaxation to the coiling state. As a consequence, the ax-
ial polymeric stress becomes much larger than that produced
by the solvent viscosity. This axial stress pulls from the liquid,
which accelerates much faster than in the Newtonian case.
This sharp acceleration makes the electrified liquid meniscus
shrink. The axial polymeric stress does not play a dominant
role in the final balance of energy because the kinetic energy
gained by the meniscus through the action of the stretching
polymers is lost in the jet region, where they eventually reach
their coiling state. The meniscus shrinkage reduces the outer
normal component of the electric field over the free surface,
and increases the resistant force offered by both the surface
tension and viscosity in the cone-jet transition region. These
effects collaborate in decreasing the speed of the emitted
jet with respect to that in the Newtonian case. The current
intensity transported by the viscoelastic liquid is significantly
smaller than that calculated in the Newtonian simulation,
especially for small flow rates. The fact that the liquid gains
kinetic energy from the polymeric stress in the most unstable
region seems to explain the decrease of the minimum flow rate
stability limit.

When a small amount of polymers is added to a Newto-
nian solvent, the liquid experiences two major changes: (i)
polymeric stresses arise when fluid particles are deformed
at sufficiently high rates, and (ii) the zero-shear viscosity
increases. To analyze the effect on electrospray of the first
factor exclusively, we compared numerical simulations with
and without polymeric stresses for the same values of the
Newtonian parameters, including the Reynolds number. The
conclusions might be different from those obtained when
comparing the electrospray realizations of the solvent and
the polymeric solution due to the decrease of the Reynolds
number caused by the presence of the polymers.

In the present work, the conduction of electrical charges
in the bulk is assumed isotropic. However, one may expect
that the presence of macromolecules significantly stretched
along the streamwise direction may limit the validity of

that assumption in the critical cone-jet transition region. It
must be noted that the inclusion of anisotropic and/or in-
homogeneous conductivity in the leaky-dielectric model can
violate the conservation of volumetric charge (∇ · j = 0, j
is the current density), which is automatically satisfied for
constant scalar conductivity (∇ · j = ∇ · (KE) = K∇ · E =
0). In other words, the inclusion of an electrical conductivity
linked to the state of the dissolved polymers at a given
point may require calculating the volumetric charge density
in the bulk even if the electric forces are neglected there.
The molecular origin of anisotropy that renders the liquid
mechanical response non-Newtonian is the same as the one
that would make the ionic and thermal mobilities of species
present in the liquid anisotropic: the presence of long poly-
meric chains highly aligned with the flow. One may argue
that if non-Newtonian deviations are accounted for in the
stress-strain relationship, then deviations from isotropy should
be considered in the rest of properties too. However, and given
the vast variety of liquid mixtures used in chemical processes
and applications, there can be a large range of these mixtures
that exhibit stronger mechanical deviations from isotropy than
those of electrical properties, which justifies our approach; for
example, the cases where ionic species are sufficiently small
or electrolytes are used as solvents.

Electrospray stretches violently the fluid particles in the
cone-jet transition region. As shown in this work, it can
produce Deborah numbers of the order of unity when acting
on viscoelastic liquids with stress relaxation times as small
as hundreds of microseconds. The residence time (stretching
rate) decreases (increases) with the electrical conductivity,
and, therefore, one can adjust this parameter to magnify
the viscoelastic character of the polymer solution. This of-
fers the opportunity of measuring the extensional rheological
properties of weakly viscoelastic liquids. For instance, it is
possible (and technically simple) to measure experimentally
the slenderness of the viscoelastic meniscus. Then, one can
compare it with that calculated numerically as a function of
the stress relaxation time to infer the value of this parameter.

ACKNOWLEDGMENTS

This research has been supported by the Spanish Ministry
of Economy, Industry and Competitiveness under Grant No.
DPI2016-78887, and by Junta de Extremadura under Grant
No. GR18175.

[1] D. H. Reneker and A. L. Yarin, Electrospinning jets and poly-
mer nanofibers, Polymer 49, 2387 (2008).

[2] A. G. Kanani and S. H. Bahrami, Review on electro-
spun nanofibers scaffold and biomedical applications, Trends
Biomater. Artif. Organs 24, 93 (2010).

[3] S. Agarwala, A. Greinera, and J. H. Wendorff, Functional
materials by electrospinning of polymers, Prog. Polym. Sci. 38,
963 (2013).

[4] C. P. Carroll and Y. L. Joo, Electrospinning of viscoelastic boger
fluids: Modeling and experiments, Phys. Fluids 18, 053102
(2006).

[5] S. Gadkari, Influence of polymer relaxation time on the elec-
trospinning process: Numerical investigation, Polymers 9, 501
(2017).

[6] C. P. Carroll and Y. L. Joo, Axisymmetric instabilities of elec-
trically driven viscoelastic jets, J. Non-Newtonian Fluid Mech.
153, 130 (2008).

[7] C. P. Carroll and Y. L. Joo, Axisymmetric instabilities in
electrospinning of highly conducting, viscoelastic polymer so-
lutions, Phys. Fluids 21, 103101 (2009).

[8] Dharmansh and P. Chokshi, Axisymmetric instability in a thin-
ning electrified jet, Phys. Rev. E 93, 043124 (2016).

043114-8

https://doi.org/10.1016/j.polymer.2008.02.002
https://doi.org/10.1016/j.polymer.2008.02.002
https://doi.org/10.1016/j.polymer.2008.02.002
https://doi.org/10.1016/j.polymer.2008.02.002
https://doi.org/10.1016/j.progpolymsci.2013.02.001
https://doi.org/10.1016/j.progpolymsci.2013.02.001
https://doi.org/10.1016/j.progpolymsci.2013.02.001
https://doi.org/10.1016/j.progpolymsci.2013.02.001
https://doi.org/10.1063/1.2200152
https://doi.org/10.1063/1.2200152
https://doi.org/10.1063/1.2200152
https://doi.org/10.1063/1.2200152
https://doi.org/10.3390/polym9100501
https://doi.org/10.3390/polym9100501
https://doi.org/10.3390/polym9100501
https://doi.org/10.3390/polym9100501
https://doi.org/10.1016/j.jnnfm.2007.12.005
https://doi.org/10.1016/j.jnnfm.2007.12.005
https://doi.org/10.1016/j.jnnfm.2007.12.005
https://doi.org/10.1016/j.jnnfm.2007.12.005
https://doi.org/10.1063/1.3246024
https://doi.org/10.1063/1.3246024
https://doi.org/10.1063/1.3246024
https://doi.org/10.1063/1.3246024
https://doi.org/10.1103/PhysRevE.93.043124
https://doi.org/10.1103/PhysRevE.93.043124
https://doi.org/10.1103/PhysRevE.93.043124
https://doi.org/10.1103/PhysRevE.93.043124


ELECTROSPRAY CONE-JET MODE FOR WEAKLY … PHYSICAL REVIEW E 100, 043114 (2019)

[9] D. Dharmansh and P. Chokshi, Stability analysis of an electro-
spinning jet of a polymeric fluid, Polymer 131, 34 (2017).

[10] A. M. Gañán-Calvo, The surface charge in electrospraying: Its
nature and its universal scaling laws, J. Aerosol Sci. 30, 863
(1999).

[11] C. Clasen, J. P. Plog, W.-M. Kulicke, M. Owens, C. Macosko,
L. E. Scriven, M. Verani, and G. H. McKinley, How dilute
are dilute solutions in extensional flows? J. Rheol. 50, 849
(2006).

[12] J. G. Oldroyd, On the formulation of rheological equations of
state, Proc. R. Soc. London 200, 523 (1950).

[13] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of
Polymeric Liquids (John Wiley & Sons, New York, 1987).

[14] P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H.
McKinley, and O. A. Basaran, Formation of beads-on-a-string
structures during break-up of viscoelastic filaments, Nat. Phys.
6, 625 (2010).

[15] M. S. N. Oliveira and G. H. McKinley, Iterated stretching and
multiple beads-on-a-string phenomena in dilute solutions of
highly-extensible flexible polymers, Phys. Fluids 17, 071704
(2005).

[16] C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley,
The beads-on-string structure of viscoelastic threads, J. Fluid
Mech. 556, 283 (2006).

[17] J. R. Melcher and G. I. Taylor, Electrohydrodynamics: A review
of the role of interfacial shear stresses, Annu. Rev. Fluid Mech.
1, 111 (1969).

[18] D. A. Saville, Electrohydrodynamics: The Taylor-Melcher
leaky dielectric model, Annu. Rev. Fluid Mech. 29, 27
(1997).

[19] F. J. Higuera, Numerical computation of the domain of opera-
tion of an electrospray of a very viscous liquid, J. Fluid Mech.
648, 35 (2010).

[20] M. A. Herrada, J. M. López-Herrera, A. M. Gañán-Calvo, E. J.
Vega, J. M. Montanero, and S. Popinet, Numerical simulation
of electrospray in the cone-jet mode, Phys. Rev. E 86, 026305
(2012).

[21] A. Ponce-Torres, N. Rebollo-Muñoz, M. A. Herrada, A. M.
Gañán-Calvo, and J. M. Montanero, The steady cone-jet mode
of electrospraying close to the minimum volume stability limit,
J. Fluid Mech. 857, 142 (2018).

[22] M. Gamero-Castaño and M. Magnani, Numerical simulation of
electrospraying in the cone-jet mode, J. Fluid Mech. 859, 247
(2019).

[23] V. Theofilis, Global linear instability, Annu. Rev. Fluid Mech.
43, 319 (2011).

[24] P. J. Schmid, Nonmodal stability theory, Annu. Rev. Fluid
Mech. 39, 129 (2007).

[25] F. Cruz-Mazo, M. A. Herrada, A. M. Gañán-Calvo, and J. M.
Montanero, Global stability of axisymmetric flow focusing,
J. Fluid Mech. 832, 329 (2017).

[26] G. I. Barenblatt, Scaling (Cambridge University Press, Cam-
bridge, 2003).

[27] A. M. Gañán-Calvo, N. Rebollo-Muñoz, and J. M. Montanero,
Physical symmetries and scaling laws for the minimum or
natural rate of flow and droplet size ejected by Taylor cone-jets,
New J. Phys. 15, 033035 (2013).

[28] W. J. Scheideler and C.-H. Chena, The minimum flow rate
scaling of Taylor cone-jets issued from a nozzle, Appl. Phys.
Lett. 104, 024103 (2014).

[29] J. Carlier, S. Arscott, J.-C. Camart, C. Cren-Olivé, and S.
Le Gac, Integrated microfabricated systems including a pu-
rification module and an on-chip nano electrospray ionization
interface for biological analysis, J. Chromatogr. A 1071, 213
(2005).

[30] E. M. Yuill, N. Saand, S. J. Ray, G. M. Hieftje, and L. A.
Baker, Electrospray ionization from nanopipette emitters with
tip diameters of less than 100 nm, Anal. Chem. 85, 8498 (2013).

[31] D. F. James, Boger fluids, Annu. Rev. Fluid Mech. 41, 129
(2009).

[32] T. Funada and D. D. Joseph, Viscoelastic potential flow analysis
of capillary instability, J. Non-Newtonian Fluid Mech. 111, 87
(2003).

[33] A. M. Gañán-Calvo, J. C. Lasheras, J. Dávila, and A. Barrero,
The electrostatic spray emitted from an electrified conical
meniscus, J. Aerosol Sci. 25, 1121 (1994).

[34] M. A. Herrada and J. M. Montanero, A numerical method to
study the dynamics of capillary fluid systems, J. Comput. Phys.
306, 137 (2016).

[35] P. C. Sousa, E. J. Vega, R. G. Sousa, J. M. Montanero, and
M. A. Alves, Measurement of relaxation times in extensional
flow of weakly viscoelastic polymer solutions, Rheol. Acta 56,
11 (2017).

[36] E. Turkoz, J. M. López-Herrera, J. Eggers, C. B. Arnold, and
L. Deike, Axisymmetric simulation of viscoelastic filament
thinning with the Olroyd-b model, J. Fluid Mech. 851, R2
(2018).

[37] A. M. Gañán-Calvo, J. M. López-Herrera, M. A. Herrada, A.
Ramos, and J. M. Montanero, Review on the physics electro-
spray: From electrokinetics to the operating conditions of single
and coaxial Taylor cone-jets and AC electrospray, J. Aerosol
Sci. 125, 32 (2018).

043114-9

https://doi.org/10.1016/j.polymer.2017.10.019
https://doi.org/10.1016/j.polymer.2017.10.019
https://doi.org/10.1016/j.polymer.2017.10.019
https://doi.org/10.1016/j.polymer.2017.10.019
https://doi.org/10.1016/S0021-8502(98)00780-0
https://doi.org/10.1016/S0021-8502(98)00780-0
https://doi.org/10.1016/S0021-8502(98)00780-0
https://doi.org/10.1016/S0021-8502(98)00780-0
https://doi.org/10.1122/1.2357595
https://doi.org/10.1122/1.2357595
https://doi.org/10.1122/1.2357595
https://doi.org/10.1122/1.2357595
https://doi.org/10.1098/rspa.1950.0035
https://doi.org/10.1098/rspa.1950.0035
https://doi.org/10.1098/rspa.1950.0035
https://doi.org/10.1098/rspa.1950.0035
https://doi.org/10.1038/nphys1682
https://doi.org/10.1038/nphys1682
https://doi.org/10.1038/nphys1682
https://doi.org/10.1038/nphys1682
https://doi.org/10.1063/1.1949197
https://doi.org/10.1063/1.1949197
https://doi.org/10.1063/1.1949197
https://doi.org/10.1063/1.1949197
https://doi.org/10.1017/S0022112006009633
https://doi.org/10.1017/S0022112006009633
https://doi.org/10.1017/S0022112006009633
https://doi.org/10.1017/S0022112006009633
https://doi.org/10.1146/annurev.fl.01.010169.000551
https://doi.org/10.1146/annurev.fl.01.010169.000551
https://doi.org/10.1146/annurev.fl.01.010169.000551
https://doi.org/10.1146/annurev.fl.01.010169.000551
https://doi.org/10.1146/annurev.fluid.29.1.27
https://doi.org/10.1146/annurev.fluid.29.1.27
https://doi.org/10.1146/annurev.fluid.29.1.27
https://doi.org/10.1146/annurev.fluid.29.1.27
https://doi.org/10.1017/S0022112009993235
https://doi.org/10.1017/S0022112009993235
https://doi.org/10.1017/S0022112009993235
https://doi.org/10.1017/S0022112009993235
https://doi.org/10.1103/PhysRevE.86.026305
https://doi.org/10.1103/PhysRevE.86.026305
https://doi.org/10.1103/PhysRevE.86.026305
https://doi.org/10.1103/PhysRevE.86.026305
https://doi.org/10.1017/jfm.2018.737
https://doi.org/10.1017/jfm.2018.737
https://doi.org/10.1017/jfm.2018.737
https://doi.org/10.1017/jfm.2018.737
https://doi.org/10.1017/jfm.2018.832
https://doi.org/10.1017/jfm.2018.832
https://doi.org/10.1017/jfm.2018.832
https://doi.org/10.1017/jfm.2018.832
https://doi.org/10.1146/annurev-fluid-122109-160705
https://doi.org/10.1146/annurev-fluid-122109-160705
https://doi.org/10.1146/annurev-fluid-122109-160705
https://doi.org/10.1146/annurev-fluid-122109-160705
https://doi.org/10.1146/annurev.fluid.38.050304.092139
https://doi.org/10.1146/annurev.fluid.38.050304.092139
https://doi.org/10.1146/annurev.fluid.38.050304.092139
https://doi.org/10.1146/annurev.fluid.38.050304.092139
https://doi.org/10.1017/jfm.2017.684
https://doi.org/10.1017/jfm.2017.684
https://doi.org/10.1017/jfm.2017.684
https://doi.org/10.1017/jfm.2017.684
https://doi.org/10.1088/1367-2630/15/3/033035
https://doi.org/10.1088/1367-2630/15/3/033035
https://doi.org/10.1088/1367-2630/15/3/033035
https://doi.org/10.1088/1367-2630/15/3/033035
https://doi.org/10.1063/1.4862263
https://doi.org/10.1063/1.4862263
https://doi.org/10.1063/1.4862263
https://doi.org/10.1063/1.4862263
https://doi.org/10.1016/j.chroma.2004.12.037
https://doi.org/10.1016/j.chroma.2004.12.037
https://doi.org/10.1016/j.chroma.2004.12.037
https://doi.org/10.1016/j.chroma.2004.12.037
https://doi.org/10.1021/ac402214g
https://doi.org/10.1021/ac402214g
https://doi.org/10.1021/ac402214g
https://doi.org/10.1021/ac402214g
https://doi.org/10.1146/annurev.fluid.010908.165125
https://doi.org/10.1146/annurev.fluid.010908.165125
https://doi.org/10.1146/annurev.fluid.010908.165125
https://doi.org/10.1146/annurev.fluid.010908.165125
https://doi.org/10.1016/S0377-0257(03)00013-2
https://doi.org/10.1016/S0377-0257(03)00013-2
https://doi.org/10.1016/S0377-0257(03)00013-2
https://doi.org/10.1016/S0377-0257(03)00013-2
https://doi.org/10.1016/0021-8502(94)90205-4
https://doi.org/10.1016/0021-8502(94)90205-4
https://doi.org/10.1016/0021-8502(94)90205-4
https://doi.org/10.1016/0021-8502(94)90205-4
https://doi.org/10.1016/j.jcp.2015.11.048
https://doi.org/10.1016/j.jcp.2015.11.048
https://doi.org/10.1016/j.jcp.2015.11.048
https://doi.org/10.1016/j.jcp.2015.11.048
https://doi.org/10.1007/s00397-016-0980-1
https://doi.org/10.1007/s00397-016-0980-1
https://doi.org/10.1007/s00397-016-0980-1
https://doi.org/10.1007/s00397-016-0980-1
https://doi.org/10.1017/jfm.2018.514
https://doi.org/10.1017/jfm.2018.514
https://doi.org/10.1017/jfm.2018.514
https://doi.org/10.1017/jfm.2018.514
https://doi.org/10.1016/j.jaerosci.2018.05.002
https://doi.org/10.1016/j.jaerosci.2018.05.002
https://doi.org/10.1016/j.jaerosci.2018.05.002
https://doi.org/10.1016/j.jaerosci.2018.05.002

