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The impact of an initial random magnetic field on the temporal evolution of a two-dimensional incompress-
ible turbulent shearless mixing layer is investigated using direct numerical simulation. Different intensities
of the initial random magnetic field are imposed with uniform probability distribution on an identical flow
field. The initial flow field condition is the turbulent shearless mixing layer with different kinetic energy ratio
(EH/EL = 6.7) and identical integral length scale. Simulations are carried out in a moderate magnetic Reynolds
number, which causes a two-way interaction between the velocity and magnetic fields. In order to analyze the
effect of the initial random magnetic field on the mixing characteristics, the intermittency inside the mixing layer
and the mixing evolution parameters are investigated. It is found that with small initial magnetic field intensity,
the intermittency in both large and small scales are larger than those values in hydrodynamic flow. However,
increasing the intensity of the initial magnetic field reduces the intermittency in the mixing region to lower
values compared to the hydrodynamic flow. The mixing layer growth rate and the mixing efficiency both show
reduction by increasing the initial magnetic field intensity, which is attributed to the reduction of the averaged
Reynolds number of both homogenous isotropic turbulent regions due to the suppressing effect of the Lorentz
force on the velocity fields of these regions.
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I. INTRODUCTION

Turbulent mixing is present in many natural astrophysical
and geophysical phenomena as well as in industrial and tech-
nical applications. The simplest turbulent mixing case occurs
where there are two fluids with similar properties stretch and
fold throughout the domain [1]. However, the mixing process
generally occurs in more complicated situations, in which
fluid dynamics or its properties are affected by other param-
eters such as drag forces and chemical reactions. Therefore,
due to the diversity and complexity of the mixing processes, it
is important to investigate the mixing quality in various types
of flow and conditions under which mixing occurs.

Since shearless mixing layer represents one of the simplest
inhomogeneous flows, it can be considered as one of the
most appropriate candidates to investigate turbulent mixing
behaviors [2]. The shearless mixing layer is produced in a
decaying grid turbulence in which the mean velocity is con-
stant throughout the flow field but two different homogenous
isotropic turbulent (HIT) regions are formed on either side of
the stream [3]. As the flow evolves, the energetic eddies pene-
trate from one HIT field into another and form an anisotropic
mixing region [4]. In this flow, due to the absence of the
mean velocity gradient across the layer, there is no mechanism
for production of the turbulent kinetic energy. Therefore, the
shearless mixing layer serves as a useful benchmark flow to
investigate the fundamental aspects of a mixing process that is
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exclusively originated from fluctuating pressure and velocity
fields [2,5].

Over the last three decades, several theoretical and ex-
perimental research works and developments have been per-
formed on the two-dimensional (2D) and three-dimensional
(3D) shearless mixing layers, which have provided a strong
foundation to study mixing processes. The early study of
shearless turbulent mixing was carried out experimentally
by Gilbert [3]. In his experiment, the turbulent kinetic en-
ergy gradient was produced using a passive grid with two
distinct scales. Gilbert’s study focused mainly on the down-
stream evolution of the mixing layer width. Therefore, no
significant levels of the intermittency and departure from
the Gaussian statistics in the velocity were observed. In a
more detailed experimental study by Veeravalli and Warhaft
[4], the mixing evolution in the shearless mixing layer with
both turbulent kinetic energy and length scale gradients was
investigated. Unlike the results of Gilbert’s study, this research
represented significant deviations from Gaussian statistics
or intermittency by examining the velocity skewness and
flatness coefficients. Moreover, shifting the locations of the
skewness and flatness maxima toward the low-kinetic en-
ergy region revealed that mixing occurs by penetration of
the high-kinetic energy turbulent eddies into the low-energy
region.

Later, several numerical investigations were performed
which all confirmed the results obtained by Veeravalli and
Warhaft. Tordella and Iovieno showed that the intermit-
tency level and the growth of the mixing region increase
when the turbulent kinetic energy and length scale gradients
are concordant [6]. Later investigations [2,7] showed that
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a sufficient condition for emergence of the intermittency
is the presence of the turbulent energy or the length scale
gradients.

Using both numerical and experimental approaches, Kang
and Meneveau [8] found that much of the departure from
Gaussian statistics originates from the large-scale motions
in high-Reynolds number flows. Nevertheless, Tordella and
Iovieno [9] showed that decaying shearless turbulent mixing
leads to a significant level of the small-scale anisotropy and in-
termittency, which are identified by the normalized third- and
fourth-order one-point moments of the longitudinal velocity
derivative.

In another numerical study, Iovieno et al. investigated the
mixing of passive scalars in 2D and 3D shearless mixing
layers [10]. In this research, they showed that the evolutions
of 2D and 3D shearless turbulent mixing are qualitatively and
quantitatively different. In a more recent study, Fathali and
Khoshnami [5] focused on the sensitivity of a 2D shearless
mixing layer evolution to the variations of the length scale
and the turbulent kinetic energy ratios. It was found that the
turbulent kinetic energy was the most influential parameter
on the variability of mixing evolution. In addition, it was
indicated that dependency of the mixing intermittency and
energy transfer mechanisms on the length scale and turbulent
kinetic energy ratios is different from that of the mixing
growth rate and the mixing efficiency.

All the above mentioned studies were conducted on single-
phase and nonreacting flows with no imposed external forces.
In these kind of flows, the turbulent flow dynamic is affected
only by kinetic energy or the length scale gradients, which
leads to mixing evolution. However, in many real situations,
turbulent mixing occurs in a more complicated flow, where
its dynamics depend on some other factors (e.g., polymers,
magnetic force, and multiphase flows). Moreover, there are
some fluids whose properties change during the mixing pro-
cess via other phenomena (e.g., combustion, detonations, and
thermonuclear supernova explosions) [11]. Although mixing
in such flows is more often accompanied by shear, some re-
search has investigated the mixing of these flows in shearless
mixing layer conditions to eliminate the complexities of the
shear force effects [12–15].

Magnetohydrodynamic (MHD) mixing is one of the most
complex flows that are commonly observed in many natural
phenomena and industrial applications, such as astronomy,
geophysics, and metallurgy. The dynamics of MHD flows
is highly affected by the coupling between velocity and
magnetic fields, which are described by combination of the
Navier-Stokes (N-S) and the Maxwell equations [16]. This
coupling causes the mixing processes in MHD flows to be
more complicated compared to the hydrodynamic (HD) tur-
bulent flows.

Most research on the MHD mixing layer has been con-
ducted using shear flow conditions in which development of
the Kelvin-Helmholtz instability leads to the energy transport,
dissipation, and mixing of fluids. Therefore, most of these
focused on interactions of Kelvin-Helmholtz instability and
the external magnetic field [17–19], as well as their impact
on some phenomena such as ion mixing [20,21], magnetic re-
connection [22,23], and passive scalar and particle dispersion
[24–26].

In contrast to the MHD shear mixing layer, there are
very limited reported studies on the MHD shearless mixing
layer. In these research works, the applicability of the large
eddy simulation method for predicting different aspects of the
MHD shearless mixing layer with random initial magnetic
field are explored [27,28].

The study of the MHD shearless mixing layer evolution
is motivated by the fact that the intermittent mixing and
departure from the Gaussian statistics, originated from the
turbulence-turbulence interactions, can be significantly af-
fected by the presence of the magnetic field, and the shearless
mixing layer is one of the most appropriate flow field config-
urations for investigating these processes. In addition, study
of the MHD shearless mixing layer is beneficial for under-
standing the impact of the magnetic field on the development
of the magnetohydrodynamic turbulence intermittency, which
is commonly observed in many geophysical and astrophysical
problems [27,29].

Although 2D and 3D MHD turbulence show similarities in
certain respects, e.g., direct cascades of the turbulent kinetic
energy and helicity [30], there are also significant differences.
Indeed, 2D MHD turbulence shows more intermittent spatial
distribution compared to the 3D counterpart [31]. Therefore, it
is expected that the 2D and 3D MHD shearless mixing layers
show nontrivially different dynamics.

Notably, despite these differences between dynamics of
the 2D and 3D MHD shearless mixing layers, all the above-
mentioned research has been carried out on the 3D MHD
shearless mixing layer. To the best of the authors’ knowledge,
there is no previous report on the 2D MHD shearless mixing
layer.

Accordingly, this research aims at identifying the impact of
the initial random magnetic field on the (1) intermittency and
departure from Gaussian statistics inside the mixing region
and (2) the mixing process in a 2D MHD shearless mixing
layer, using the DNS approach.

Indeed, the Alfvén timescale, as the relevant nonlinear
timescale, is closely related to the magnitude of the large-scale
magnetic field. A random magnetic field can have nontriv-
ial effect on the spectral distribution of the kinetic energy,
resulting in the Kolmogorov-like MHD turbulence [32,33].
Therefore, from the theoretical point of view, the response of
the 2D turbulent mixing to the additional degrees of freedom,
i.e., random magnetic field, is very pertinent to the general
understanding of the MHD turbulent mixing. In terms of
astrophysical implications, the galactic dynamo is influenced
by the large-scale random magnetic fields.

This paper is organized as follows: In Sec. II the governing
equations, flow field configuration, and its initialization are
briefly explained. Next, in Sec. III the changes of statistics
and mixing properties under various initial random magnetic
fields are analyzed and presented. Finally, conclusions are
summarized in Sec. IV.

II. INITIAL CONDITIONS AND METHOD OF SOLUTION

In this research, the pseudospectral method is used for
direct numerical simulation (DNS) of an incompressible 2D
shearless mixing layer evolution with initial random magnetic
field. To enforce the periodicity, as a requirement of this
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FIG. 1. (a) Graphical representation of the initial flow field configuration consisting of two shearless mixing layers. Dashed line presents
the turbulent kinetic energy level of different regions. (b) Initial velocity field; (c) initial magnetic field.

numerical method, two shearless mixing layers are considered
side by side, which perform the reverse transition compared to
each other [5,34]. This also improves the statistics of results
through average data gathered from the two mixing layers in
each DNS [34]. The shearless mixing layer consists of two
HIT regions with different turbulent kinetic energy intensities
that are in contact and interact through a thin transition layer
[5]. The initial flow field configuration is shown in Fig. 1(a),
where HITH and HITL represent high- and low-energy HIT
regions, respectively [see Fig. 1(b)]. This initial mixing layer
flow can be described as [5]

ω(x, y) = [1 − f (x)]
1
2 ωL(x, y) + f (x)

1
2 ωH (x, y), (1)

where ωH (x, y) and ωL(x, y) are the vorticity fields of HITH

and HITL, respectively. The function f (x) is [5]

f (x) =1
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)
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where L is the size of the computational domain and is equal to
2π . The dimensionless constant c determines the initial layer
thickness and is set to 125 to ensure that layer width and the
smallest flow field integral length scale ( L

150 ) are in the same
order [5]. Each HIT vorticity field is generated in the Fourier
space with the following amplitudes:

ω̂(kx, ky, 0) =
[

k2Es(k, 0)

π

] 1
2

exp(iθ ), (3)

where i = √−1, θ is the random phase, which is expressed
by θ ∈ [0, 2π ] with uniform PDF, and Es(k, 0) is the initial
energy spectrum [5]:

Es(k, 0) = 1
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k
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)7
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[
−3.5

(
k

kp

)2
]
, (4)

where k2 = kx
2 + ky

2 is the spectral radius [35]. kp is the
peak wave number, which is related to the length scale in 2D
turbulence with the following expression [5,35,36]:

� =
[ ∫ ∞

0 Es(k) dk∫ ∞
0 k2Es(k) dk

] 1
2

=
√

7

8
kp

−1. (5)

There are different interpretations of this length scale
in Refs. [35–37]. In Ref. [35] the length scale � is con-
sidered as the microscale length scale. On the contrary,
in Refs. [36,37] this length scale is attributed to the in-
tegral length scale according to the definition given in
Ref. [38], Lint = ∫ ∞

0 k−1Es(k) dk/
∫ ∞

0 Es(k) dk. However, it
can be shown that for the energy spectrum which is defined
in Eq. (4), the length scale � and the integral length scale Lint

are in the same order, i.e., Lint = 1.13� [5].
Each HIT velocity field needs to evolve by a freely de-

caying simulation until a well-developed isotropic energy
spectrum among different Fourier modes is established. Since
the integral length scale increases during the flow field evo-
lution, to restore the desired length scale �, the peak wave
number kp in the initial energy spectrum [Eq. (4)] is set as

043106-3



MAHZAD CHITSAZ AND MANI FATHALI PHYSICAL REVIEW E 100, 043106 (2019)

TABLE I. Details of different initial conditions.

Initial magnetic field intensities (B) 0, 0.05, 0.1, 0.15,
(cont.) 0.2, 0.25, 0.5
Magnetic Reynolds number of HITH(RemH ) 20
Reynolds number of HITH (ReH ) 60
Kinematic viscosity (ν) 0.005
Integral length scale (�) 0.042
Turbulen kinetic energy ratio (Er = EH

EL
) 6.7

Integral length scale ratio (�r = �H
�L

) 1

0.9� [5]. Depending on the desired integral length scale, this
adjustment evolution approximately endures between 5τ and
10τ , where τ = �/

√
E is the eddy turnover time and E is the

turbulent kinetic energy. Subsequently, the Fourier amplitudes
of the time-evolved HIT field are rescaled in such a way
that the flow field turbulent kinetic energy is adapted to its
prescribed initial level.

The initial magnetic field is considered as a random seed
with uniform zero-mean probability distribution, which is
imposed on the entire flow field [see Fig. 1(c)]. The same pro-
cedure of HIT velocity field initialization is used to generate
the initial random magnetic field. The integral length scales
of the magnetic and velocity fields are identical. Furthermore,
the level of magnetic energy (Em) is determined based on the
turbulent kinetic energy of HITH, EH , as

Em = BEH , (6)

where B is a dimensionless parameter, which indicates the
intensity of the magnetic field.

A summary of the initial conditions used in this numerical
research are listed in Table I. In all cases the initial shearless
mixing layer flow field is kept constant while the initial mag-
netic field intensity, B, takes different values as presented in
Table I. In this table, only the Reynolds number and magnetic
Reynolds number of the HITH, ReH and RemH , are presented.
Generally, the magnetic Reynolds number, Rem, measures the
relative magnitudes of induced and dissipated magnetic fields
and is defined as [39]

Rem = urms�

λ
, (7)

where λ is the magnetic diffusivity, urms is the square root
of the turbulent kinetic energy

√
E , and � is the flow field

integral length scale. If Rem is moderate or large (Rem � 1),
there is a strong two-way interaction between the velocity
and magnetic fields. On the other hand, when Rem is small
(Rem � 1), the effect of the velocity field on the magnetic
field induction is negligible, whereas the imposed magnetic
field suppresses the turbulent activity [39]. In this research,
in order to simultaneously examine the mutual interaction of
velocity and magnetic fields besides the viscous and Ohmic
dissipations, both kinetic and magnetic Reynolds numbers are
considered in moderate ranges (see Table I) [26].

Furthermore, regarding the values of Re and Rem in Table I,
the magnetic Prandtl number (which is defined as ratio of Rem

to Re) is about 0.33. Although this magnetic Prandtl number
is far from those of liquid metals or astrophysical plasmas,

it can still provide valuable information on the inertial range
properties of the MHD flows [40,41].

Moreover, a passive scalar is also introduced in the flow
field in order to investigate its dynamics under the influence
of the initial random magnetic field. The passive scalars
are distributed in the HITH and HITL regions with an ini-
tial uniform concentration of Z = 1 and Z = 0, respectively.
Furthermore, the passive scalar concentration of the mixing
region is matched through the following equation [5]:

Z (x, y) = f (x)
1
2 ωH (x, y), (8)

where f (x) was introduced in Eq. (2).
The evolution of incompressible MHD turbulence can be

determined by solving the governing equations of MHD,
which are a combination of a reduced form of Maxwell’s
equations and the N-S equations [39]. In this case, the N-S
equations are used in vorticity formulation to eliminate the
pressure variable:

∂ �ω
∂t

= �∇ × (�u × �ω − �b × �J ) + ν∇2 �ω, (9)

∂ �b
∂t

= �∇ × (�u × �b) + λ∇2�b, (10)

�∇ · �u = 0, (11)

�∇ · �b = 0, (12)

where

�ω = �∇ × �u, (13)

�J = �∇ × �b, (14)

Lorentz force = �J × �b, (15)

where ν is the kinematic viscosity and �b is the magnetic field,
which is denoted in Alfvénic units and is measured in the same
units as the bulk velocity. Furthermore, the evolution of the
passive scalar is defined as

∂Z

∂t
+ �u · �∇Z = DZ∇2Z, (16)

where DZ is the molecular diffusivity and is defined as

DZ = ν

Sc
, (17)

where Sc is the Schmidt number and is set as Sc = 1.
All cases are simulated by a classical pseudospectral

method at the N2 equally spaced (collocation) points, N =
600. The nonlinear terms are calculated in physical space and
dealiased using the 2/3 rule [42]. Also, the time integration
is performed using a low-storage, fourth-order Runge-Kutta
method with the coefficients of αi = {1/4, 1/3, 1/2, 1}, and
the total integration time for all simulations is considered as
t = 25τ .

III. RESULTS AND DISCUSSIONS

To observe the effect of initial magnetic field intensity on
the mixing process of flow field, the evolution of vorticity field
and scalars is investigated. Figure 2 visualizes both vorticity
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FIG. 2. Vorticity-scalar snapshots of shearless mixing layers with imposed magnetic field intensity (a) B = 0, (b) B = 0.1, and (c) B = 0.5
under the same flow initial condition, at t = 25τ . In each snapshot, the scalar and vorticity fields are located at the right and left side of the
images, respectively. The horizontal and vertical axes show the inhomogeneous and the homogeneous directions, respectively.

ω and scalar concentration Z fields at t = 25τ , corresponding
to three different magnetic field magnitudes, B, imposed on
the same flow initial condition. In each snapshot, the vorticity
field and scalar concentration are shown on the left and right
side of the images, respectively.

The overall evolution of the HD (B = 0) mixing layer
in Fig. 2(a) shows that, due to the random motions of the
coherent vortical structures, eddies penetrate intermittently
from the HITH into the HITL field. These penetrations form
a layer between two adjacent HIT fields, in which interface
structures of passive scalars are deformed into engulfed re-
gions with intricate and corrugated small-scale structures. The
vortical penetration inside the mixing layer causes velocity
statistics to be non-Gaussian and highly intermittent. This will
be discussed in more detail in Sec. III A.

By comparing Figs. 2(b) and 2(c) with Fig. 2(a), it is
observed that the wavy appearance of interface structures
of scalars diminishes by increasing B. This indicates less
penetration of the passive scalars from one HIT region into
the adjacent one. Moreover, it is found that the mixing layer
is suppressed further with increasing B, so that in Fig. 2(c)
the evolved vorticity field looks isotropic. This suppression
occurs due to the effect of the Lorentz force on the flow field
such that HITH decays much faster than HITL. The impacts of
the magnetic and velocity field interactions on mixing layer
growth are investigated with details in Sec. III B.

A. Effect of magnetic field on intermittency and anisotropy of
the mixing layer

In this section, the anisotropy and intermittency inside the
mixing layer are measured to quantify the impact of the initial
magnetic field on the turbulent structures of the mixing layer.
Under this condition, the mixing layer anisotropies occur due
to the intermittent penetration of energetic eddies from the
high-energy region into the low-energy region. Hence, the
maxima of skewness and kurtosis are considered as the princi-
pal indicators to measure the intermittency and departure from
Gaussianity inside the mixing layer [9].

In this research, maximum values of velocity skewness,
Smax

u , and velocity derivative skewness, Smax
ux

, in the inhomo-
geneous direction, x, are used to explore the effect of initial
magnetic field on the intermittency and anisotropy in both
large- and small-scale flow field structures across the mixing
layer. The skewness values of velocity and velocity derivative
are defined as [43]

Su = u3

(u2)
3
2

, Sux = ux
3

(ux
2)

3
2

, (18)

where u and ux are velocity and the velocity derivative in the
inhomogeneous direction, x, respectively.

To obtain fully converged statistical results for each test
case, 100 independent and statistically identical realizations
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FIG. 3. (a) Spatial distribution of the inhomogeneous velocity skewness of the HD mixing layer (B = 0). The HITH and HITL regions are
located at η < 0 and η > 0. (b) Smax

u (—) and (Smax
ux

) (– –) variations in inhomogeneous direction at t = 25τ as a function of B.

are generated using DNS. Figure 3(a) shows the velocity
skewness in the mixing layer of hydrodynamic flow (B = 0)
at different times. In this figure, the HITH and HITL regions
are located at η < 0 and η > 0, respectively, where η is
the inhomogeneous axis normalized by the thickness of the
mixing layer , η = x/. The thickness  is equal to the
distance between the scalar points with the condition 0.25 �
Z (x, t ) � 0.75. As shown in Fig. 3(a), the Su in both HITH and
HITL regions is zero, which indicates Gaussianity, whereas
the positive value of skewness of the inhomogeneous velocity
component in the mixing layer shows that the energetic eddies
penetrate intermittently across the mixing layer from HITH

toward HITL [5]. Likewise, the simulation of MHD flows for
different values of B shows an almost similar trend for Su in
the inhomogeneous direction of the mixing region (results are
not shown).

To investigate the effect of the initial magnetic field on
the development of intermittency inside the mixing layer,
Smax

u and Smax
ux

at t = 25τ are presented as a function of B
in Fig. 3(b). It is observed that, with small initial magnetic

fields (B � 0.15), Smax
u , Smax

ux
, and consequently the mixing

layer intermittency are larger compared to the values in HD
flow (B = 0). Nonetheless, the descending rate of Smax

u and
Smax

ux
in MHD flows indicates the reduction of both large-

and small-scale intermittency by increasing B. Besides, it is
seen that Smax

u decreases faster than Smax
ux

. Therefore, it is
concluded that under the conditions considered in this study,
the large-scale eddies are more influenced by the magnetic
field compared to the small-scale structures.

Considering that the level of intermittency is related to
the effective turbulent kinetic energy ratio of two interacting
HIT regions, Er (t ) = EH (t )/EL(t ), and the integral length
scale ratio, �r (t ) = �H (t )/�L(t ) [5,9], the impact of initial
magnetic field on these parameters is investigated. Figure 4(a)
illustrates the time evolution of Er over the range of B. It
is observed that, with B < 0.15, Er grows faster than with
B = 0. The same trend is seen with B = 0.15 at the well-
developed stage (t > 10τ ). In these cases, the Lorentz force
induced by the magnetic field suppresses the velocity field in
both HIT regions, with a larger descending rate of energy in

FIG. 4. (a) Time evolution of effective turbulent kinetic energy ratio [Er (t ) = EH (t )/EL (t )] for different values of B. (b) Time evolution of
Reynolds number ratio (Rer = ReH/ReL) for different intensities of B.
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FIG. 5. Time evolution of ξ in (a) HITL (ξL) and (b) HITH (ξH ), for different intensities of B.

HITL, ĖH < ĖL (this will be discussed shortly). The growth
of Er results in further penetration of energetic eddies in the
mixing layer. Therefore, a larger value of Smax

u is observed
in B < 0.15 cases compared to the HD flow, as shown in
Fig. 3(b). Furthermore, it can be seen that with B � 0.25, Er

declines to values lower than that in the corresponding HD
counterpart, which causes the mixing intermittency levels to
be decreased. These analogies can be observed by compar-
ing the magnitudes of Er at (t = 25τ ) over the range of B
[Fig. 4(a)] with Smax

u [Fig. 3(b)].
The above results clearly show that the intensity of initial

magnetic field plays a significant role in mixing layer inter-
mittency due to its influence on Er . Furthermore, study of the
Reynolds number ratio (Rer = ReH/ReL) allows the impact
of the magnetic field to be evaluated on both turbulent kinetic
energy and the length scale ratio.

Figure 4(b) shows the evolution of Rer over the range of B.
It can be observed that there is a close agreement between the
magnitudes of Rer(t=25τ ) at different magnetic field intensities
[Fig. 4(b)] and Smax

u in Fig. 3(b). It can be seen that, similar
to Smax

u , the values of Rer(t=25τ ) with B � 0.15 are larger than
HD counterpart. Moreover, increasing B leads to decrease in
Rer(t=25τ ) such that its value with B � 0.25 is lower than that
in its counterpart HD simulation. This demonstrates that the
variations of the Reynolds number ratio are a proper indicator
for the intermittency variations. It should be noted that, since
the kinematic viscosity is the same in both HITH and HITL,
Rer represents only the variations of �r and square root of Er .

Since behaviors of all Smax
u , Er , and Rer parameters are

related to variations of the velocity field by the Lorentz force,
the interaction of the velocity and magnetic field is also
investigated. In the MHD flow with imposed initial random
seed magnetic field, the random stretching of the magnetic
lines by the velocity field tends to increase the induced
magnetic field, �b, and consequently the magnetic energy 〈b2〉
[16]. On the other hand, increasing �b results in suppression of
velocity field and turbulent kinetic energy through the Lorentz
force. It can be interpreted that energy transfers from the flow
field to magnetic field by a common term of (�u · ( �J × �b)) in
both kinetic and magnetic energy equations [16]. Eventually,
the transferred energy is converted to heat through Ohmic
dissipation.

Accordingly, to compare the capability of Lorentz force
(which transfers the kinetic energy to the magnetic field) with
the inertial force (which is responsible for energy transfer
from the high- to low-energy regions), the dimensionless
parameter ξ is defined as

ξ = Lorentz force

Inertial force
= 〈| �J × �b|〉

〈|(�u · �∇ )�u|〉 . (19)

This parameter is identical to the interaction parameter
where the low magnetic Reynolds number flows with the
imposed external magnetic field are considered [16].

Figures 5(a) and 5(b) show the time evolution of ξ in HITL

(ξL) and HITH (ξH ), respectively. It is clearly observed that
both ξL and ξH decline, which means that the impact of the
magnetic field on flow field is reduced over time. In Fig. 5(a),
it can be observed that the values ξL are larger than one for
all values of B, which signifies the higher quantity of Lorentz
force compared to inertial force. This causes the velocity field
in HITL to be rapidly suppressed, and hence, the turbulent
kinetic energy is decreased. In contrast, in Fig. 5(b), ξH for
B < 0.15 is always below one and for B � 0.25 is above one.

By comparing ξH and ξL with Figs. 4(a) and 4(b), it is
observed that for the cases, in which ξL > 1 and ξH < 1
(i.e., B = 0.05), the ratio of suppressed kinetic energy by the
Lorentz force to the energy transferred in the mixing layer
by the convection term is greater in HITL compared to HITH.
In this situation, Er and Rer are increased, which results in
enhancement of intermittency [see Figs. 3(b), 4(a), and 4(b)].
Whereas, in the cases where both ξH and ξL are larger than
1 (B = 0.25 and 0.5), the rates of energy suppression in both
HIT regions are in such a way that Er and Rer reduce. An
analogy between variations of Rer [Fig. 4(b)] and ξ [Figs. 5(a)
and 5(b)] for B = 0.15, in which the ξH in the transient period
(τ < 5) is higher than 1 and in the developed stage (τ > 5) is
less than one, also matches the above results’ description.

B. Effect of magnetic field on mixing efficiency and thickness
layer growth

In this section, the impacts of the variation of the initial
magnetic field on the mixing efficiency and the thickness
growth of the mixing layer are evaluated. It is commonly
believed that vortex stretching is responsible for the turbulent
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FIG. 6. The time-averaged mixing efficiency at the well-
developed stage (t > 10τ ) as a function of B.

mixing. Indeed, in 2D flows there is no vortex stretching.
However, the extension of the material lines and hence the
isovortical lines leads to deforming the vorticity blobs to fine-
scale structures and vorticity filaments [37]. These vorticity
filaments produce and control the strain field and therefore
cause the turbulent mixing [44].

In order to quantify the above mentioned process, the
mixing efficiency of the flow field (e) is investigated based
on the normalized material line growth,

e = 1

(t )

∫
(t )

(
lil jsi j√

si jsi j

)
dx, (20)

where li = dxi/|dxi| is the direction vector of the material line
|dx|, and si j = (∂ jui + ∂iu j )/2 is the strain rate tensor [1,5].
It can be proven that, in the incompressible 2D flow, Eq. (20)
is simplified to (

√
2/2)cos(2α), where α is the angle between

the li and the compressing eigenvector of the strain rate tensor
[44].

Figure 6 shows the time-averaged mixing efficiency at the
well-developed stage (t > 10τ ) as a function of B. This figure
illustrates the reduction of mixing efficiency by increasing B.
The mixing efficiency is attributed to sporadic penetration of
energetic eddies into the mixing layer, which leads to flow
field agitation of the mixing region [5]. Therefore, the results
of the mixing efficiency indicate the decay of random motion
of flow fields and frequent penetration of energetic eddies into
the mixing layer, due to the increase of B. The reduction
of sporadic penetration of energetic eddies also affects the
growth of mixing layer thickness, which is another parameter
for evaluation of the mixing progress. This thickness repre-
sents the extent of penetration of passive scalars from one HIT
region into the adjacent HIT region, which is employed as an
indicator of the mixing layer growth.

Figure 7 displays the time evolution of the mixing layer
thickness normalized by the initial thickness ((t=0)) for
different magnetic intensities. It is observed that the growth
rate of mixing layer thickness decreases by increasing B.
This behavior is such that the thickness of the mixing layer
in the hydrodynamic flow is about 1.5 times larger than its

FIG. 7. Time evolution of the normalized mixing layer thickness
for different intensities of B.

corresponding thickness in B = 0.5, at the end of the simula-
tion (t = 25τ ).

It should be noted that the influential parameters on the
mixing efficiency and mixing layer thickness (i.e., agitation
of flow field and random motion of energetic eddies into the
mixing layer) are closely related to the Reynolds number of
the HIT regions. Increasing the Reynolds number in both HIT
regions enhances the random motion of flow fields as well as
the frequent penetration of eddies into the mixing layer [5].
Therefore, to analyze the behaviors of the mixing efficiency
and mixing layer thickness, the average of both HIT Reynolds
numbers (Reave) is examined.

Figure 8 shows the temporal evolution of Reave for dif-
ferent intensities of B. It is observed that Reave in hydro-
dynamic flow experiences a monotonic rise. In contrast, in
all MHD cases, Reave changes slightly after a sharp drop in
the transient period (τ < 5). Furthermore, the reduction of
Reave by increasing B is clearly observed over time, which
is closely analogous to the trends of mixing efficiency and
mixing layer thickness. This behavior is predictable because
of velocity suppression in both HIT regions with the Lorentz

FIG. 8. Time evolution of the averaged Reynolds number for
intensities of B.
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force, leading to a decrease of both ReH and ReL, and
hence Reave.

IV. CONCLUSION

In this research, the effect of initial magnetic field in-
tensity on the mixing characteristics of 2D incompressible
turbulent shearless mixing layers is investigated using DNS.
Different intensities of initial random seed magnetic field
(with uniform probability distribution) are imposed on an
identical flow field. The initial flow field is considered as
the turbulent shearless mixing layer of two HIT regions
with different kinetic energies and identical integral length
scales. In this research the impact of different intensity of
the initial magnetic field on the evolution of the flow field
intermittency, thickness layer growth, and mixing efficiency is
investigated.

The mixing layer intermittency of both large and small
scales is measured by maximum values of velocity skewness

and velocity derivative skewness, respectively. It is observed
that in the MHD flows, both large- and small-scale inter-
mittency are reduced by increasing the initial magnetic field
intensity, B. However, with small initial magnetic fields B �
0.15, the mixing layer intermittency of both small and large
scales is larger compared to those in the hydrodynamic flow.
It is observed that in B � 0.15, due to the suppressive effect
of the Lorentz force on the flow field evolution, the turbulent
kinetic energy in the low-energy region decays much faster
than that in high energy region. This process results in the
increase of the Reynolds number ratio. In cases with larger
magnetic field intensities, the velocity field suppression rate
in the high-energy region is more than that in the low-energy
region. This leads to a reduction the Reynolds number ratio
and consequently the flow field intermittency compared to the
counterpart hydrodynamic flow.

Moreover, it is observed that increasing the initial magnetic
field intensity has a hampering effect on the mixing efficiency
and the growth of mixing layer thickness.
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