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Scaling of convective boundary layer flow induced by linear thermal forcing at Pr < 1 and Pr > 1
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The transient convective boundary layer flow induced by heating an initially isothermal and stationary fluid
with a linearly heated semi-infinite vertical plate is comprehensively investigated by a scaling analysis in the
present study. The local temperature at the leading edge of the specified linear thermal profile can be any value
that is no lower than the ambient fluid, which significantly differentiates the present study from previous similar
investigations. Additionally, the convective flow associated with both Pr < 1 and Pr > 1 (where Pr is the Prandtl
number) fluids is analyzed and quantified. The derived scaling relations demonstrate that the dynamics of the
Pr < 1 and Pr > 1 fluids are fundamentally different and the two flows are described by different sets of scaling
laws. The study also shows that the convective boundary layer flow first experiences an initial growth state, and
it eventually transits to a fully steady state after the leading edge effect has been completely convected away.
It is further revealed that unlike the extensively studied homogenously heating problem which is featured by a
one-dimensional initial growth state and a two-dimensional fully developed state, the present flow is consistently
two-dimensional if a nonzero background temperature stratification presents. The derived scaling relations are
validated against the direct numerical simulation results, and a good agreement is obtained.
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I. INTRODUCTION

Convective flow adjacent to a heated vertical surface is
a crucial problem in many industrial processes, such as
cooling of microchips, solar chimneys, operation of nuclear
reactors, and autonomous ventilation of next-generation high-
rise buildings. This problem has been investigated for more
than a century since the ground-breaking boundary layer
theory was first proposed by Prandtl in 1904 [1,2]. Over the
years, various aspects of the boundary layer flow have been
intensively studied [3–12], and the corresponding research
outcomes have directly or laterally facilitated the design of
electronic cooling devices, room radiators, solar collectors,
etc. Among the various topics investigated, the instability
characteristics, similarity solution, and scaling laws of the
convective boundary layer flow are probably the three most
important and fundamental ones.

It was suggested that the convective boundary layer experi-
ences three major flow states as the governing Rayleigh num-
ber increases: a stable state, a convective unstable state, and an
absolute unstable state [13,14]. These three states correspond
to different flow regimes and features. The linear stability
theory has been proven to be a powerful tool to identify the
critical Rayleigh numbers for the regime transitions. In recent
decades, this method has been extensively utilized to study
the stability and obtain the neutral curve of various convective
flow problems.

A linear stability analysis of a buoyant layer was carried
out by Tao [14]. The considered convective flow was induced
by heating a thermally stratified medium by a vertical hot
plate. It was revealed that the disturbed boundary layer flow
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does not necessarily converge to the basic state, and it can
also oscillate with an intrinsic frequency which can be de-
termined by a modified Grashof number. The numerically
obtained front position of globally unstable waves agrees very
well with that of marginal absolute instability. The dominant
frequencies in the oscillating region are also identical to the
marginal absolute frequency derived from the local linear
dispersion relation. It was therefore concluded that the front
of the nonlinear global modes is of a pulled type for the
buoyancy-driven flow system considered.

The transition to chaos of the flow between two differen-
tially heated vertical plates was studied by Gao et al. [15]. It
was demonstrated that after the first bifurcation at a critical
Rayleigh number, Rac, two-dimensional corotating rolls start
to appear in the flow. The stability of the two-dimensional
rolls was examined confronting the linear predictions with
the nonlinear integration. It was demonstrated that the two-
dimensional rolls are always destabilized in the spanwise
direction. The linear stability analysis revealed a competition
between two eigenmodes which correspond to different span-
wise wavelengths and distortion types of the rolls respectively.
It was further found by a nonlinear integration operation that
the lower-wave-number mode is always dominant. It was,
however, interesting to find that the flow becomes temporally
chaotic at Ra = 1.05 Rac. Nevertheless, it can still be charac-
terized by the spatial patterns identified by the linear stability
analysis.

The stability of a two-dimensional free convection flow in
a square cavity with the presence of a uniform internal heat
source and a uniform magnetic field was investigated with
linear stability analysis by Pelekasis [16]. The finite element
method was employed to obtain the steady and dynamic states
of flow while linear stability analysis was carried out by
solving a generalized eigenvalue problem. It was shown from
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the base solution that two recirculation regions exist when
the heat production term is amply high. The Hopf bifurcation
was identified through the stability analysis, and a neutral
stability map was further obtained for a wide range of flow
parameters. It was also demonstrated that as the Grashof
number increases, the two rolls vanish and the steady flow
configuration becomes unstable when Gr increases beyond a
critical number.

A similarity study has also been utilized to study the
convective boundary layer flows. The similarity solutions of
the energy equation are naturally applicable for the isother-
mal heating condition and constant heat flux forcing. The
hydrodynamics of thermal boundary layers adjacent to a plate
subject to the convective surface boundary condition was
further examined and investigated with this approach by Aziz
[17]. It is demonstrated that a similarity solution is possible
if the heat transfer of the lower surface of the heated plate
is proportional to x−1/2 where x is the streamwise location
from the leading edge. This finding was recently confirmed
by Ishak [18]. The similarity energy equation was eventually
obtained for various Prandtl numbers and Rayleigh numbers
by Aziz [17].

The convective flow and the associated heat transfer over
a horizontal flat plate were analytically investigated with
local similarity and local nonsimilarity methods by Chen
et al. [19]. Numerical results of the local Nusselt number,
velocity, and temperature profiles were obtained for a fluid
with a Prandtl number (Pr) of 0.7. It was found that the local
Nusselt number increases with the buoyancy force for aiding
flow, and it decreases with the buoyancy force for opposing
flow. Significant buoyancy effects were seen at Grx/Rex

5/2 <

−0.03 and Grx/Rex
5/2 > 0.05 for aiding and opposing flows,

respectively. Overshoot behavior was observed in the velocity
profile in the aiding-flow scenario. The authors suggested that
their results agree well with previous solutions only when the
buoyancy effects are small.

The so-called scaling analysis obtains the interdependency
of various flow variables on the governing parameters of the
flow problem by comparing the force and energy terms in the
governing equations. This methodology has been proven to
be especially useful for investigations of the buoyancy-driven
convective flows since it was first proposed by Patterson and
Imberger [20]. In this landmark work, the convective flow in a
cavity was studied with a Pr > 1 fluid where several possible
flow regimes were proposed, and the scales describing the
thermal boundary layer flow, intrusion flow, and the interior
potential flow were obtained.

In recent decades, Lin and his coworkers have been con-
sistently and rigorously improving this method and have
intensively utilized this method to analyze various convective
flows. The long-term behavior of cooling an initially quiescent
isothermal Newtonian fluid in a rectangular container was in-
vestigated by scaling analysis and direct numerical simulation
(DNS) by Lin and Armfield [21]. Two thermal configurations
were considered by the authors. Later Lin et al. [22] further
investigated the convective flow of Pr < 1 fluids with the
scaling analysis approach, and various scales quantifying the
Pr < 1 fluids were obtained. After revisiting the Pr > 1 fluid
flows, Lin et al. [23] successfully considered the effect of
Prandtl number by separately studying the three regions of the

boundary layer flow. Up to 2012, this methodology has been
successfully applied to quantify the Pr > 1 and Pr < 1 fluids.
However, it cannot describe fluids with Pr∼1. To tackle this
issue, Lin and Armfield [24] proposed sets of unified scaling
law to describe both the Pr � 1 and Pr � 1 fluids mainly by
fitting their DNS-obtained results. Apart from the homoge-
nously isothermal forcing, the uniform heating condition was
also studied with the scaling analysis by Lin and Armfield
[25,26].

The above literature review implies that the convective
boundary layer flow subject to linear thermal forcing has been
much less investigated, and the corresponding underlying
dynamics were also not well understood. This heating config-
uration is worth a comprehensive scaling analysis since this is
also frequently encountered in various industrial applications,
such as the cooled surface of a domestic fridge and the water
feed pipe in an ocean thermal energy conversion plant. The
thermal boundary layer induced by heating a linear stratified
fluid was primarily investigated in Ref. [27]. In a recent paper,
Liu et al. [28] successfully scaled the thermal boundary layer
flow and the subsequent intrusion flow in a differentially and
linearly heated cavity. Nevertheless, the specified linear ther-
mal forcing requires the temperature difference at the leading
edge location to be zero. Therefore, the obtained scales were
in fact not quite generalized and cannot be easily extended
to other convective flows since there are many situations in
which the boundary layer grows from a nonzero temperature
difference. This motivates the present study.

In this paper, a scaling analysis is carefully carried out
for the transient convective boundary layer flow where the
effects of Rayleigh number, Prandtl number, streamwise loca-
tion, background temperature stratification, and evolutionary
time are all considered. It is worth clarifying that the local
temperature difference at the leading edge location can be
any desirable value by properly specifying the temperature
stratification factor. It is also worth noting that both the Pr < 1
and Pr > 1 fluids are analyzed in the present work.

As a reminder of this paper, the physical problem and
the adopted DNS approach are stated in Sec. II. Section III
presents the scaling analysis for both the Pr < 1 and Pr > 1
fluids followed by numerical validations in Sec. IV. Section V
summarizes the main findings.

II. PROBLEM FORMULATION

A. Physical problem

Under consideration is a transient convective boundary
layer flow induced by a heated semi-infinite vertical plate.
At time τ<0, the ambient fluid is at rest and its temperature
is the same as that of the plate, θ0. At τ = 0, the wall
is suddenly heated and the convective flow is subsequently
initiated.

A schematic of the investigated model is sketched in
Fig. 1(a). The left surface of the model is the heated semi-
infinite vertical plate, and the other three boundaries are open.
It is noted that to ensure the employed boundaries do not
affect the flow parameters of interest to the present study,
an additional model with an extended region of a length
0.2h at the upstream of the domain was also examined. The
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FIG. 1. Schematic of employed model. (a) Heated semi-infinite
vertical plate; (b) Temperature profile of the heated semi-infinite
plate.

corresponding results compared well with the data obtained
from the present one as depicted in Fig. 1(a). Considering the
computing cost, the domain without the upstream extension is
hence utilized.

In the present study, a linear thermal forcing is imposed at
the semi-infinite plate where a temperature stratification factor
is defined as s = dθw(y)/dy. Here θw(y) is the local tempera-
ture at a streamwise location of y of the heated surface, shown
in Fig. 1(b).

Apart from the temperature stratification factor, s, the
Rayleigh number, Prandtl number, and aspect ratio of the
model also govern the present flow. They are defined as

Ra = gβ�T H3

νκ
, (1)

Pr = ν

κ
, (2)

A = H

L
, (3)

where g, β, ν, and κ are the gravitational acceleration, ther-
mal expansion coefficient, kinematic viscosity, and thermal
diffusivity of the working fluid, respectively. H and L are
the equivalent dimensional height and length of the model.
Aspect ratio of the employed model is fixed at 2. �T is
the equivalent dimensional temperature difference at y = 0.5,
which corresponds to �T = Tw(0.5H ) − T0. It is noted that
the �T is fixed in the present study regardless of Ra, Pr, and s
utilized.

B. Numerical settings

The flow is accounted for by means of DNS in the present
study. The governing equations are the two-dimensional
Navier-Stokes equations with the Boussineq approximation
for buoyancy along with the continuity and energy conser-
vation equations. A fluctuating temperature is defined as
θf (x, y) = θ (x, y) − θw(y) in this study. Then the governing

equations can be expressed as

∂u

∂x
+ ∂v

∂y
= 0, (4)

∂u

∂τ
+ u

∂u

∂x
+ v

∂u

∂y
= −∂ p

∂x
+ Pr

Ra1/2

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (5)

∂v

∂τ
+ u

∂v

∂x
+ v

∂v

∂y
= −∂ p

∂y
+ Pr

Ra1/2

(
∂2v

∂x2
+ ∂2v

∂y2

)

+ Pr�θ f , (6)

∂θ f

∂τ
+ u

∂θ f

∂x
+ v

∂θ f

∂y
+ vs = 1

Ra1/2

(
∂2θ f

∂x2
+ ∂2θ f

∂y2

)
.

(7)

The flow parameters are nondimensionalized by

x = X

H
, y = Y

H
, u = U

U0
, v = V

U0
, p = P

ρU0
2 ,

τ = t

H/U0
, θ = T − Tw(0.5H )

�T
, (8)

where the lower and upper letters denote dimensionless
and dimensional variables, respectively. U0 is the velocity
scale proposed by Patterson and Imberger [20] and it equals
κRa1/2/H .

Hence, the local temperature at the semi-infinite vertical
plate can be calculated by

θw(y) = s(y − 0.5). (9)

It is seen in Fig. 1(b) that the local temperature dif-
ference at the leading edge of the thermal boundary layer
can be a nonzero value, which makes the present study
distinctly different from previous similar investigations (see,
e.g., Refs. [22,28–30]). It is also known that the fluctuating
temperature along the heated semi-infinite vertical plate is
reduced to zero considering θ f (x, y) = θ (x, y) − θw(y), and
the difference in the local fluctuating temperature can be
calculated by �θ̃ f (y) = 1 − s(0.5 − y). It is worth clarifying
that �θ̃ f (y) denotes the difference of fluctuating temperature
over the boundary layer thickness (which is in the x direction)
at a streamwise location of y. It is thus reduced to being
one-dimensional, i.e., it depends only on y. It is also noted in
Eq. (6) that the �θf corresponds to the fluctuating temperature
difference, which is in relation to the fluctuating temperature
of θ0, i.e., θ f 0. Hereby, we have �θ f = θ f − θ f 0. It is also
worth noting that the flow reduces to the traditional homoge-
nously heating problem when s = 0.

The governing equations are implicitly solved with a fi-
nite volume method algorithm. The advection terms are dis-
cretized by the QUICK scheme. The spatial discretization of
all second-derivative terms and linear first-derivative terms
adopts the second-order central-differenced scheme [31].
The transient term uses a second-order backward difference
method. A pressure correction-based iterative algorithm, SIM-
PLE, was used during the computations [32]. The solution is
converged when the scaled residual of the computational cell
falls below 10−6 for the temperature equation and 10−3 for the
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FIG. 2. Time series of vertical velocity at the monitoring point
(x = 0.004, y = 0.5) for grid- and time-step-dependency tests (Ra =
1 × 109, Pr = 100, and s = 0).

continuity and momentum equations. The adopted numerical
settings are similar to those adopted in Refs. [7,28].

Three grids and three time steps are examined to ensure
the DNS-obtained results do not depend on these numerical
arrangements. The constructed mesh systems are nonuniform,
and the grid is finer towards the heated plate. During the
calculations, the time series of the vertical velocity in the
thermal boundary layer at a monitoring point (x = 0.004,
y = 0.5) is recorded with the case Ra = 1 × 109, Pr = 100,
and s = 0. It needs to clarify that this specific case employed
for the grid- and time-step-dependency tests corresponds to
the “strongest” flow under investigation. The corresponding
results are presented in Fig. 2.

It is found that the monitored parameter varies only slightly
among different meshes and time steps, suggesting any com-
bination can be adopted for the numerical calculations. Con-
sidering the computing efficiency, the grid system of 520 ×
180 and the time step of 1.4 × 10−3 are employed for the
following DNS calculations.

In the present study, both Pr < 1 and Pr > 1 fluids are
investigated, and a total of 20 DNS runs are carried out
to validate the derived scales. Detailed information of the
calculated cases is listed in Table I. It is worth clarifying that
only non-negative s is considered in the current study, s � 0.
Also, to make sure the temperature at the heated semi-infinite
plate is no lower than the ambient fluid, it then requires a non-

negative fluctuating temperature at y = 0, �θ̃f (y = 0) � 0.
This subsequently requires s � 2. Therefore, the temperature
stratification factor s ranges from 0 to 2 in this study as
demonstrated in Fig. 1(b).

III. SCALING ANALYSIS

The convective boundary layer flow can be predominantly
characterized by a thickness scale and a velocity scale. In
the following sections, scaling analysis is carried out for
various flow conditions and fluid properties, which will lead
to comprehensive understanding and scales of the convective
boundary layer at both the start-up and the fully developed
states. It is worth noting that the present work differentiates
from the previous ones (see, e.g., Refs. [20,23]) in adopting a
linear temperature gradient at the heated surface.

A. Pr > 1 fluids

Immediately after the initiation of the convective flow, heat
is conducted into the interior fluid, and this subsequently
results in a thermal boundary layer flow adjacent to the
heated plate. In this process, the unsteady term in the energy
conservation equation, or the so-called inertial term, is very
large. Hence, the ratio of the unsteady term �θ̃f (y)/τ to the
convection term v(�θ̃f (y)/y + s) is much larger than unity.
It is also noted that dimensions of the boundary layer are
usually approximated by δθ and h in the x and y directions,
respectively. Thus we have ∂/∂x ∼ 1/δθ , which is much larger
than ∂/∂y ∼ 1/h in the present study. Therefore, the thermal
balance of the boundary layer is between the inertial term and
the diffusion term, which can be expressed as

�θ̃ f (y)

τ
∼ �θ̃ f (y)

Ra1/2δθ
2 . (10)

Then the scale of the thickness of the thermal boundary at
the start-up state, δθ , can be obtained as

δθ ∼ Ra−1/4τ 1/2. (11)

To precisely account for the effect of the Prandtl number,
Lin et al. [23] suggested that the three-region structure of the
thermal boundary layer needs to be considered and treated in-
geniously. The corresponding profiles are illustrated in Fig. 3,

TABLE I. Detailed information of the 20 calculated case runs.

Run no. Scenarios s Ra Pr

1 Pr > 1 0 1 × 109 6.63
2 0.5 1 × 109 6.63

3–8 1 1 × 107, 5 × 107, 1 × 108, 1 × 109 6.63, 50, 100
9 1.5 1 × 109 6.63

10 2 1 × 109 6.63
11 Pr < 1 0 1 × 108 0.05
12 0.5 1 × 108 0.05

13–18 1 1 × 106, 1 × 107, 1 × 108 0.05, 0.1, 0.2, 0.5
19 1.5 1 × 108 0.05
20 2 1 × 108 0.05
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FIG. 3. Schematic of the three-region structure of boundary layer
flow with Pr > 1.

which consists of an inner viscous layer, a thermal layer, and
an outer viscous layer for the Pr > 1 fluids.

Region I corresponds to the inner viscous layer, and it is
from the semi-infinite vertical plate to the horizontal location
of the maximum vertical velocity. The width of this region is
δiv . Buoyancy is the driving force in this region. In the vertical
momentum, Eq. (6), the ratio of the inertial term (∂v/∂τ ) to
the viscous term [Ra−1/2Pr(∂2v/∂x2)] is 1/Pr. This suggests
that, for fluids with Pr > 1, the viscous term is greater than
the inertial term. Then the inertial term can be ignored in this
scenario, and we can write

Prvm

Ra1/2δiv
2 ∼ Pr�θ̃ f (y). (12)

Then we can come to a scale of the vm as

vm ∼ Ra1/2�θ̃ f (y)δiv
2. (13)

In region II the flow is not directly driven by buoyancy, and
the corresponding motion is in fact caused by the diffusion of
momentum. Therefore, considering the inertial term can be
ignored, by integrating the vertical momentum equation over
this region, we have

Pr

Ra1/2

(
∂v

∂x

)δθ

δiv

∼ Pr
∫ δθ

δiv

�θ̃ f (y)dx. (14)

It is worth clarifying for the right-hand side of Eq. (14)
that the buoyancy vanishes beyond x ∼ δθ . However, it is
significant at x ∼ δiv . Thus the correct way to estimate the
buoyancy over region II is to integrate. Considering that
( ∂v

∂x )δiv = 0, ( ∂v
∂x )δθ

≈ vm
δv−δiv

and the difference in local fluctu-

ating temperature, �θ̃f (y), is independent of x. Equation (14)
can be rewritten as

Pr

Ra1/2

vm

δv − δiv
∼ Pr�θ̃ f (y)

∫ δθ

δiv

dx . (15)

Hence the scale of the vertical velocity vm is obtained as

vm ∼ Ra1/2�θ̃ f (y)(δθ − δiv )(δv − δiv ) . (16)

Combining Eqs. (13) and (16), we have

(δθ − δiv )(δv − δiv ) ∼ δiv
2. (17)

In region III of the boundary layer, there is no temperature
gradient implying the absence of buoyancy. In this region, the

inertial term balances the viscous term. We can hence write

v

τ
∼ Pr

Ra1/2

v

δv
2 . (18)

Then we can obtain the thickness of the outer viscous layer as

δv ∼ Pr1/2δθ . (19)

By substituting Eq. (19) into Eq. (17), we can come to the
scale quantifying the thickness of the inner viscous layer as

δiv ∼ δθ δv

δθ + δv

∼ δθ

1 + Pr−1/2
∼ τ 1/2

Ra1/4(1 + Pr−1/2)
. (20)

The scale of vm at the start-up state can be obtained by
inserting Eq. (20) into Eq. (13) as

vm ∼ �θ̃ f (y)τ

(1 + Pr−1/2)2 ∼ [1 − s(0.5 − y)]τ

(1 + Pr−1/2)2 . (21)

The boundary layer thickens in the initial growth state until
a time instance at which the heat conducted in through the
heated plate is completely convected away by the boundary
layer. In Eq. (7), this corresponds to

vm

[
�θ̃ f (y)

y
+ s

]
∼ 1

Ra1/2

[
�θ̃ f (y)

δ2
θ

]
. (22)

This gives a timescale of τsy as

τsy ∼ (1 + Pr−1/2)y1/2

(1 − 0.5s + 2sy)1/2 . (23)

Combining Eqs. (21) and (23), the scale of the character-
istic velocity of the steady-state boundary layer is obtained as

vmsy ∼ (1 − 0.5s + sy)y1/2

(1 + Pr−1/2)(1 − 0.5s + 2sy)1/2 . (24)

By substituting Eq. (23) into Eq. (11), the thickness of the
steady-state boundary layer is obtained as

δθsy ∼ (1 + Pr−1/2)
1/2

y1/4

Ra1/4(1 − 0.5s + 2sy)1/4 . (25)

Insert Eq. (23) into Eq. (20), and we can come to the scale
quantifying the thickness of the steady-state inner viscous
boundary layer as

δivs ∼ y1/4

Ra1/4(1 + Pr−1/2)1/2(1 − 0.5s + 2sy)1/4
. (26)

B. Pr < 1 fluids

The boundary layer flow associated with Pr < 1 fluids will
be analyzed in the present section. It is worth clarifying at
this point that, unlike the Pr > 1 fluids, the effect of Prandtl
number of Pr < 1 fluids can be reasonably quantified without
examining the near-wall flow and thermal profiles [22].

When the thermal forcing is applied at the heated semi-
infinite vertical plate, the convective flow is immediately
initiated. In the energy conservation, Eq. (7), the inertial
term is �θ̃ f (y)/τ , the advection term is v(�θ̃ f (y)/y + s) and
the thermal diffusion term is �θ̃ f (y)/Ra1/2δθ

2. The ratio of
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inertial term to advection is greater than one when the time is
small enough, and the advection term therefore can be ignored
on this occasion. We can hereby obtain the thickness of the
thermal boundary layer in the start-up state as

δθ ∼ Ra−1/4τ 1/2. (27)

Consider the vertical momentum Eq. (6), the inertial term
is v/τ , the advection term is v2/y, the viscous term is
Prv/Ra1/2δθ

2, and the buoyancy term is Pr �θ̃ f (y). The ratio
of inertial term to the advection term is y/τv, which is higher
than the unity immediately after the initiation of the flow.
Therefore for the Pr < 1 fluids, the correct balance should
be between the inertial, viscous, and buoyancy forces, as
suggested by Lin et al. [22]:

vm

τ
+ Pr

Ra1/2

vm

δ2
θ

∼ Pr�θ̃ f (y) . (28)

Hence, the scale of the velocity of the thermal boundary layer
at the developing state can be obtained as

vm ∼ �θ̃ f (y)τ

(1 + Pr−1)
. (29)

The boundary layer will keep growing until the convection
balances the conduction. We can find this balancing in the
energy equation by

vm

[
�θ̃ f (y)

y
+ s

]
∼ 1

Ra1/2

[
�θ̃ f (y)

δ2
θ

]
. (30)

Then we can come to the timescale τsy beyond which the
boundary layer will transit to a steady state:

τsy ∼ (1 + Pr−1)1/2
y1/2

(1 − 0.5s + 2sy)1/2 . (31)

By inserting Eq. (31) into Eqs. (27) and (29), we can obtain
the scales quantifying the velocity and thickness of the steady-
state boundary layer as

vmsy ∼ (1 − 0.5s + sy)y1/2

(1 + Pr−1)1/2(1 − 0.5s + 2sy)1/2
, (32)

δθsy ∼ (1 + Pr−1)1/4
y1/4

Ra1/4(1 − 0.5s + 2sy)1/4 . (33)

IV. VALIDATION OF THE DERIVED SCALES

A. Pr > 1 fluids

Figure 4(a) presents time histories of the normalized tem-
perature in the convective boundary layer adjacent to the
heated semi-infinite vertical plate for the case with a Rayleigh
number of 1 × 109 and a Prandtl number of 6.63. The ini-
tial growth, transitional state, and eventual steady state are
all clearly revealed. It is also demonstrated in this figure
that the temperature oscillatory behavior and the temperature
overshoot phenomenon greatly depend on the specified strat-
ification factor. When it equals zero, i.e., when s = 0, the
thermal condition is reduced to the extensively investigated
homogenously heating problems, and this corresponds to the

FIG. 4. Normalized temperature-time series at the monitoring
point (x = 0.004, y = 0.5) with Ra = 1 × 109 and Pr = 6.63.

strongest leading edge effect (LEE). It is interesting to note
that the temperature overshoot is barely seen at s = 2.

Figure 4(b) shows the amplitude of the temperature oscil-
lation in the transitional state to primarily reveal the effect of
temperature stratification on LEE. It is seen that Alee mono-
tonically decreases with s, and it reduces to approximately
zero at s = 2. As discussed in Sec. II, the difference of the
local fluctuating temperature is �θ̃f (y) = 1 − s(0.5 − y). At
the leading edge location, y = 0, the temperature difference
becomes zero if s equals to 2. This suggests that the LEE
and the subsequent traveling waves are the weakest if the
temperature difference at the leading edge equals to zero. This
is consistent with our ongoing studies, and our previous work
for the Pr > 1 fluid also exhibits the same behavior. However,
it is also seen that Alee does not significantly change with the
stratification factor when s is above approximately 1.6. The
corresponding investigation might be carried out in a further
separate study since the present work mainly focuses on the
scaling laws of the transient convective boundary layer flow.

Figure 5(a) presents profiles of normalized temperature
obtained with various stratification factors, times, Prandtl
numbers, and streamwise locations at the start-up state. It
is seen that the temperature decreases gradually towards the
interior fluid. It is also clear in this figure that the thickness of
the thermal boundary layer does vary among these parameters.
Figure 5(b) plots the normalized temperature against x/τ 1/2

at the specific Rayleigh number of 1 × 109. It is seen in
Fig. 5(b) that all data fall onto approximately the same line,
suggesting the proposed scale in Eq. (11) can accurately
describe the thickness of the thermal boundary layer in the
initial growth state. It is also worth noting that the legend of
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FIG. 5. Profiles of normalized temperature adjacent to the heated
plate at the start-up state. (Ra = 1 × 109). (a) Raw data; (b) Normal-
ized temperature against x/τ 1/2.

Fig. 5 is inserted only in Fig. 5(b) for conciseness, and the
same procedure is adopted for Figs. 6 and 8.

Figure 6(a) presents the velocity profiles obtained with
various stratification factors, times, Prandtl numbers, and
streamwise locations at the start-up state. It is seen from the
raw data in Fig. 6(a) that the maximum velocity is different
case by case, and it is also found that the velocity maximizes
at different horizontal locations, suggesting the thickness of
the inner viscous boundary layer also greatly depends on these
flow parameters. Figure 6(b) shows the normalized velocity of
v(1 + Pr−1/2)2/(1 − 0.5s + sy)τ against x(1 + Pr−1/2)/τ 1/2

at the specific Rayleigh number of 1 × 109. It is seen in
Fig. 6(b) that all data within the inner viscous boundary layer
collapse onto approximately the same line, suggesting the
proposed scales in Eqs. (20) and (21) can properly quantify
the thickness and momentum of the boundary layer flow at
the start-up state.

Convection becomes more important with the increase
of time, and the boundary layer transits to a steady state
when the convection is comparable with the conduction. The
thickness of the thermal boundary layer is monitored and
recorded at different Rayleigh numbers, Prandtl numbers,
times, stratification factors, and streamwise locations during
the DNS computations. The corresponding thickness time
series are presented in Fig. 7. It is demonstrated that the
thermal boundary layer thickens with time in the developing

FIG. 6. Velocity profiles of convective boundary layer at the
start-up state. (Ra = 1 × 109). (a) Raw data; (b) Normalized velocity
v(1 + Pr−1/2)2/(1 − 0.5s + sy)τ vs x(1 + Pr−1/2)/τ 1/2.

state according to (τ/τsy)1/2. At τ ∼ τsy the thickness starts
to overshoot, and the oscillatory behaviors are seen in the
transitional state. The boundary layer eventually reaches a
steady state after the passage of the LEE phenomenon. It is
also clear that, apart from the temperature oscillations caused
by the LEE in the transitional state, all data points fall onto
approximately the same line supporting Eqs. (11) and (23).
Note that the thickness of the thermal boundary layer is
identified at the location where the temperature equals 5%
of the local fluctuating temperature difference in the present
DNS calculations. Our separate study shows that the agree-
ment between DNS calculations and scaling is not affected if
another criterion of identifying the boundary layer edge was
employed, e.g., 3% or 8%. It is also worth noting in Fig. 7 that

FIG. 7. DNS-obtained δθ/δθsy vs (τ/τsy )1/2.
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FIG. 8. Velocity profiles of boundary layer flow at the steady
state (Ra = 1 × 109 at τ = 4.5τsy). (a) Raw data; (b) v/vmsy vs
x(1 + Pr−1/2)1/2(1 − 0.5s + 2sy)1/4y1/4.

both the numerator and denominator appearing in the vertical
axis are determined from the present DNS calculations, while
the denominator appearing in the horizontal axis is calculated
by the corresponding scaling relation. The same procedure is
adopted for Figs. 9, 13, and 14 below.

It is seen in Fig. 7 that the thermal boundary layer fully
stabilizes after approximately 4τsy. The velocity profiles of
the steady-state convective flow adjacent to the heated semi-
infinite vertical plate at various Pr, s, y are plotted in Fig. 8(a).
It is clearly demonstrated in this figure that the maximum
velocity and the horizontal location which corresponds to
the maximum velocity also depend on these parameters. The
horizontal and vertical coordinates in Fig. 8(a) are further
normalized by the thickness of the inner viscous layer and the

FIG. 9. Numerically obtained vm/vmsy vs τ/τsy.

FIG. 10. Scale of Ra−1/4(1 − 0.5s + 2sy)−1/4(1 + Pr−1/2)1/2y1/4

vs numerically obtained δθsy at the steady state.

characteristic velocity of the boundary layer respectively in
Fig. 8(b). It is seen that the velocity profiles within the inner
viscous boundary layer almost collapse onto the same line,
suggesting the proposed scale in Eq. (26) can well quantify
the thickness of the viscous boundary layer at the steady state.
It also needs to mention that vmsy as appears in the vertical
axis of Fig. 8 is obtained from the present DNS calculations.

According to Eq. (21), the characteristic velocity of the
thermal boundary layer increases with time according to
vm ∼ τ . Note that the maximum vertical velocity within the
boundary layer obtained from the present DNS calculation
is taken to be its characteristic velocity, vm = max[v]. This
parameter is recorded during the computations, and Fig. 9
plots the time histories of the corresponding velocity ratio.
The initial growth, transitional, and steady states as observed
in Fig. 7 are also clearly demonstrated in Fig. 9. It is also seen
that the results of velocity ratios obtained with different Ra, Pr,
y, and s fall onto approximately the same line at both the initial
growth and the steady states, suggesting the proposed scales
in Eqs. (21) and (23) can appropriately describe the boundary
layer flow.

Figure 10 presents the thickness of the steady-state thermal
boundary layer obtained from the present DNS calculations
against the scale of δθsy, Eq. (25). Note that the presented
results are obtained at different Ra, Pr, s, and y. A clear linear
correlation is seen validating the corresponding scale. It is also
seen that the scaling predictions slightly deviate from the nu-
merical results with the Ra = 1 × 107 case. This corresponds
to the lowest Rayleigh number studied at Pr > 1. In this case
the conduction becomes relatively important in relation to
convection compared to higher Ra cases. Nevertheless, R2

of the linear fit is found to be 0.99505, still validating the
corresponding derived scale relation.

Figure 11 presents the numerically calculated velocity of
the steady-state thermal boundary layer against the scale of
vmsy, Eq. (24). The DNS results at different Ra, Pr, s, and y
are shown in this figure. It is seen that the proposed scale
can accurately describe the velocity in the boundary layer
supporting the corresponding scale relation in Eq. (24).

The above analysis and validation show that the dynamics
of the boundary layer flow is determined by the balances
between the various terms of the governing equations. It is
also demonstrated in Sec. III that for the fluids with Pr > 1,
the momentum of the boundary layer flow is dominated by the
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FIG. 11. Scale of (1+Pr−1/2)−1(1 − 0.5s + 2sy)−1/2(1 − 0.5s +
sy)y1/2 vs numerically obtained vmsy at the steady state.

buoyancy and the viscous effects while all other terms can be
subsequently neglected. Figure 12(a) presents the horizontal
profiles of the inertial, horizontal advection, vertical advec-
tion, viscous, buoyancy terms as well as the velocity of the
convective boundary layer with the case Ra = 1 × 108, Pr =
6.63, s = 1 at a streamwise location of 0.5 and a time instance
of 0.22τsy (in the developing state). It is clearly seen that the
buoyancy and viscous are indeed much more significant than
the other terms in the initial growth state. Figure 12(b) further
shows the profiles of these terms at a much later time, at

FIG. 12. Horizontal profiles of the unsteady term, horizontal
advection term, vertical advection term, buoyancy term, viscous
term, and velocity with the case Ra = 1 × 108, Pr = 6.63, s = 1 at
a streamwise location of y = 0.5. (a) Start-up state (at τ = 0.22 τsy);
(b) Steady state (at τ = 4.38τsy).

FIG. 13. DNS-obtained δθ/δθsy vs (τ/τsy )1/2.

4.38τsy at which time the flow has transited to the steady state.
It is also seen that values of all the other terms are much lower
than the viscous and buoyancy. The growth in characteristic
velocity and thickness of the convective boundary layer is
also clearly demonstrated in these two figures. It is worth
noting that the velocity profiles obtained from the present
DNS calculations are timed by 10 to better demonstrate its
growth with time in Figs. 12(a) and 12(b).

B. Pr < 1 fluids

Flows associated with the Pr < 1 fluids are fundamentally
different from the Pr > 1 ones, and this is caused by the
different underlying dynamics and force balances. It has been
demonstrated in the present study that different sets of scale
quantify the Pr < 1 and Pr > 1 flow. The scales describing the
Pr < 1 fluids will be validated in the present section.

Figure 13 plots the thickness ratio of the thermal boundary
layer against (τ/τsy)1/2. The initial growth state, transitional
state, and eventual steady state are all clearly seen in this
figure. It also demonstrates that, apart from the transitional
state which is affected by the LEE, all the DNS-obtained
results converge onto approximately the same line supporting
the scales in Eqs. (27) and (31).

Figure 14 plots the velocity ratio of the thermal boundary
layer against τ/τsy. It is seen that the velocity increases with
time according to vm ∼ τ , and this is consistent with the scale
relation in Eq. (29). Oscillations in velocity are also observed

FIG. 14. DNS-obtained vm/vmsy vs τ/τsy.
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FIG. 15. Scale of Ra−1/4y1/4(1+Pr−1)1/4(1 − 0.5s + 2sy)−1/4 vs
numerically obtained δθsy at the steady state.

in the transitional state, and it is associated with the LEE
phenomenon. After the passage of the LEE-caused oscillatory
behaviors, the boundary layer enters the steady state. It is
also found in this figure that the numerically obtained data
almost fall onto the same line in both the early and steady
states.

The thickness of the steady-state thermal boundary
layer obtained from the present DNS calculations is
presented in Fig. 15 against the scale of Ra−1/4y1/4

(1 + Pr−1)1/4(1 − 0.5s + 2sy)−1/4. It is seen that the pro-
posed scale in Eq. (33) can reasonably quantify the thickness
of the steady-state boundary layer at different streamwise
locations and at various working conditions. Deviation be-
tween scaling and numerical results is noticed with the Ra =
1 × 106 case in this figure, which corresponds to the lowest
Rayleigh number studied at Pr < 1. Similar to the afore-
mentioned Pr > 1 case, this is in fact caused by the relative
relation between conduction and convection. R2 of the linear
fit is found to be 0.98976, still supporting the corresponding
derived scale relation.

Figure 16 presents the numerically calculated char-
acteristic velocity of the steady-state thermal boundary
layer against the scale of (1 + Pr−1)−1/2(1 − 0.5s + 2sy)−1/2

(1 − 0.5s + sy)y1/2. A linear fit is seen in this figure suggest-
ing the proposed scale relation in Eq. (32) can reasonably
describe the motion of the steady-state boundary layer at dif-

FIG. 16. Scale of (1 + Pr−1)−1/2(1−0.5s + 2sy)−1/2(1 − 0.5s +
sy)y1/2 vs numerically obtained vmsy at the steady state.

FIG. 17. Horizontal profiles of the unsteady term, horizontal
advection term, vertical advection term, buoyancy term, viscous
term, and velocity with the case Ra = 1 × 108, Pr = 0.5, s = 1 at
a streamwise location of y = 0.5. (a) Start-up state (at τ = 0.22 τsy);
(b) Steady state (at τ = 6.57τsy).

ferent streamwise locations and at various working conditions
and R2 of the fitted line is 0.96063.

The horizontal profiles of the various terms describing the
unsteady vertical momentum of the present Pr < 1 fluids are
plotted in Fig. 17(a), and the corresponding data are obtained
at a time instance of τ = 0.22 τsy. It is seen in this figure that
the buoyancy, the vertical advection, and the viscous terms
are of equivalent significance, and all other terms are much
smaller at the initial growth state which confirms the corre-
sponding analysis in Sec. III. Figure 17(b) further presents
the profiles at the steady state, at τ = 6.57τsy. It is seen that
the unsteady term decreases to approximately zero at this
state, leaving the buoyancy and viscous terms still the most
important ones and confirming the force balances utilized for
deriving the scales in Sec. III.

V. CONCLUSION

The convective boundary layer flow induced by linearly
heating an initially isothermal and quiescent fluid is investi-
gated by a scaling analysis in this study.

The derived scaling relations demonstrate that the flow
mechanism of the Pr < 1 and Pr > 1 fluids are fundamentally
different, and the two flows are described by different sets of
scaling laws. It is also found that the convective boundary
layer flow first experiences an initial growth state, and it
eventually transits to a fully steady state after the LEE is fully
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convected away. The scaling analysis further reveals that un-
like the extensively studied homogenously heating problem,
which is featured by a one-dimensional initial growth state
and a two-dimensional fully developed state, the present flow
problem is consistently two-dimensional as long as s �= 0, i.e.,
a nonzero background temperature stratification. The derived
scaling relations are compared with the DNS results, and a
good agreement is achieved.

It is also primarily found from the current DNS calcula-
tions that the oscillatory amplitude of the flow parameters as-
sociated with the LEE reduces with increasing the temperature

stratification factor, s, at Pr > 1. This may merit a separate
study in the future.
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