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Transport phenomena in the Knudsen layer near an evaporating surface
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Using the combination of the kinetic theory of gases (KTG), Boltzmann transport equation (BTE), and
molecular dynamics (MD) simulations, we study the transport phenomena in the Knudsen layer near a planar
evaporating surface. The MD simulation is first used to validate the assumption regarding the anisotropic velocity
distribution of vapor molecules in the Knudsen layer. Based on this assumption, we use the KTG to formulate
the temperature and density of vapor at the evaporating surface as a function of the evaporation rate and the
mass accommodation coefficient (MAC), and we use these vapor properties as the boundary conditions to find
the solution to the BTE for the anisotropic vapor flow in the Knudsen layer. From the study of the evaporation
into a vacuum, we show the ratio of the macroscopic speed of vapor to the most probable thermal speed of vapor
molecules in the flow direction will always reach the maximum value of

√
1.5 at the vacuum boundary. The BTE

solutions predict that the maximum evaporation flux from a liquid surface at a given temperature depends on
both the MAC and the distance between the evaporating surface and the vacuum boundary. From the study of
the evaporation and condensation between two parallel plates, we show the BTE solutions give good predictions
of transport phenomena in both the anisotropic vapor flow within the Knudsen layer and the isotropic flow out
of the Knudsen layer. All the predictions from the BTE are verified by the MD simulation results.
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I. INTRODUCTION

Evaporation is a liquid-vapor phase change process that
occurs at the surface of a liquid. A fundamental understand-
ing of the evaporation process is of great importance to a
variety of industrial and environmental applications. From
the standpoint of the kinetic theory [1–3], at liquid surfaces
liquid molecules are emitted and change to the vapor phase,
and vapor molecules strike the surface and change into the
liquid phase. When the liquid is in thermal equilibrium with its
saturated vapor, the microscopic evaporation rate is the same
as the microscopic condensation rate, and thus no macro-
scopic (net) evaporation occurs. Therefore, the macroscopic
evaporation process must be a nonequilibrium process.

As the net evaporation rate increases, the vapor evaporating
from the liquid surface will deviate more from the equilibrium
state. Hence, there is no reason to suppose that a vapor
evaporating from a liquid surface is isotropic in the immediate
vicinity of liquid-vapor interface [4]. Near an evaporating
surface, the kinetic temperature of vapor in the direction
of evaporation could be different from that perpendicular to
the evaporation direction. This region is referred to as the
Knudsen layer. Only when the evaporating vapor is many
times of molecular mean free paths from the liquid surface,
the vapor molecules will have enough time to collide with
each other so that the vapor becomes isotropic. The region out
of the Knudsen layer is often referred to as the region of gas-
dynamic flow. One can investigate the transport phenomena in
the gas-dynamics flow based on continuum transfer equations
such the Fourier’s law of conduction and Newton’s law of
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viscosity [5]. To obtain the appropriate boundary conditions
(BCs) for these continuum transfer equations, however, it is
necessary to study the transport phenomena in the Knudsen
layer [6].

Within the Knudsen layer, the continuum transfer equa-
tions turn to be invalid [4–6]. To study the transport phe-
nomena in a nonequilibrium gas flow, one has to use the
Boltzmann transport equation (BTE). To solve the BTE, one
must choose an appropriate distribution function for vapor
molecules in the Knudsen layer and formulate the BCs for the
BTE based on the kinetic theory of gases (KTG). Although the
BTE has been widely used to study the transport phenomena
in the Knudsen layer in literature [5–11], the verification of
the accuracy and even validity of these solutions to the BTE
is very difficult. The experimental quantification of transport
processes in the Knudsen layer requires a local measurement
of fluid temperature and density at a very thin layer near the
evaporating surfaces with sufficient accuracy, which remains
challenging [12]. It is even more challenging to measure the
temperatures perpendicular and parallel to the vapor flow
direction to verify the temperature anisotropy of vapor in
the Knudsen layer. Moreover, it is also difficult to directly
measure the velocity distribution (VD) of vapor molecules in
the Knudsen layer to validate the nonequilibrium VD assumed
in the theoretical analysis.

To mitigate the aforementioned experimental challenges,
we resort to molecular dynamics (MD) simulations. MD
simulations can determine fluid properties near the evapo-
rating surface with high fidelity, which allows us to test
the accuracy of the BCs formulated by the KTG and the
solutions to the BTE. Additionally, the VD of vapor molecules
in the Knudsen layer can be readily determined from MD
simulations, which allows us to validate the key assumption
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regarding the nonequilibrium distribution function made in
the theoretical analysis. Although the temperature anisotropy
near an evaporating surface has been observed in multiple
MD studies [13–16], there is a lack of fundamental and
quantitative understanding of the MD simulation results on
how the evaporating flow properties including flow speed,
density and the extent of temperature anisotropy vary in the
flow direction within the Knudsen layer. Understanding the
transport phenomena in Knudsen layer requires the treatment
from the BTE. To address the above-described gap in our
knowledge, we use the combination of the KTG, BTE, and
MD simulations to study transport phenomena in the Knudsen
layer near an evaporating surface.

In this work, we consider a simple case of evaporation of
a monoatomic liquid. Using the combination of the KTG,
BTE and MD simulations, we study the mass, momentum
and energy transfer in the Knudsen layer near an evaporating
surface. In Sec. II, we introduce the key assumptions made
in the theoretical analysis. Applying these assumptions to the
KTG, we derive the BCs at the evaporating surface for the
BTE. In Sec. III, we discuss the moment solution to the BTE
and the speculations about the transport phenomena from the
BTE solutions. In Sec. IV, we use MD simulations to validate
the key assumptions made in the theoretical analysis. In
Sec. V we carry out MD simulations to study two evaporation
cases: (1) evaporation into a vacuum and (2) evaporation and
condensation between two parallel plates. The MD simulation
results will be used to verify the predictions from the BTE
solutions. Finally, we close with conclusions.

II. THE TEMPERATURE ANISOTROPY DERIVED
FROM THE KTG

A. The velocity distribution (VD) function

First, we use the KTG to study the transfer of mass,
momentum and energy at an evaporating liquid surface as
shown in Fig. 1. In Fig. 1, the evaporating vapor flows in the
positive x direction with an average (macroscopic) velocity
of va. The origin of the x coordinate is located at the liquid
surface. It is commonly assumed that the distribution function
of molecules emitted from the liquid surface at a temperature
of TL has the form [4,5]

fL(vx, vy, vz ) = ρg(TL )

(
m

2πkBTL

) 3
2

e− m(v2
x +v2

y +v2
z )

2kBTL , (1)

FIG. 1. The schematic diagram of the one-dimensional (1D)
steady-state evaporation of a monoatomic liquid to its own vapor.
va is the average local velocity of vapor evaporated from the liquid
surface.

where ρg(TL ) is the saturated vapor density at a temperature
of TL, m is the mass of fluid molecule, kB is the Boltzmann
constant, vx, vy, and vz are velocity components in the x, y,
and z directions, respectively. Accordingly, the molar, mo-
mentum and energy flux of fluid molecules emitted from the
liquid surface is given by Eqs. (2a), (2b), and (2c), respec-
tively [3,12,17]:

J+
L = ρg(TL )

√
kBTL

2πm
, (2a)

M+
L = ρg(TL )

kBTL

2m
, (2b)

E+
L = ρg(TL )kBTL

√
2kBTL

πm
. (2c)

To determine the net molar, momentum and energy flux at
liquid surface, one also needs to know the molar, momentum
and energy flux of vapor molecules that strike the liquid sur-
face. To this end, one must choose an appropriate distribution
function for vapor molecules near the evaporating surface.
Multiple distribution functions were proposed in literature
to describe the nonequilibrium behavior of vapor within the
Knudsen layer [4–6]. To account for the anisotropy in the
vapor near the evaporating surface, we use Crout’s approx-
imation [4] to assign two temperatures to the anisotropic
vapor. Accordingly, the local distribution function of vapor
molecules near the liquid surface is given by

f (vx, vy, vz, x)

= ρv (x)
√

m

2πkBTx(x)
e− m(vx−va (x))2

2kBTx (x)

(
m

2πkBTy(x)

)
e− m(v2

y +v2
z )

2kBTy (x) ,

(3)

where ρv(x) is the local vapor density, va(x) is the local
average (macroscopic) velocity of vapor, Tx and Ty are temper-
atures parallel and perpendicular to the vapor flow direction,
respectively. In this work, we will use MD simulations to
directly determine the VD of vapor molecules near the evap-
orating liquid surface and validate the distribution function
approximation shown in Eq. (3).

Using the distribution function in Eq. (3), one can readily
obtain the molar (Jv), momentum (Mv), and energy (Ev) flux
of vapor molecules moving in the positive (+) and negative
(–) x directions:

J±
v = ρv

√
kBTx

2πm
�(±vR), (4a)

M±
v = ρv

kBTx

m
�(±vR), (4b)

E±
v = ρvkBTx

√
kBTx

2πm
E(±vR), (4c)

where vR, is the ratio of the macroscopic speed of vapor, va,
to the most probable thermal speed of vapor molecules in the
x direction:

vR = va
/√

2kBTx
/

m. (5)
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In Eq. (4), �(vR), �(vR), and E(vR) are given by [4]

�(vR) = e−v2
R + vR

√
π [1 + erf (vR)], (6a)

�(vR) = vRe−v2
R
/√

π + (
1
2 + v2

R

)
(1 + erf (vR)), (6b)

E(vR) = (
v2

R + 1 + TR
)
e−v2

R

+√
πvR

(
3
2 + TR + v2

R

)
(1 + erf (vR)), (6c)

where TR = Ty/Tx. Based on the aforementioned approxima-
tions of the VD functions, we study the net mass, momentum
and energy transfer at a liquid surface undergoing a steady-
state evaporation in the following sections. By applying mass,
momentum, and energy conservation equations, we will show
the relationship between the net evaporation rate and the
extent of anisotropy in vapor at the evaporating surface.

B. Mass conservation at the evaporating surface

Of those molecules that are emitted from the liquid surface
a fraction, α, will change to the vapor phase. The remain-
ing part of molecules will not enter the vapor phase. The
quantity α is known as the mass accommodation coefficient
(MAC) [3,12,17]. Therefore, the molar flux of molecules
that are emitted from the liquid surface and change to vapor
is αJL

+ where JL
+ is given by Eq. (2a). Similarly, not all

vapor molecules that strike the liquid surface will change to
liquid. A fraction of vapor molecules will return to vapor
phase without phase change. The fraction of incident vapor
molecules that are accommodated to the liquid phase is α

(i.e., MAC) [2,3,12,17]. Accordingly, the molar flux of vapor
molecules that cross the liquid-vapor interface and change to
liquid phase is αJ−

v,x=0. Therefore, the net molar flux across
the liquid surface is given by

Jnet,x=0 = α(J+
L − J−

v,x=0). (7)

Substituting Eqs. (2a) and (4a) into Eq. (7), we obtain a
relation very similar to the well-known Schrage relation [3,17]

Jnet,x=0 = α

√
kB

2πm
(ρg(TL )

√
TL − �(−vR,0)ρv,0

√
Tx,0),

(8)

where ρv,0, Tx,0, and vR,0 represent the density, Tx, and vR

of vapor at x = 0 (i.e., the evaporating surface), respectively.
The only difference between Eq. (8) and the original Schrage
relation is that we consider the temperature anisotropy in
vapor near the evaporating surface while Schrage assumed
isotropic temperature in vapor.

As shown in Fig. 1, the molar flux of vapor at a plane �x
away from the evaporating surface is given by

Jnet,x=�x = J+
v,x=�x − J−

v,x=�x. (9)

Using the mass conservation in the 1D steady-state evapo-
ration process, we have

Jnet,x=0 = Jnet,x=�x. (10)

Substituting Eqs. (7) and (9) into Eq. (10) and using
Lagrange’s mean value theorem, Eq. (10) becomes

αJ+
L − αJ−

v,x=0 =
(

J+
v,x=0 + dJ+

v

dx

∣∣∣∣
x=x1

�x

)

−
(

J−
v,x=0 + dJ−

v

dx

∣∣∣∣
x=x2

�x

)
, (11)

where x1 and x2 lie somewhere between 0 and �x. Rearrang-
ing Eq. (11) and letting �x → 0, we obtain

αJ+
L = J+

v,x=0 − (1 − α)J−
v,x=0. (12)

Substituting Eqs. (2a) and (4a) into Eq. (12), we have the
following relation at the evaporating surface:

αρg(TL )

√
kBTL

2πm
= ρv,0

√
kBTx,0

2πm
�α (vR,0). (13)

In Eq. (13), �α (vR) is given by

�α (vR) = αe−v2
R + vR

√
π [(2 − α) + α erf (vR)]. (14)

One can easily see that �α (vR) is reduced to �(vR) [i.e.,
Eq. (6a)] if α = 1. Finally, by dividing both sides of Eq. (13)
by JL

+ [i.e., Eq. (2a)], we obtain the following dimensionless
equation corresponding to the mass conservation at the evap-
orating surface:

α = ρR

√
Tx,R�α (vR,0), (15)

where ρR = ρv,0/ρg(TL ) and Tx,R = Tx,0/TL. The above
derivations are similar to those in Crout’s work [4]. The
difference is that Crout’s analysis did not take into account
the MAC, α, at the evaporating surface, while our equations
consider the effect of α on mass transfer at the surface.

C. Momentum and energy conservation at the
evaporating interface

In the similar manner, we obtain Eq. (16) and Eq. (17)
corresponding to the conservation of momentum and energy
at the evaporating liquid surface, respectively:

αM+
L = M+

v,x=0 − (1 − α)M−
v,x=0, (16)

αE+
L = E+

v,x=0 − (1 − α)E−
v,x=0. (17)

Substituting Eqs. (2b) and (4b) into Eq. (16) and substitut-
ing Eqs. (2c) and (4c) into Eq. (17), we have the following
equations at the evaporating liquid surface:

αρg(TL )
kBTL

2m
= ρv,0

kBTx,0

m
�α (vR,0), (18)

αρg(TL )kBTL

√
2kBTL

πm
= ρv,0kBTx,0

√
kBTx,0

2πm
Eα (vR,0), (19)

where
�α (vR) = (2 − α)vRe−v2

R
/√

π

+(
1
2 + v2

R

)
[α + (2 − α)erf (vR)], (20)

Eα (vR) = α
(
v2

R + 1 + TR
)
e−v2

R + √
πvR

(
3
2 + TR + v2

R

)
× [(2 − α) + α erf (vR)]. (21)
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If α = 1, then �α (vR) and Eα (vR) are reduced to �(vR)
[i.e., Eq. (6b)] and E (vR) [i.e., Eq. (6c)], respectively.

Finally, by dividing both sides of Eq. (18) by ML
+ [i.e.,

Eq. (2b)] and both sides of Eq. (19) by EL
+ [i.e., Eq. (2c)],

we obtain the following two dimensionless equations corre-
sponding to the momentum and energy conservation at the
liquid-gas interface:

α = 2ρRTx,R�α (vR,0), (22)

α = 1
2ρRTx,R

√
Tx,REα (vR,0). (23)

D. Temperature, density, and molar flux of vapor at the
evaporating surface

Recent MD simulations [13,14] show that as the fluid
density drops dramatically across the a-few-nm-thick inter-
phase layer at the evaporating surface, the VD of evaporating
molecules within the interphase layer changes rapidly in the
flow direction, and the isotropic temperature profile in the
liquid phase is rapidly split into the longitudinal Tx and
transverse Ty in the flow direction within the interphase layer.
Using the combination of Eqs. (15), (22), and (23), one can
obtain the dimensionless temperatures, Tx,R and Ty,R, of vapor
and the dimensionless density, ρR, of vapor at the position
right out of the interphase layer. In this work, we define the
evaporating surface at the position right out of the interphase
layer. For a given α, all these three dimensionless quantities
are a function of dimensionless macroscopic velocity, vR,0, of
vapor only:

Tx,R = Tx,0

TL
=

[
�α (vR,0)

2�α (vR,0)

]2

, (24a)

Ty,R = Ty,0

TL
=

[
αe−v2

R,0

2�α (vR,0)
− v2

R,0 − 3

2

][
�α (vR,0)

2�α (vR,0)

]2

+ 2,

(24b)

ρR = ρv,0

ρg(TL )
= 2α�α (vR,0)

[�α (vR,0)]2 . (24c)

Furthermore, the dimensionless molar flux, JR, of the evap-
orating vapor can be also written as a function of vR,0:

JR = Jnet,x=0

J+
L

= 2
√

παvR,0

�α (vR,0)
. (25)

In Fig. 2, we plot dimensionless density, temperature and
molar flux of vapor at the evaporating surface as a function of
vR,0. In the case of α = 1, our theoretical predictions exactly
reproduce Crout’s results [4] as was to be expected. Our model
further extends Crout’s model to include the effects of MAC
on mass, momentum and energy transfer at the evaporating
surface. We will verify the effects of MAC predicted by our
theoretical model by comparing to MD simulation results.

According to the Schrage relationship shown in Eq. (8),
the evaporation process could be driven by the temperature
difference TL–Tx across the liquid-vapor interface and/or the
density difference ρg(TL )–ρv. Therefore, it is reasonable to
see in Figs. 2(a) and 2(b) that the vapor temperature Tx,R and
the vapor density ρR decrease as the evaporation rates vR,0

FIG. 2. The dimensionless (a) density, (b) temperature, and (c)
molar flux of vapor at the evaporating surface as a function of
dimensionless macroscopic velocity of vapor at the evaporating
surface for different values of MAC.

and JR increase. The lower Tx,R at higher vR,0 can be also
understood as the result of conversion from the microscopic
kinetic energy in the direction of evaporation to macroscopic
kinetic energy in the vapor flow. This leads to a lower Tx,R than
Ty,R in the evaporating vapor. As shown in Fig. 2(b), the extent
of anisotropy in evaporating vapor increases with increasing
evaporation rate.

With the increase of the macroscopic velocity, vR,0, of
vapor at the liquid surface, the vapor molecules that strike the
liquid surface become rarer. As a result, the net evaporation
flux is essentially determined by the molar flux from liquid to
vapor phase, i.e., αJL

+. As shown in Fig. 2(c), the dimension-
less molar flux, JR, approaches the value of α in the limit of
large vR,0 as was to be expected. Of course, the magnitude of
vR,0 depends on the condensing BC applied at the right side of
the model system.

In this section, we used the KTG to find the anisotropic
temperature and density of vapor at the evaporating surface,
which will be used as BCs for the BTE. In the next section,
we will resort to the BTE to study the transport phenomena in
the nonequilibrium vapor flow in the Knudsen layer.

III. THE BTE FOR 1D STEADY-STATE EVAPORATION

A. The BTE

We consider steady-state evaporation of a pure
monoatomic fluid. For a 1D steady flow without external

043108-4



TRANSPORT PHENOMENA IN THE KNUDSEN LAYER … PHYSICAL REVIEW E 100, 043108 (2019)

forces, the BTE can be written as

vx
∂ f

∂x
= Qcoll( f ), (26)

where f is the distribution function. For an anisotropic vapor
flow in the Knudsen layer near an evaporating surface, we
assume the distribution function is in the form of Eq. (3).
The term on the right side of Eq. (26) is the collision term
accounting for the effect of collisions between molecules. To
obtain the form of the collision term, Qcoll( f ), we use the
well-known approximation made by Bhatnagar, Gross, and
Krook (BGK) [18]. The BGK approximation assumes that
the molecular collisions forces a nonequilibrium distribution
function, f , back to a Maxwellian equilibrium distribution
function, fe, at a rate proportional to the molecular collision
frequency. Using the BGK approximation, the BTE is modi-
fied to

vx
∂ f

∂x
= ( fe − f )

τ
, (27)

where τ is the molecular collision time. Since mass, momen-
tum, and energy are conserved during molecular collisions,
the local equilibrium distribution function, fe, should have the
form

fe(vx, vy, vz, x) = ρv (x)

(
m

2πkBTe(x)

) 3
2

e− m((vx−va (x))2+v2
y +v2

z )

2kBTe (x) ,

(28)

where Te = (Tx + 2Ty)/3 for dilute monoatomic gases.

B. The solution to the BTE

The distribution function, Eq. (3), for the nonequilibrium
vapor in the Knudsen layer contains four unknown parame-
ters, namely, ρv , Tx, Ty, and va. To determine the variation of
these four parameters in the vapor flow direction, we solve the
1D BTE by applying a four-moment method:

∫∫∫
φvx

∂ f

∂x
dvxdvydvz =

∫∫∫
φ

( fe − f )

τ
dvxdvydvz,

(29)
where we substitute the function φ with four functions,

namely, 1,
⇀

v,
⇀

v
2
, and v2

x and obtain differential Eqs. (30a)
through (30d), respectively:

∂

∂x
(ρvva) = 0, (30a)

∂

∂x

[
ρv

(
kBTx

m
+ v2

a

)]
= 0, (30b)

∂

∂x

[
ρvva

(
1

2
mv2

a + 3

2
kBTx + kBTy

)]
= 0, (30c)

∂

∂x

[
ρvva

(
v2

a + 3kBTx

m

)]
= ρv

kB

m

Te − Tx

τ
. (30d)

Using Eqs. (4a)–(4c), one can readily find the net molar,
momentum and energy fluxes in the vapor flow are given by

Jnet = ρvva, (31a)

Mnet = ρv

(
kBTx

m
+ v2

a

)
, (31b)

Enet = ρvva

(
1

2
mv2

a + 3

2
kBTx + kBTy

)
. (31c)

Hence, Eqs. (30a)–(30c) indicate that Jnet, Mnet, and Enet

remain constant in the vapor flow direction, which is a direct
result of mass, momentum and energy conservation in a steady
flow. Rearranging Eqs. (30a)–(30d), we obtain the following
four equations which can be used to determine the variation
of ρv , va, Tx, and Ty in the vapor flow direction:

∂ρv

∂x
= Te − Tx

τ

ρv

vaTx
(
2v2

R − 3
) , (32a)

∂va

∂x
= −Te − Tx

τ

1

Tx

1

2v2
R − 3

, (32b)

∂Tx

∂x
= Te − Tx

τ

1

va

2v2
R − 1

2v2
R − 3

, (32c)

∂Ty

∂x
= −Te − Tx

τ

1

2va
. (32d)

Four BCs are required to solve the above four coupled
differential equations. In Sec. II, we have derived three BCs
(i.e., Eqs. (24a) through (24c)) for Tx, Ty, and ρv at the
evaporating surface. The fourth BC will be specified at the
right boundary of the model system shown in Fig. 1. Once
these four BCs are known, we will solve these equations by
numerical integrations.

An important parameter in the above four equations is the
molecular collision frequency 1/τ . According to the KTG, the
molecular collision frequency can be estimated by [19]

1

τ
= 4ρvπd2

√
kBTe

πm
, (33)

where d is the kinetic diameter of vapor molecules. Equa-
tion (33) shows the collision frequency, 1/τ , is proportional
to ρv

√
Te. Similarly, the KTG indicates the molecular mean

free path, λ, is inversely proportional to the density of va-
por [19]. We will see from subsequent MD simulations that
the density and temperature of vapor in the Knudsen layer
may change significantly in the flow direction. Therefore, it is
not appropriate to assign a single value of τ or λ to the vapor
molecules throughout the Knudsen layer. Moreover, the tem-
perature anisotropy also makes it hard to define a molecular
mean free path unambiguously in the nonequilibrium vapor
flow. As τ and λ could vary significantly in the Knudsen
layer, it is inappropriate to scale x by a constant λ, and
further nondimensionalize Eqs. (32a)–(32d). Nevertheless, we
are still able to speculate several general features about the
transport phenomena in the Knudsen layer.

(i) Equations (32a)–(32d) all contain the term (Te–Tx )/τ .
Figure 2(b) shows Tx is always lower than Ty at the evap-
orating surface. Hence, Tx and Ty will approach each other
due to molecular collisions but will never cross each other in
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the Knudsen layer. As a result, (Te–Tx )/τ should always be
positive in the Knudsen layer. Therefore, Eq. (32d) indicates
Ty will decrease monotonically in the flow direction. This is
the result of molecular collisions in the vapor which brings Tx

and Ty closer to each other.
(ii) The right side of Eqs. (32a)–(32c) contains the term

2vR
2–3 in the denominator. The integral of these equations

will be divergent at vR
2 = 1.5. This implies the maximum

dimensionless velocity of vapor flow, vR, should be less than√
1.5. Accordingly, Eq. (32a) indicates that the vapor density,

ρv , will decrease monotonically in the flow direction. The
mass conservation requires ρvva to be a constant in the flow
direction. Hence, it is reasonable to see from Eq. (32b) that
the vapor flow speed, va, will increase monotonically in the
flow direction.

(iii) According to Eq. (32c), Tx will increase in the flow
direction if 2vR

2–1 is less than zero. If vR
2 is greater than 0.5,

then Tx will decrease in the flow direction. Since Eq. (32b)
shows the vapor flow velocity always increases in the flow di-
rection and the maximum vR

2 can approach 1.5, it is possible
to observe the crossover from a negative slope to a positive
slope in the Tx profile in the Knudsen layer. The variation of
Tx is affected by two physical processes. First, the molecular
collision process tends to increase Tx. Second, the monotonic
increase of vapor flow velocity indicates a conversion from
microscopic kinetic energy (i.e., thermal energy) to macro-
scopic kinetic energy in the vapor flow direction. The second
process decreases Tx. The competition between two processes
results in the variation of slope in Tx versus x profile.

All the aforementioned speculations will be verified by the
MD simulations in following sections.

IV. VALIDATION OF KEY ASSUMPTIONS IN THE
THEORETICAL MODEL

A. The MD model

We will use MD simulations to validate the key assump-
tions made in the aforementioned theoretical analyses. As
depicted in Fig. 3, the typical model system consists of a
liquid Ar thin film on an Au substrate. The Au substrate is
formed by three (100) oriented Au atomic layers. To prevent
drifting of the model system, the atoms in the leftmost Au
layer are fixed in the simulation. On the right of the liquid
Ar surface is its own vapor. The embedded-atom-method
(EAM) potential [20] is used for Au-Au interactions. The
Lennard-Jones (LJ) potential with parameters σ = 3.41 Å and
ε = 10.3 meV [21] is employed for both Ar-Ar and Ar-Au
interactions. The cutoff distance for all LJ interactions is 3.2σ .
In all MD simulations we use a velocity Verlet algorithm [22]
with a time step size of 4 fs to integrate the equations of
motions.

The thickness of the liquid layer on the Au surface is ∼6
nm which is large enough to avoid the effects of disjoining
pressure on the equilibrium properties of fluid Ar [23,24]. The
thickness of the liquid-vapor interfacial layer is a few nm for
LJ Ar [13,14]. The left boundary of what we define as the
vapor region is ∼3 nm away from the liquid surface so that
the vapor region does not overlap with the interfacial layer.
The length of the vapor region, Lvap, is 100 nm as depicted in

FIG. 3. (Top panel) A snapshot of the model system for the MD
study of evaporation of liquid Ar on an Au surface at Th = 85 K into
a vacuum, and (bottom panel) the temperature profile in the vapor
flow direction. The uncertainty of Tx and Ty is smaller than the size
of symbols.

Fig. 3. To determine the variation of temperature, density and
macroscopic velocity of fluid along the vapor flow direction,
we evenly divide the liquid layer into six bins and divide the
vapor region into ten bins in the x direction. The width of each
bin in liquid and in vapor is 1 and 10 nm, respectively. The
contribution from macroscopic vapor velocity is subtracted in
the calculation of vapor temperature in each bin.

In the nonequilibrium MD (NEMD) simulation of the
evaporation process, we maintain the temperature of the Au
substrate at Th = 85 K by velocity rescaling [25]. To obtain
a good statistics of fluid properties, particularly in the vapor
region, we set the cross-section area of the model system to
38.76 nm by 38.76 nm. Periodic boundary conditions (PBCs)
are applied in the y and z directions. To further improve
the accuracy of the calculated properties, ten independent
runs are carried out in each case. The uncertainties of the
MD simulation results are determined by analyses of these
independent runs.

B. The temperature anisotropy in the Knudsen layer

An important assumption made in the aforementioned the-
oretical model is that the temperature of vapor is anisotropic
in the Knudsen layer near an evaporating surface and the
corresponding VD function of vapor is given by Eq. (3).
Based on this assumption, the KTG predicts that the extent of
temperature anisotropy increases with increasing evaporation
rate. To exhibit an evident temperature anisotropy, therefore,
we carry out a MD simulation of evaporation into a vacuum
in which the maximum evaporation rates will be achieved.

To apply the vacuum BC, we remove all vapor atoms flying
out the right boundary of the vapor region as shown in Fig. 3.
The NEMD simulation is carried out for 3.5 ns to allow the
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FIG. 4. The (a) molar, (b) momentum, and (c) energy flux in each
bin of the vapor region. The horizontal dashed lines show the average
value of molar, momentum and energy flux in the vapor region. The
uncertainties are smaller than the size of symbols.

system to reach steady-state evaporation, and then additional
3.5 ns for data collection and averaging. At steady state, we
calculate the density, temperature and the macroscopic vapor
velocity in each bin of the simulation box. Using these vapor
properties and Eqs. (31a) through (31c), we further calculate
the net molar flux, Jnet, momentum flux, Mnet, and energy flux,
Enet, in the vapor flow direction. It is shown in Fig. 4 that Jnet,
Mnet, and Enet are constant in the vapor flow direction as was
to be expected at steady state.

Now we focus on the temperature of vapor in the Knudsen
layer from MD simulations. It is clearly shown in Fig. 3 that
the temperature of vapor near an intensive evaporating surface
is anisotropic while the temperature of liquid Ar and solid Au
is isotropic. To validate the VD approximated by Eq. (3), we
further calculate the VD of vapor molecules in each bin of
the vapor region. In Fig. 5, we show the representative MD
simulation result of VD of vapor molecules in the second bin
of the vapor region where Tx = 51 K and Ty = 69 K. It is seen
from Fig. 5 that the distribution of the velocity component
perpendicular to the vapor flow direction closely follows the
Maxwell velocity distribution (MVD) of Ar at T = 69 K, and
the distribution of the velocity component along the flow
direction agrees well with the shifted MVD (SMVD) of Ar
at T = 51 K. The good agreement between the VD given by
Eq. (3) and that obtained directly from the MD simulation

FIG. 5. The velocity distribution of vapor molecules in the sec-
ond bin (∼18 nm from the evaporating surface) in the vapor region.
The red circles and blue diamonds are MD simulation results for the
velocity components along the vapor flow direction and perpendicu-
lar to the flow direction, respectively. The dashed line is the Maxwell
velocity distribution (MVD) of Ar molecules at T = 69 K. The solid
line is the shifted MVD (SMVD) of Ar molecules at T = 51 K.

is found in all other bins in the vapor region. Therefore, the
VD obtained from MD simulations validates that the VD
of vapor molecules near an evaporating surface can be well
approximated by the distribution function given by Eq. (3).

To ensure the anisotropic temperature in vapor is not
caused by the artifact of vacuum boundary applied in the
MD simulation, we replace the vacuum boundary with a low-
temperature condensing Ar surface on the right side of the
simulation cell. As shown in Fig. 6, a 5-nm-thick solid Ar
layer is placed on a cold Au plate maintained at Tl = 35 K.
At such a low temperature, the saturated vapor density is

FIG. 6. (Top panel) A snapshot of the model system for the MD
simulation of evaporation of liquid Ar on a hot Au surface at Th =
85 K and condensation of vapor Ar on a cold Au surface at Tl =
35 K, and (bottom panel) the temperature profile in the vapor flow
direction. The uncertainty of Tx and Ty is smaller than the size of
symbols.
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approximately zero and the MAC on the Ar surface is ∼1 [23],
which means all vapor Ar molecules striking on the surface
will deposit on the solid Ar surface and no molecules will
be emitted from the surface. Therefore, such a condensing
surface should have the same effect as a vacuum boundary.
In this case, the steady-state molar flux and the anisotropic
temperature profile (see Fig. 6) are essentially the same as
that in the case with the vacuum boundary (see Fig. 3). We
further vary the temperature in the right Au plate to 0 K. The
same molar flux and temperature profile in the vapor phase
are obtained. Hence, the MD simulation results verify that a
very cold condensing surface has the same effect as a vacuum
boundary.

C. The molecular collision time

An important parameter in the BTE is the molecular col-
lision time, τ , for the collision term in the BTE. Although
the KTG gives an equation [i.e., Eq. (33)] to estimate the
molecular collision time, a more accurate evaluation of τ

is needed for a quantitative comparison between the MD
simulation results and the solutions from the BTE. In this
work, we use MD simulations to directly evaluate τ of the
model fluid.

The collision time, τ , is a function of temperature and
density. First, we find local temperature (Tx and Ty) and
density (ρv) of vapor in each bin in the vapor region from
the NEMD simulation described in the Sec. IV B. Second, we
carry out a separate equilibrium MD (EMD) simulation in a
cubic simulation box containing 500 000 Ar atoms. The box
size is fixed such that the density of Ar equals to ρv . The PBCs
are applied in all three directions. We equilibrate the vapor Ar
at a temperature of Ty for 1.5 ns to let the system reach thermal
equilibrium. After thermal equilibrium, we multiply the vx of
each Ar atom by

√
Tx/Ty to create an initial nonequilibrium

velocity distribution:

fne(vx, vy, vz, t ) = ρv

√
m

2πkBTx(t )
e− mv2

x
2kBTx (t )

×
(

m

2πkBTy(t )

)
e− m(v2

y +v2
z )

2kBTy (t ) . (34)

Subsequently, we carry out an NVE simulation and mon-
itor how Tx and Ty vary with time, t . Since the PBCs are
applied in all three directions, the above distribution function
is spatially independent. In this case, the BTE becomes

∂ fne

∂t
= ( feq − fne)

τ
. (35)

The collision between vapor molecules will bring the
nonequilibrium vapor into thermal equilibrium. The equilib-
rium distribution function in Eq. (35) is given by

feq(vx, vy, vz ) = ρv

(
m

2πkBTe

) 3
2

e− m(v2
x +v2

y +v2
z )

2kBTe , (36)

where Te = (Tx + 2Ty)/3. To solve Eq. (35), we use the mo-
ment method described in Sec. III B and set φ = v2

x . Accord-
ingly, we obtain

∂Tx

∂t
= Te − Tx

τ
(37)

FIG. 7. (a) Dependence of Tx and Ty on t obtained from EMD
simulation of vapor Ar with a density of ρv = 0.0636 mol/L and
an initial temperature of Tx,i = 51.5 K and Ty,i = 68.5 K. The inset
shows a linear fit of ln[(Tx (t )–Te)/(Tx,i–Te)] vs. t . (b) The dependence
of molecular collision frequency, 1/τ , on ρv

√
Te obtained from

MD simulations. The dashed line shows a trend line for the linear
dependence between 1/τ and ρv

√
Te.

Applying the initial condition Tx(t = 0) = Tx,i, the solution
to Eq. (37) is

ln
Tx(t ) − Te

Tx,i − Te
= − t

τ
. (38)

Equation (38) indicates that we can evaluate the molecular
collision time, τ , from Tx(t ).

In Fig. 7(a), we show the variation of Tx and Ty with t
obtained from EMD simulation of vapor Ar whose density is
ρv = 0.0636 mol/L and initial temperatures are Tx,i = 51.5 K
and Ty,i = 68.5 K. The density and temperature are taken from
the vapor property in the second bin of the vapor region in
Fig. 3. The inset of Fig. 7(a) shows ln[(Tx(t )–Te)/(Tx,i–Te)] is
indeed a linear function of t . This indicates the BGK approxi-
mation accurately describes the collision term for the model
fluid. The slope of the linear fit gives 1/τ = 0.00681 ps−1.
Since the density and temperature of vapor are different in
different bins, we use the same method to find 1/τ for vapor
properties in all other bins in the vapor region. The MD
data in Fig. 7(b) shows 1/τ is proportional to ρv

√
Te as was

predicted by the KTG. If ρv and T are in units of mol/L
and K, respectively, then we find from Fig. 7(b) that 1/τMD =
0.0133ρv

√
Te ps−1. For comparison, the KTG predicts the

molecular collision frequency 1/τKTG = 0.0072ρv

√
Te ps−1 if

we use the LJ parameter σ = 3.41 Å as the kinetic diameter,
d , in Eq. (33). The calculation result shows 1/τMD is higher
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than 1/τKTG by a factor of two. This difference can be proba-
bly explained by the following reasoning. All molecules are
equivalent in the anisotropic vapor. Each collision between
two molecules will bring both molecules close to equilibrium.
As a result, Tx and Ty of vapor approach each other at a
rate that is about two times of the molecular collision rate
predicted by the KTG. We will use the τ predicted by MD
simulations to solve the BTE for 1D steady-state evaporation.

V. MD VERIFICATION OF PREDICTIONS FROM THE BTE

A. The vapor property profiles in the Knudsen layer

As discussed in Sec. III B, the four-moment solution to
the BTE requires four BCs. To specify the three BCs [i.e.,
Eqs. (24a) through (24c)] at the evaporating liquid surface,
one needs to know the saturated vapor density, ρg(TL ), and the
MAC, α(TL ). The temperature-dependent saturated vapor den-
sity and the MAC of the model fluid Ar with a cutoff distance
of 3.2σ have been determined by EMD simulations in our
previous work [23]. We have successfully used the calculated
ρg(TL ) and α(TL ) to predict evaporation and condensation
rates and thermal conductance at liquid-vapor interfaces of
fluid Ar [23,26,27]. In this section, we will use the ρg(TL )
and α(TL ) from our previous work in the solution to the BTE.
Additionally, one also needs to know vR,0 (i.e., vR of vapor at
the evaporating surface) to determine the three BCs, i.e., Tx,
Ty, and ρv of vapor, at the evaporating surface. The value of
vR,0 depends on the fourth BC applied at the right boundary of
the vapor region. In this section, we simply assume that vR,0

is known, and show the general features of solutions to the
BTE for different values of vR,0. We will discuss the methods
that can be used to find vR,0 from the fourth BC in Secs. V B
through 5.4.

In the following, we show the solution to the BTE for
1D steady-state evaporation of liquid Ar at a temperature of
TL = 82.8 K. At TL = 82.8 K, our previous work [23] shows
ρg = 0.142 mol/L and α = 0.92. We choose TL = 82.8 K be-
cause it is the temperature at the evaporating surface shown
in Fig. 3. The MD simulation results will be used to verify
the predictions from the BTE for different evaporation rates.
In Fig. 8, we show the four-moment solution to the BTE for
vapor Ar near an evaporating liquid Ar surface (located at
x = 0) at TL = 82.8 K. Each line in Fig. 8 represents the BTE
prediction at a given vR,0. According to the results shown in
Fig. 2, a higher vR,0 corresponds to a higher evaporation rate,
a larger extent of temperature anisotropy and a lower density
of vapor at the evaporating surface. A lower vapor density
results in a lower collision rate between molecules, and thus
a longer time for the anisotropic vapor to become isotropic.
Hence, it is reasonable to see the thickness of the Knudsen
layer (i.e., the region where Tx is different from Ty) gradually
increases as the evaporation rate increases. For all cases shown
in Figs. 8(c) and 8(d), ρv decreases monotonically and vR

increases monotonically in the vapor flow direction within
the Knudsen layer as was predicted by Eqs. (32a) and (32b).
In the case of vR,0 = 0.6, vR of vapor increases to a value
close to 1.224 (i.e., approximately

√
1.5) at x ≈ 38 nm. At

this point, the integral of Eq. (32) becomes divergent and vR

of vapor cannot increase anymore. We believe vR = 1.224 at

FIG. 8. The distributions of (a) and (b) temperature, (c) den-
sity, and (d) dimensionless macroscopic velocity of vapor near an
evaporating liquid Ar surface (located at x = 0) and at a surface
temperature of TL = 82.8 K. The results are the prediction from the
four-moment solution to the BTE. vR,0 is the vR of vapor at x = 0,
i.e., the liquid-vapor interface.

x ≈ 38 nm corresponds to the case of evaporation into a vac-
uum where the vacuum boundary is applied at the position 38
nm from the evaporating surface. To verify this speculation,
we study the evaporation into a vacuum in the next section.

B. Evaporation into a vacuum

In the case of evaporation into a vacuum, the maximum
evaporation rate is achieved. When the vacuum boundary is
applied, the vapor density on the right side of the vacuum
boundary is zero. However, the vapor density on the left side
of the vacuum boundary must not be zero. Otherwise, the
macroscopic vapor velocity will be infinite according to mass
conservation, which is impossible. This implies the density
gradient at the vacuum boundary becomes infinite. According
to Eq. (32a), the infinite density gradient is obtained when
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FIG. 9. (Top panel) A snapshot of the model system for the
study of evaporation of liquid Ar at TL = 82.8 K into a vacuum. The
vacuum boundary is 103 nm from the evaporating surface. (Bottom
panels) The (a) temperature, (b) density, and (c) dimensionless
macroscopic velocity in the vapor region. The scatters are MD
simulation results. The lines are predictions from the BTE.

vR = √
1.5. Therefore, the BC we can apply at the vacuum

boundary is vR = √
1.5. Combining the BC at the vacuum

boundary and the other three BCs at the evaporating surface,
we have all four BCs required for the BTE.

With these four BCs, we solve the BTE for the case of
evaporation of liquid Ar at TL = 82.8 K into a vacuum where
the vacuum boundary is located 103 nm from the liquid
surface (i.e., the case shown in Fig. 3). Since three BCs
are formulated at the evaporating surface and the fourth one
is at the vacuum boundary, we apply a shooting method to
find the solution to the BTE. In the shooting method, we
gradually increase the value of vR,0 until the integration of
Eq. (32) starts to diverge at the vacuum boundary. As shown in
Fig. 9(c), when vR,0 = 0.539, vR keeps increasing in the vapor
flow direction and approaches 1.224 at x = 103 nm. A slight
increase in vR,0 will result in a divergent integral of Eq. (32)
before x = 103 nm. At vR,0 = 0.539, therefore, we obtain the
corresponding solution to the BTE. As shown in Fig. 9, the Tx,
Ty, ρv , and vR profiles predicted by the BTE all agree with the
MD simulation results very well. Furthermore, one can readily
find from Eq. (25) that the KTG prediction of the evaporation
molar flux at vR,0 = 0.539 and TL = 82.8 K is 0.59 mol/cm2s,
which is in agreement with 0.60 ± 0.01 mol/cm2s obtained
directly from the MD simulation. For further reference, we
estimate the mean free path of vapor molecules in the vapor
region using λ = 1/(

√
2πρvd2) [19]. With τMD determined

FIG. 10. Same as described in the caption of Fig. 9 except that
the temperature at the evaporating surface is increased to TL =
90.5 K.

from Sec. IV B and Eq. (33), we find d ≈ 0.46 nm. Fig. 9(b)
shows ρv reduces from 0.078 mol/L to 0.039 mol/L in
the vapor region. Accordingly, the mean free path of vapor
molecules increases from 22 nm at the position near the
evaporating surface to 45 nm at the position close to the
vacuum boundary.

As shown in Fig. 9(a), the vapor temperature is anisotropic
in the vapor region, which indicates the whole vapor region
is within the Knudsen layer. In the Knudsen layer, Fig. 9(a)
shows Ty decreases monotonically due to the collisions be-
tween molecules in the nonequilibrium vapor. Unlike Ty, both
the MD model and the BTE predict that Tx first increases in the
flow direction, and then starts to decrease after it reaches the
maximum value at x ≈ 30 nm. The solution to the BTE [i.e.,
Eq. (32c)] predicts the maximum Tx is reached at vR = √

0.5
(i.e., ∼0.707). The MD data in Fig. 9(c) show vR ≈ 0.706 at
x ≈ 30 nm, which verifies the crossover point of Tx profile
predicted from the BTE. As we discussed in Sec. III B, the
decrease of Tx in the flow direction is caused by the conversion
from the thermal energy to the macroscopic kinetic energy in
vapor as the vapor flow accelerates in the flow direction.

To further verify the speculations from the BTE, we in-
crease the temperature in the Au plate to Th = 95 K (see
Fig. 10) and study evaporation of liquid Ar into a vacuum
at a higher temperature. In this case, the temperature at the
evaporating surface is TL = 90.5 K, and the corresponding
ρg = 0.288 mol/L and α = 0.88 [23]. With these properties,
we specify the BCs at the liquid surface and apply the
aforementioned shooting method to find vR,0 which makes vR
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TABLE I. The theoretical prediction of the dimensionless maximum evaporation flux, JR,max, as a function of the MAC, α, when the vacuum
boundary is far from the evaporating surface. vR,0, Tx,R, Ty,R, and ρR are the corresponding dimensionless macroscopic velocity, temperature,
and density of vapor at an evaporating interface. The case of α = 0.92 is highlighted because it is relevant to the MD study of evaporation of
liquid Ar at TL = 28.2 K into a vacuum in this work.

α vR,0 JR,max Tx,R Ty,R ρR

1.00 0.50805 0.83843 0.60617 1.04328 0.59794
0.92 0.50513 0.77994 0.60179 1.04531 0.56148
0.90 0.50438 0.76514 0.60068 1.04583 0.55215
0.80 0.50059 0.69007 0.59496 1.04851 0.50415
0.70 0.49666 0.61306 0.58901 1.05132 0.45371
0.60 0.49258 0.53392 0.58281 1.05428 0.40052
0.50 0.48834 0.45245 0.57633 1.05740 0.34428
0.40 0.48391 0.36841 0.56954 1.06071 0.28458
0.30 0.47929 0.28152 0.56241 1.06422 0.22094
0.20 0.47443 0.19144 0.55490 1.06796 0.15281
0.10 0.46933 0.09776 0.54696 1.07197 0.07945

approach 1.224 at x = 103 nm. As shown in Fig. 10(c), we
obtain the solution to the BTE when vR,0 = 0.518. At vR,0 =
0.518 and TL = 90.5 K, the KTG [i.e., Eq. (25)] predicts the
evaporation molar flux equals 1.17 mol/cm2s, which is again
in agreement with 1.20 ± 0.01 mol/cm2s obtained directly
from the MD simulation. In Fig. 10, we show the predictions
from the BTE in this case also agree with the MD simulation
results very well. The speculation that the maximum Tx in
the vapor appears at vR ≈ 0.707 is again verified by the MD
simulation results shown in Fig. 10.

The speculations from the BTE are also consistent with
the experimental results of the evaporation of iodine to a
condensing surface cooled by liquid nitrogen [9]. As we
shown in Fig. 6, the condensing surface at a very low tem-
perature is equivalent to a vacuum boundary. By means of
fluorescence spectroscopy with a tunable continuous-wave
dye layer, Mager et al. measured the flow velocity and the
temperatures along and perpendicular to the flow direction [9].
The experimental results show vR is approaching 1.224 at
the condensing surface, which is equivalent to the vacuum
boundary, and the maximum Tx is obtained at vR ≈ 0.707.

C. The maximum evaporation flux

The maximum evaporation flux has been extensively stud-
ied, using the KTG, in literature [3,4,10,28,29]. Most of
studies assumed that the vacuum boundary is infinitely far
from the evaporating surface and the MAC at the evaporating
surface is 1. In this section, we will extend the existing
KTG-based model to study the impact of the MAC, α, and
the distance, Lvap, between the vacuum boundary and the
evaporating surface on the maximum evaporation flux, Jmax.

To determine Jmax from the KTG, one can define a dimen-
sionless quantity [4]:

RJME = JnetEnet

M2
net

2

m
. (39)

Substituting Eqs. (31a)–(31c) into Eq. (39), we obtain

RJME = v2
R

(
v2

R + 3
2 + TR

)
(
v2

R + 1
2

)2 , (40)

where TR = Ty/Tx. Since the net molar flux, Jnet, momentum
flux, Mnet, and energy flux, Enet, remain constant in a steady
flow, RJME should also be constant in the vapor flow direction.
If the vacuum boundary is sufficiently far from the evaporating
surface, then the evaporating vapor will move through a long
distance such that the vapor molecules have sufficient time
to collide with each other and become isotropic before they
reach the vacuum boundary. In an isotropic vapor flow, TR = 1
and thus RJME is a function of vR only. Accordingly, it can
be readily proved that the maximum value of RJME in the
isotropic vapor is 1.5625. Since RJME is constant in the vapor
flow direction, the maximum RJME at the evaporating sur-
face should also be 1.5625. From the theoretical analysis by
Crout [4], Jmax occurs when RJME reaches the maximum value.
To evaluate Jmax, we consider the expression of RJME at the
evaporating surface. According to Eq. (40), RJME is a function
of vR and TR. At the evaporating interface located at x = 0,
vR = vR,0 and TR = Ty,R/Tx,R. Equations (24a) and (24b) show
both Tx,R and Ty,R are a function of vR,0 and α (i.e., the MAC).
Therefore, RJME at the evaporating surface only depends on
vR,0 and α. For a given value of α, we can find the value of
vR,0 which makes RJME reach its maximum value, i.e., 1.5625.
Once the vR,0 is known, we use Eqs. (25) and (24) to find
Jmax, and the corresponding temperature and density of vapor
at the evaporating interface for a given α.

In Table I, we show the dimensionless Jmax, i.e., JR,max, and
the corresponding dimensionless vapor properties at the evap-
orating interface calculated from the aforementioned KTG-
based model. Note that the results in Table I is obtained based
on the assumption that the distance, Lvap, between the vacuum
boundary and the evaporating surface is infinite. When α = 1,
our calculation results show Jmax(Lvap → ∞) = 0.83843 JL

+,
where JL

+ is given by Eq. (2a). This implies ∼83.8% of the
vapor molecules emitted from the liquid surface eventually
leave the vacuum boundary, and ∼16.2% of them return to the
liquid surface due to molecular collisions in vapor [29]. This
result is exactly the same as the Jmax(Lvap → ∞) predicted
by Crout [4]. The difference between our model and Crout’s
model is that we generalize Crout’s model to include the effect
of α on Jmax as shown in Table I. To validate the theoretical
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FIG. 11. The predictions from the BTE and the MD model on
vR,0 and Jmax as a function of Lvap for the case of evaporation of liquid
Ar at TL = 82.8 K into a vacuum. The top horizontal dash-dot line
indicates αJL

+, i.e., the molar flux of molecules that are emitted from
the liquid surface and change to vapor phase. The bottom dash-dot
line indicates vR,0(Lvap → ∞), i.e., the vR,0 predicted by the KTG
shown in Table I.

predictions of Jmax(Lvap → ∞) as a function of α, we compare
the calculation results to the MD simulation results.

For the model liquid Ar at TL = 82.8 K, the MD simulation
shows ρg = 0.142 mol/L and α = 0.92 [23]. At an evap-
orating surface with α = 0.92, the KTG-based model pre-
dicts that Jmax(Lvap → ∞) = 0.77994 JL

+ is achieved when
vR,0(Lvap → ∞) = 0.50513 (see Table I). Using Eq. (2a), we
find JL

+ = 0.744 mol/cm2s for the model liquid Ar surface
at TL = 82.8 K. Accordingly, the KTG-based model predicts
Jmax(Lvap → ∞) = 0.58 mol/cm2s. To validate this predic-
tion, we compare it to the MD simulation result. As shown
in Fig. 9, Lvap = 103 nm in the MD model. It is clearly
shown in Fig. 9(a) that 103 nm is too short to allow evapo-
rating vapor to become isotropic. Therefore, Lvap = 103 nm
is not long enough to be considered as Lvap → ∞ in the
model system. Although at Lvap = 103 nm the MD simulation
shows Jmax,MD = 0.60 ± 0.01 mol/cm2s which is close to the
KTG-based prediction Jmax(Lvap → ∞) = 0.58 mol/cm2s, it
is inappropriate to directly use this MD result to validate the
KTG-based prediction.

To obtain Jmax(Lvap → ∞) from the MD simulation, there-
fore, we vary Lvap from 0.3 nm to 203 nm as shown in Fig. 11,
determine Jmax at each Lvap, and extrapolate the MD simula-
tion results to Lvap → ∞. To understand the dependence of
Jmax on Lvap found in MD simulations, we use the BTE and
the shooting method described in Sec. V B to obtain vR,0 and
Jmax at each Lvap. As the vacuum boundary approaches the
evaporating surface, the vapor molecules emitted from the
liquid surface have smaller possibility to collide with each
other in the vapor region and return to liquid surface. As a
result, it is seen in Fig. 11 that vR,0 and Jmax both increase
as Lvap decreases. For the smallest Lvap (0.3 nm) in the MD
study, molecules are evacuated immediately after they are
emitted from the liquid surface and change to vapor. In this
case, the BTE solution predicts that vR,0 approaches 1.224
(i.e., the maximum possible vR in the vapor) and Jmax ≈
0.68 mol/cm2s, which is close to αJL

+ = 0.684 mol/cm2s
(i.e., the molar flux of molecules that are emitted from the liq-
uid surface and change to vapor). As Lvap increases, the BTE
predicts that Jmax gradually reduces to Jmax(Lvap → ∞) =

0.58 mol/cm2s, and vR,0 reduces to vR,0(Lvap → ∞) = 0.505.
As shown in Fig. 11, the MD simulation results are consistent
with the BTE predictions. In the limit of large Lvap, the
Jmax obtained directly from MD simulations also approaches
Jmax(Lvap → ∞) = 0.58 mol/cm2s predicted by the KTG-
based model.

The above analysis indicates that Jmax depends on both α

and Lvap. For an evaporating surface with a given value of α,
Jmax approaches αJL

+ if the vacuum boundary is infinitely
close to the evaporating surface (i.e., Lvap → 0). As Lvap

increases, Jmax decreases monotonically to Jmax(Lvap → ∞).
For a given α, the dimensionless Jmax(Lvap → ∞), i.e., JR,max,
is determined by the KTG-based model described in this
section and its value can be found in Table I. The above
modeling results also validate the NEMD method that was
often used in literature to determine α. The NEMD method
calculated the MAC, α, as the ratio of net evaporation flux
into vacuum, Jnet, to the outgoing flux, JL

+ [14,30]. The
vacuum boundary in the NEMD simulations of MAC [14]
was very close to the evaporating surface. In this case, our
modeling results verify that the ratio of net evaporation flux
into vacuum, Jnet, to the outgoing flux, JL

+ equals to α.

D. Evaporation and condensation between two parallel plates

Sections V B and V C focus on the case of evaporation
into a vacuum in which the whole vapor region is in the
Knudsen layer. We now replace the vacuum boundary with a
condensing surface and study the transport of vapor between
two parallel plates. To ensure that the condensing surface
is different from the vacuum boundary in the MD model,

FIG. 12. (Top panel) A snapshot of the model system for the
study of evaporation and condensation of fluid Ar between two
parallel plates. The separation between the evaporating and the
condensing surfaces is 106 nm. (Bottom panels) The (a) tempera-
ture, (b) density, and (c) dimensionless macroscopic velocity in the
vapor region. The scatters are MD simulation results. The lines are
predictions from the BTE.
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FIG. 13. (a) The velocity distribution of vapor molecules in the
second bin of the vapor region. The red circles and blue diamonds are
MD simulation results for the velocity components along the vapor
flow direction and perpendicular to the flow direction, respectively.
The dashed line is the Maxwell velocity distribution (MVD) of Ar
molecules at T = 71 K. The solid line is the shifted MVD (SMVD)
of Ar molecules at T = 61 K. (b) RJME vs. Jnet at the evaporating and
condensing surfaces.

we increase the temperature in the right Au plate to 65 K.
As shown in Fig. 12, the temperatures at the evaporating
and condensing surface at steady state are 82.9 and 67.3 K,
respectively. From EMD simulations of the model fluid Ar
at these two temperatures [23], we obtain ρg(82.9 K) =
0.144 mol/L, α(82.9 K) = 0.92 at the evaporating surface,
and ρg(67.3 K) = 0.017 mol/L, α(67.3 K) = 1.0 at the con-
densing surface. The nonzero ρg at the condensing surface
implies the molar flux of molecules emitted from the condens-
ing surface is nonzero. Hence, such a condensing surface is
different from the vacuum boundary. The molar flux at the
evaporating surface will be affected by the molecular flux
emitted from the condensing surface. We will continue using
the BTE and MD simulations to understand the transport
phenomena of vapor in this case.

The MD simulation results shown in Figs. 12(a) and 13(a)
indicate the temperature of vapor near the evaporating surface
is still anisotropic in this case and the local velocity distribu-
tion of vapor molecules can be well approximated by Eq. (3).
Therefore, the key assumptions made in our theoretical anal-
ysis are still valid. Since the condensing surface in this case is
different from a vacuum boundary, we cannot apply the BC,
vR = 1.224, at the condensing surface. Instead, we can use
Eqs. (24) and (25) to find the vapor temperature and molar flux
at the condensing surface. The only thing we need to change

in these equations is to replace vR,0 by vR,c, i.e., vR at the
condensing surface. The vapor flow is leaving the evaporating
surface and coming to the condensing surface. Therefore, a
negative vR,c value should be used in Eqs. (24) and (25) to
find the vapor temperature and molar flux at the condensing
surface.

To find the solution to the BTE, the key issue is to deter-
mine the vR,0 at the evaporating surface. Since both vR,0 and
vR,c are unknown, we resort to RJME defined in Eq. (40) to
determine vR,0. At steady state,

RJME,0 = RJME,c, (41)

where RJME,0 and RJME,c are RJME at the evaporating and
condensing surfaces, respectively. Since α at the given evap-
orating surface is known, RJME,0 is a function of vR,0 only.
Similarly, RJME,c is a function of vR,c only. Accordingly, there
are two unknown variables, namely, vR,0 and vR,c in Eq. (41).
To find vR,0, therefore, we need one more equation. Using
mass conservation, we have

Jnet,x=0 = Jnet,c. (42)

According to Eq. (25), Jnet,x=0, i.e., Jnet at the given evapo-
rating surface, is a function of vR,0 only. Similarly, Jnet,c, i.e.,
Jnet at the given condensing surface, is a function of vR,c only.
Thus, we have two equations for two unknown variables, i.e.,
vR,0 and vR,c. To solve these equations, we calculate RJME,0

and Jnet,x=0 as a function of vR,0, and RJME,c and Jnet,c as
a function of vR,c. In Fig. 13(b), we plot RJME versus Jnet

for evaporating and condensing surfaces. The intersection
of the two curves satisfies both Eq. (41) and Eq. (42). It
is seen in Fig. 13(b) that the KTG-based model predicts
Jnet = 0.53 mol/cm2s which is consistent with Jnet = 0.55 ±
0.01 mol/cm2s obtained directly from the MD simulation.
From Jnet, we find the corresponding vR,0 and use vR,0 to
evaluate Tx, Ty and ρv of vapor at the evaporating surface.

FIG. 14. Same as described in the caption of Fig. 12 except that
the length of vapor region is doubled.
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With these BCs, we integrate Eq. (32) to find the solution to
the BTE.

It is shown in Fig. 12 that the BTE solutions are in good
agreement with the MD simulation results. Eq. (32c) predicts
Tx of vapor will decrease in the vapor flow direction only
when vR is greater than 0.707. For the case studied in this
section, Fig. 12(c) shows vR is less than 0.6 in the whole
vapor region. Therefore, it is reasonable to see in Fig. 12(a)
that Tx increases monotonically in the vapor flow direction.
Near the right boundary of the vapor region, Tx is almost the
same as Ty which means the length of the Knudsen layer in
this case is comparable to that of vapor region in the model
system. When we double the length of the vapor region, we
clearly see a region of isotropic flow as shown in Fig. 14. In
this case, the vapor region is longer than the Knudsen layer
and the evaporation flux is not affected by the length of vapor
region. The good agreement between the BTE predictions and
the MD simulation results shown in Fig. 14 indicates that the
BTE also gives a good prediction of transport phenomena of
isotropic flows as was to be expected.

VI. CONCLUSIONS

In the Knudsen layer near a planar evaporating surface, the
vapor temperature is anisotropic and the temperature of vapor
perpendicular to the vapor flow direction (i.e., Ty) is always
higher than that in the vapor flow direction (i.e., Tx). The
distribution function for vapor molecules near the evaporating
surface can be well approximated by Eq. (3). In the case
of steady-state evaporation, the vapor density, ρv , and vapor
temperature, Ty, decrease monotonically, and the vapor flow
speed increases monotonically in the vapor flow direction in
the Knudsen layer. The variation of vapor temperature, Tx,
in the vapor flow direction is determined by two physical
processes. One is the molecular collisions in vapor, which

tends to increase Tx. The other is the energy conversion from
the microscopic kinetic energy of vapor molecules to the
macroscopic kinetic energy in the vapor flow direction, which
tends to decrease Tx. The maximum Tx in the Knudsen layer
is obtained when vR defined by Eq. (5) is equal to

√
0.5.

From the study of evaporation into a vacuum, we find the
BC that can be applied at the vacuum boundary is vR = √

1.5,
and

√
1.5 is the upper limit of vR in the Knudsen layer. The

maximum evaporation flux from a liquid surface at a given
temperature depends on both the MAC, α, and the distance,
Lvap, between the evaporating surface and the vacuum bound-
ary. As Lvap increases from 0 to �, the ratio of evaporation
molar flux, Jnet, to the molar flux of molecules emitted from
the liquid surface, JL

+, decreases from α to JR,max, where
JR,max is a function of α only and its value is given in Table I.
From the study of the evaporation and condensation between
two parallel plates, we show the BTE solutions give good
predictions of transport phenomena in both the anisotropic
vapor flow within the Knudsen layer and the isotropic flow
out of the Knudsen layer. All the predictions from the KTG
and BTE combined theoretical model are verified by MD
simulations in this work.

This study focused on evaporation of monoatomic fluids.
It is imperative in the future to extend the theoretical and MD
model in this work to investigate evaporation of more complex
fluids such as water and organic fluids.
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