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Statistics of Lagrangian trajectories in a rotating turbulent flow
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We investigate the Lagrangian statistics of three-dimensional rotating turbulent flows through direct numerical
simulations. We find that the emergence of coherent vortical structures because of the Coriolis force leads to a
suppression of the “flight-crash” events reported by Xu et al. [Proc. Natl. Acad. Sci. (USA) 111, 7558 (2014)].
We perform systematic studies to trace the origins of this suppression in the emergent geometry of the flow and
show why such a Lagrangian measure of irreversibility may fail in the presence of rotation.
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The irreversibility of fully developed, homogeneous, and
isotropic turbulence, as well as the nontrivial spatio-temporal
structure of its (Eulerian) velocity field shows up in an in-
teresting way in the statistics of the kinetic energy along
Lagrangian trajectories. Xu et al. [1], measured the kinetic
energy of a tracer along its trajectory, as a function of time,
to show that the gain in kinetic energy (over time) is gradual
whereas the loss is rapid. (The average energy, statistically,
is of course constant over time.) This behavior of the energy
fluctuations is quantified most conveniently by the statistics
of energy increments (gain or loss) at small, but fixed, time
intervals. In the limiting case, the rate of change of the kinetic
energy, or power, serves as a useful probe to understand
how Eulerian irreversibility manifests itself in the Lagrangian
framework. Bhatnagar et al. [2], extended this idea to the case
of heavy, inertial particles, preferentially sampling the flow,
to disentangle the effects of irreversibility and flow geometry.
Very recently, Picardo, et al. [3] examined this phenomenon,
inter alia Eulerian dissipation and extreme events.

This feature of Lagrangian trajectories, dubbed flight-crash
events [1], is a consequence of the dissipative nature of
turbulent flows as well as the spatial structure of the Eulerian
field with its intense, though sparse, regions of vorticity and
more abundant, though milder, regions of strain. However, so
far, measurements have been confined only to flows which are
statistically homogeneous and isotropic. Therefore it is natural
to ask if flight-crash events are just as ubiquitous in turbulent
settings with anisotropy and structures different from those
seen in statistically homogeneous, isotropic turbulence. An
obvious candidate for this is fully developed turbulent flows
under rotation [4–6], which are seen in a variety of processes
spanning scales ranging from astrophysical [7–9], to geophys-
ical [10], to industrial [11]. In all these phenomena, although
the Coriolis force does no work, it leads to the formation of
large-scale columnar vortices leading to dynamics quite dif-
ferent from nonrotating, three-dimensional flow. In particular,
rotation gives rise to an enhanced accumulation of energy
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in modes perpendicular to the plane of rotation [12–14],
an inverse energy cascade in three-dimensional (3D) turbu-
lence [15–17], generation of inertial waves [6,18,19], and an
increase in length scales parallel to the axis of rotation [20].
Consequently, rotating turbulence has been the subject of
many experimental [17–23] and theoretical [13–16,24–29]
investigations in the last few decades.

A striking effect of rotation is on the geometry of the
flow. Rapid rotation leads to a two-dimensionalization of
the flow through the formation of columnar (cyclonic) vor-
tices parallel to the rotation axis [4,6,30–32] as well as an
emergent anisotropy through the breaking of the cyclone-
anticylone symmetry. This effect, characterized and measured
in experiments [21–23,33] and direct numerical simulations
(DNS) [24,25,28], stems from an enhanced (cyclonic) vortex
stretching because of the Coriolis force.

The effect of these emergent two-dimensional vortical
structures in a three-dimensional flow on Lagrangian mea-
surements has received attention only recently [32,34–36]. In
particular, Biferale et al. [32], through state-of-the-art DNSs,
explored these consequences on the mixing and transport
properties of particles (both tracers and inertial) in rotating
turbulence. However, the effect of such coherent structures on
individual Lagrangian (tracer) trajectories from the point of
view of time irreversibility remains an open question.

In this paper, we investigate this aspect of rotating tur-
bulence and find that time irreversibility, in the Lagrangian
sense [1,2], decreases as the effect of rotation, and hence
columnar vortices, becomes stronger. These results are ratio-
nalized by careful measurements of the correlation between
the topology of the flow and the tracer trajectories, which sug-
gests that the spatial structure of a flow is critical in determin-
ing the strength of flight-crashes even if the flow itself retains
the same degree of irreversibility through a finite dissipation.

We begin with the three-dimensional Navier-Stokes equa-
tion

∂u
∂t

+ (u · ∇ )u + 2(� × u) = −∇P′ + ν∇2u + f (1)

for the velocity field u of a unit-density fluid rotating about
a fixed axis with a rate �, along with the incompressibility
condition ∇ · u = 0. We use an external forcing f , on wave
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TABLE I. Parameters for the simulations in a 2π periodic cube: N is number of collocation points in each direction, δt is the time step
of integration, ν is the kinematic viscosity of the fluid, α is the coefficient of the large-scale friction, and Np represents the number of tracer

particles seeded in the flow. The mean energy dissipation rate ε = 2ν
∑

k k2E (k), while η = ( ν3

ε
)
1/4

and τη = ( ν

ε
)1/2 are the Kolmogorov

length and time scales, respectively. The Taylor length scale of the flow is denoted by λ =
√

15ν2
rms
ε

(where urms is the root-mean-square
fluid velocity) and Reλ = urmsλ/ν represents the Reynolds number corresponding to the Taylor microscale. The number of collocation points
determine the grid spacing dx = 2π/N and the maximum wave number kmax of the simulations. The rotation rate � defines the Rossby
number Ro = urms

2L�
. We choose seven different strengths of rotation rates, � = 0, 0.1, 0.5, 0.75, 1.0, and 2.0, yielding Rossby numbers Ro =

∞, 1.23, 0.24, 0.16, 0.12, 0.08, and 0.06, respectively.

N δt ν α Np ε η τη λ Reλ τη/δt η/dx kmaxη � Ro

512 4 × 10−4 10−3 5 × 10−3 106 0.89 6 × 10−3 3.33 × 10−2 0.12 90 86 0.6 2.56 0–2.0 ∞–0.06

number(s) k f , to drive the fluid (with kinematic viscosity ν) to
a statistically steady state associated with an energy (viscous)
dissipation rate ε. The pressure P′ = P0 − 1

2 |� × r|2 absorbs
the centrifugal contribution from the rotating frame along
with the natural pressure P0 in the fluid in the absence of
rotation.

Apart from the Reynolds number, rotational turbulent flows
in a box of size L (in our case, L = 2π ), with typical root-
mean-square velocities urms, are conveniently characterized
by a second dimensionless number, the Rossby number Ro ≡
urms/(2L�), which is the ratio of the inertial to the Coriolis
term. Furthermore, the additional Coriolis term leads to a
natural scale separation, the so-called Zeman wave number

k� ∼
√

�3

ε
, which sets the scale where the local fluid turnover

time (ε−1/3k−2/3) is of the same order as �−1. For strongly ro-
tating flows (Ro � 1) and wave numbers k < k�, the kinetic
energy spectrum E (k) = |uk|2 tends to steepen leading to a
scaling E (k) ∼ k−2 [27,32,37–39] while retaining the usual
Kolmogorov spectrum E (k) ∼ k−5/3 at higher wave numbers.

We solve the Navier-Stokes equation in the rotating frame
[Eq. (1)] through the standard pseudospectral method [40],
with a second-order Adams-Bashforth scheme for time
marching, in a 2π -periodic periodic cubic box with the axis
of rotation being the z axis. We use N3 = 5123 collocation
points and an external constant energy injection force, acting
on wave numbers k � 3, to drive the system to a statistically
steady state with a Taylor-scale Reynolds number Reλ ≈ 100.
As is common in such numerical simulations, we introduce
a small additional frictional term in the form of an inverse
Laplacian, with a small coefficient α = 0.005 to damp out
the energy which piles up at the smaller modes due to the
inverse cascade set in motion by the rotation. The details of
the simulation are presented in Table I.

We begin by addressing the question of how the reorganiza-
tion of the flow, in the presence of a Coriolis force, influences
the trajectories of tracers which sample the phase space of
the flow uniformly. Once our flow has reached a statistically
stationary state, we seed it randomly and homogeneously with
Np = 106 tracer particles with initial velocities identical to the
velocity of the fluid at particle position. The dynamics of a
single tracer with a trajectory rp is given by

drp

dt
= vp, vp = u(rp). (2)

Numerically, we use a trilinear interpolation scheme to obtain
the fluid velocity u(rp) at particle positions, since these are
typically off grid.

For such steady states in the presence of rotation, as the
Rossby number decreases, the emergence of strong coherent
cyclonic vortices—due to enhanced stretching of cyclonic
vortices and destabilization of anticyclonic vortices—leads to
an increased positive skewness in the probability distribution
function (pdf) of the vorticity component ωz in the direction
z of the axis of rotation. In Fig. 1 we show this distribution
function, measured along the Lagrangian trajectories of the
particles, for different values of Ro. Our observation that
the pdf becomes increasingly skewed is consistent with that
seen in experiments of rotating flows, such as that by Morize
et al. [22]. Furthermore, these distributions show an exponen-
tial tail and peak (Fig. 1, inset) at mildly negative values of ωz

(with decreasing Ro), ensuring an overall positive skewness
for Ro � 1.

A convenient way to measure the correlation between the
structure—broadly vortical and straining—of the flow and
the Lagrangian dynamics is through the second invariant of

FIG. 1. Probability distribution functions of the vertical compo-
nent of the vorticity ωz, normalized by its standard deviation σz for
Ro = ∞ (blue solid curve), 0.12 (red dashed curve), and 0.06 (black
dashed-dotted curve)
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FIG. 2. Probability distribution functions of the fraction of time
particles spend in vortical (tQ+ ) (filled markers) and straining (tQ− )
(open markers) regions for Ro = ∞ (circles), 0.16 (stars), and 0.08
(triangles).

the velocity gradient tensor ∇u [41,42]:

Q = 1
2 (‖�‖2 − ‖�‖2), (3)

where ‖�‖ = Tr[��T ]1/2 and ‖�‖ = Tr[��T ]1/2; the su-
perscript T denotes the transpose of a matrix and Tr its trace.
The symmetric component of the velocity gradient tensor,
or the rate-of-strain tensor, is given by � = 1

2 [∇u + (∇u)T ]
and the antisymmetric component by � = 1

2 [∇u − (∇u)T ].
Hence, Q gives a local measure of the relative strengths of
these two tensors. (Note that the nonstandard notations � and
� are used because the symbols � and S are taken for the
mean rotation rate of the system and the symmetry function,
respectively.) Such a local measurement of Q is thus a useful
diagnostic to determine if the flow at any point, in an Eulerian
framework, is dominated by vortices (Q � 0) or by straining
regions (Q < 0). Similarly this “Q” criterion can be applied
in Lagrangian measurements, such as ours, by measuring the
Q value of the flow seen by a Lagrangian particle along its
trajectory.

With this formalism, we begin by investigating how the
emergence of coherent columnar vortices, with decreasing
Rossby numbers, leads to a bias in the Lagrangian sampling
of the flow, and hence to the flight-crash picture. We begin by
calculating the fraction of time spent by the tracers in vortical
tQ+ and straining tQ− regions. This is done most conveniently
by measuring Q along each tracer trajectory, which allows
us to calculate, for each trajectory, the fraction of time it has
spent in vortical tQ+ (Q � 0) or straining tQ− (Q < 0) regions;
from the data of these times for Np, we are able to construct the
pdf of these residence times. In Fig. 2 we show the distribution
of these times for different Rossby numbers (including the
case of no rotation). We find that for weak (Ro = 0.16) or
no (Ro = ∞) rotation, Lagrangian particles spend a dispro-
portionately large fraction of time in strain-dominated regions
as compared to vorticity dominated ones (as seen by the blue
and magenta curves in Fig 2). This is because for no (or weak)

FIG. 3. Probability distribution function of the energy increment
W (τ ) = E (t + τ ) − E (t ), normalized by its root-mean-square value
〈W (τ )2〉1/2 for τ/τη = 2. The curves are for different values of Ro
(see legend) and are artificially shifted by factors of 10 for clarity.
Inset: The skewness of the pdfs of W (τ ) as a function of Ro.

rotation, the flow is characterized by weaker but spatially
extended straining regions in contrast to the more localized
and sparse regions of strong vorticity. Hence the tracers spend
more time in straining regions than in vortical ones. As Ro →
0, the flow reorganizes itself with a proliferation of extended
vortical structures. Consequently, the fraction of the flow with
positive Q becomes comparable to that with negative Q, and
tracers spend more time in vortical regions than they would if
the effect of rotation was weak. In fact, for Ro = 0.08 it can
be seen (green curves in Fig. 2) that the distribution of tQ+ and
tQ− are now practically identical. It is important to recall that
Bhatnagar et al. [43] showed an apparently contrary behavior
for their Lagrangian measurements in a nonrotating flow. This
is due to their use of the � criterion [44], which oversamples
the vortices by considering regions which have small negative
values of Q. We have checked that our results are consistent
with Bhatnagar et al. [43] when we use the � criterion and
not the Q criterion.

This striking feature of the residence times of tracers in dif-
ferent regions of the flow, as a function of the Rossby number,
leads us to ask if it plays a role in negating flight-crashes as
a useful probe for irreversibility. We begin by measuring the
probability distribution function of the Lagrangian energy in-
crements W (τ ) = E (t + τ ) − E (t ), where E (t ) is the kinetic
energy of the tracer at any time t . In nonrotating flows [1,2],
this distribution is negatively skewed because gains W (τ ) > 0
in energy are slower than their dips W (τ ) < 0 for any fixed τ .
In Fig. 3, we plot this distribution, along with the skewness
(see inset) as a function of Ro, at time τ/τη = 2.0, for several
different values of the Rossby number (artificially separated
for clarity). We see, and quantify through the inset in Fig. 3, a
less skewed behavior of the energy increments as Ro → 0. (It
should be noted that the choice of τ/τη = 2.0 is arbitrary; the
pdfs of the energy increments are always negatively skewed
but this is more pronounced when the time increments are
small.)
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FIG. 4. Representative plots of the symmetry function S versus
the energy increment W (τ ) normalized by its root-mean-square value
〈W (τ )2〉1/2 for τ/τη = 2 for different values of Ro (see legend). In-
set: Probability distribution functions of the negative (open symbols)
and positive (filled symbols) values of the Lagrangian power for
Ro = ∞, 0.08, and 0.06; the negative tail has been reflected for ease
of comparison.

A natural interpretation of such distributions is made in the
light of fluctuation-dissipation theorems which, at least for
simpler systems which can be modelled as being coupled to
thermostats, states that [45]

S ≡ ln

[
P(−W )

P(W )

]
∝ W, (4)

where S, as seen, is a symmetry function constructed from
the ratio of energy jump probabilities. Xu et al. [1] found
their measurements to be strongly fluctuating and hence found
no convincing evidence that such a function S actually scales
linearly with W . However, in our simulations, shown in Fig. 4,
given the volume of data and statistics, a plot of the symmetry
function S versus the normalized W shows a much cleaner
trend. We see a small window of nearly linear behavior at

moderate values of W (τ ) for cases of no or negligible rotation.
On the other hand, when the Rossby number is very small, the
plot of S is essentially flat and lies close to 0. This, then, is
the first clear evidence that the skewness in the distribution
of W diminishes as the flow reorganizes itself under strong
rotation. Thus a combination of emergent coherent vortices
and inverse cascade in strongly rotating flows—while re-
maining dissipative—seems to negate the possibility of flight-
crash events along Lagrangian trajectories as a probe for
measuring the irreversibility of the flow. This conclusion is
further strengthened in the inset of Fig. 4 where we plot the
(suitably normalized) distributions of the positive and negative
values of the power p ≡ dE/dt for different values of the
Rossby number. For no or negligible rotations, it is visible
that at higher power the curve for negative power lies above
that for positive power (reflective of the irreversibility and
flight-crashes [1]); however, when Ro � 1, the two pdfs are
hardly distinguishable.

Since the macroscopic dissipation is held constant in our
calculations, this lack of flight-crashes must stem from the
emergent anisotropic geometry of the flow under rotation. To
quantify this, we measure the power p as a function of time
for our Np Lagrangian trajectories from which it is possible
to construct the fraction of time that a particle spends in
gaining (p > 0) or losing (p < 0) energy. For homogeneous,
isotropic turbulence, the proliferation for flight-crash events
would suggest that the fraction of time tgain spent in gaining
energy must be larger than the fraction of time tloss spent in
losing it. In Fig. 5(a) we plot the distribution of both tgain and
tloss to find evidence for this: The (Gaussian) distribution of
the time for energy gain is shifted to the right compared to the
one for energy loss. However, as rotation starts to dominate,
the two distributions start becoming identical, with a mean
fraction of time spent either gaining or losing energy being
half [Figs. 5(b) and 5(c)]. This variation of the pdfs of tgain

and tloss follows, inexactly, a trend similar to the distributions
of the residence times in Fig. 2. This is because the collapse of
pdfs of tQ+ and tQ− onto each other, as Ro → 0, is much more
dramatic when compared to the gradual merging of the pdfs
of tgain and tloss for similar changes in Ro. This is expected, of
course, because unlike a direct measurement of the residence
times, the fraction of time spent losing or gaining kinetic

FIG. 5. Probability distribution functions of the fraction of time during which tracers gain tgain (filled circles) and lose tloss (open circles)
energy for (a) Ro = ∞, (b) Ro = 0.16, and (c) Ro = 0.08.
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FIG. 6. Representative plots, for Ro = 0.16, of the pdf of the
Lagrangian power, normalized by energy dissipation rate ε, con-
ditioned on whether the particles are in vortical Q � 0 (filled cir-
cles) or straining regions Q < 0 (open circles). Inset: The skew-
ness of the Q showing a sharp increase with decreasing Rossby
number.

energy, although correlated to location in the flow, is not
uniquely determined by the local flow geometry.

We also measure the distributions of p along Lagrangian
trajectories and conditioned on whether they are in vortical
(Q � 0) or in straining (Q < 0) regions. In Fig. 6 we plot the
pdf of the power, conditioned on the geometry of the flow
for Ro = 0.16, and see evidence that, in straining regions,
energy gains are more probable than energy losses, whereas in
vortical regions the probabilities are similar. Now, as rotation
is increased, the fraction of the flow in vortical regions is
higher. Moreover the vortices are stronger and more coherent
on average. This can be seen in the Lagrangian skewness
in the distribution of Q (Fig. 6, inset). Therefore, at higher
rotation rates, gains in energy are as frequent and have the
same distribution as losses.

What does all of this mean for the central question of this
work, namely Lagrangian irreversibility and its connections
with the geometry of the flow? In statistically steady state,
Lagrangian reversibility or time reversibility should imply that
the probability of energy gain (p > 0) or energy loss (p < 0)
should be equal. Therefore, any asymmetry in the pdfs of p
would suggest the breaking of Lagrangian or time reversibility
in the system. One way to measure this irreversibility is to
consider the quantity [1]

Ir = −〈p3〉
ε3

. (5)

For homogeneous and isotropic turbulence, Ir � 1 and in-
creases with the Reynolds number of the flow. This stems
from the fact that flight-crashes proliferate in such flows with
increasing Reynolds numbers, leading to an ever-increasing
skewness in the distribution of the power p. We have, however,
seen that because of the Coriolis force, the flow reorganizes,
leading to, e.g., a depletion in the skewness of Q along
Lagrangian trajectories. Could the effect be as strong in

FIG. 7. The irreversibility Ir as a function of Ro showing a sharp
increase, by an order of magnitude, as Ro → 1.

measurements of Ir? In Fig. 7 we plot Ir as a function of
Ro and find a sharp decrease as soon as Ro < 1. Indeed,
for Ro � 1, the decrease in the irreversibility is more pro-
nounced by an order of magnitude compared to the case
where the rotation is negligible. (We have checked that our
value of Ir for � = 0 is consistent with the findings in
Ref. [1].)

Indeed, in recent times, this issue of reversibility has
been reexamined in a variety of problems, ranging from
the use of the time-reversible Navier-Stokes equation [46]
to how the suppression of small-scale intermittency through
Fourier decimation [47,48] leads to an emergent reversibility
when measured via Lagrangian Lyapunov exponents [49].
Our study is, however, different from these. Unlike the use
of a fluctuating thermostat to replace the usual viscosity in
the Navier-Stokes equation, leading to time reversibility or
the suppression of a subset of triadic interactions to solve
the equations on a quenched, disordered lattice, we show
that, even for the true equations of motion, rotation and the
consequent emergence of coherent, anisotropic structures is
enough to alter the statistics of Lagrangian trajectories. In par-
ticular, at high rotation rates, the notion of flights and crashes
ceases to exist and thus does not allow an easy interpretation
of time irreversibility in terms of such Lagrangian probes.
We hope that this work, which does not rely on modifica-
tions to the equations of hydrodynamics, will lead to exper-
iments designed to look at this specific aspect of Lagrangian
irreversibility.
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