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Toy model for vortex-ring-assisted particle drag in superfluid counterflow
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The interpretation of data obtained from particle image and tracking velocimetry in the study of superfluid
flows has been so far a challenging task. Tracking particles (as solid hydrogen or deuterium) are attracted to the
cores of quantized vortices, so that their dynamics can be strongly affected by the surrounding vortex tangle.
Previous phenomenological arguments indicate that tracking particles and microsized vortex rings could form
bound states (denoted here as VRP states). While a comprehensive description of the vortex ring-particle bonding
mechanism has to deal with somewhat involved flow configurations, we introduce a simplified two-dimensional
model of VRP states, which captures essential qualitative features of their three-dimensional counterparts.
Besides an account of known experimental and numerical observations, the model proves to be of great heuristic
interest. In particular, it sheds light on the important role played by viscous dissipation (due to the normal
component of the fluid), the Magnus force, and topologically excited vortex rings in the stability and dynamics
of VRP states.
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I. INTRODUCTION

A vigorous boost of interest in quantum turbulence has
been witnessed along the last two decades, with significant
progress being made both on the numerical and experimental
research fronts [1–18]. While ingenious and landmark experi-
ments established long ago the existence of quantum vortices
[19,20]—the main actor of quantum turbulence—it has not
been until more recent times that optical techniques originally
applied to classical flows, such as particle image or particle
tracking velocimetry (PIV or PTV) [21], made their debut
in the field of quantum fluid dynamics [22–25], allowing
the efficient visualization of these topologically stable flow
structures as they evolve in time.

The application of PIV or PTV techniques to superfluid
helium has been implemented in general with microsized
particles produced from the in situ solidification of injected
gaseous hydrogen or deuterium [23–25]. Some of these par-
ticles are swallowed by quantum vortices, as it is illustrated
in Fig. 1. As the superfluid vortices move, they carry with
them the attached particles, which, then, work as vortex
tracers. The tight attachment of particles to vortex cores is
due to the fact that even small displacements of the vortices
lead to strong pressure gradients that overcome by a large
extent buoyancy effects and the viscous drag exerted on the
particles by the normal component of the flow. This simple
phenomenological background has paved the way for a wave
of remarkable experiments, as the visualization of quantum
vortex reconnection [26], the decay of quantum vortex rings
[27], the dynamical breaking of superflow regimes [28], and
even the observation of Kelvin waves on quantum vortices
[29].

In flow regimes where vortex filaments are sparse enough,
suitable for the application of PIV or PTV in the study of local
flow properties, the vast majority of tracking particles do not
spend most of their time confined to vortex cores. Instead, they

wander through the vortex tangle, affected in many different
ways by its related intermittent pressure field. It is clear,
therefore, that models for the interaction between particles and
quantum vortices are absolutely in order to interpret the data
provided by PIV and PTV methodologies in the experimental
study of superfluid flows.

It has been found, very peculiarly, from PTV analyses of
counterflow turbulence, that the velocities of tracking parti-
cles have, depending on the level of vortex filament length
density, peaked distributions centered around vn or both vn

and vn/2 [30,31], where vn is the local velocity of the normal
component of the flow. Even more oddly, a minor fraction
of the particles, which are likely not to be bound to vortex
cores, have been found to move opposite to the direction of the
normal flow. A theoretical account of the vn/2 velocity peak
has been given by Sergeev et al. [32], from the assumption
that tracking particles could form bound states with vortex
rings. In this connection, it has been known that collisions
between quantum vortices and particles can produce small
vortex rings [33,34], a possible initial stage for the formation
of such states.

Our aim in this work is to dig further into the still
barely explored coupled dynamics of conjectured vortex ring-
particle bound states (VRP states, for short) by means of
an essentially heuristic approach. Restricting our attention to
axisymmetric flow configurations, we are able to introduce a
two-dimensional version of VRP states, which leaves aside
complicating three-dimensional quantitative details and pre-
serves important qualitative features, as the topology of the
superfluid flow around particles, Stokes drag, the existence of
Magnus forces, etc. The good news is that one can greatly
benefit from the much simpler analytical structure of two-
dimensional incompressible and inviscid flows. As we will
see, it is possible to address in this way phenomenologically
interesting facts, a number of them yet unnoticed in the
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FIG. 1. A particle can get trapped to the core of a quantized
vortex filament, due to the strong pressure depletion around it. When
this happens, the particle’s trajectory will be essentially ruled by the
evolution of the host vortex filament.

literature. It is worth emphasizing that two-dimensional toy
models have been studied as useful sources of insight in the
superfluid dynamics of particle-vortex interactions [33,35].

This paper is organized as follows. We discuss, in Sec. II,
the formation of stable VRP states in superfluid counterflow
regimes from a phenomenological perspective. We, then,
address the formulation of two-dimensional toy models as
heuristic tools to capture, in a qualitative way, relevant aspects
of the analogous three-dimensional flows. The dynamical
model for the evolution of VRP states is detailed in Sec. III.
Next, in Sec. IV, we classify the asymptotically stable flow
regimes of the vortex ring-particle system (not necessarily
in the form of VRP states) and discuss how to explore the
relatively huge eight-dimensional phase-space, which under-
lies the proposed dynamical model. In Sec. V, we obtain
phase diagrams that bring information on the resulting asymp-
totic flow regimes as the modeling parameters are varied. In
Sec. VI, we examine the dynamical balance of velocity con-
tributions in stable VRP states, corroborating ideas presented
in Sec. II. Finally, in Sec. VII, we summarize our findings and
point out directions of further research.

II. PHENOMENOLOGICAL INGREDIENTS

Our analysis is inspired by superfluid counterflow regimes
similar to the ones investigated in experiments [30,31,36] and
numerical simulations [33,34]. We mean approximately equal
mass densities ρn and ρs for the normal and superfluid com-
ponents of the condensate, respectively, a condition realized
at temperatures close to 2 K, and spherical tracking particles
with radii around 2.5 μm. The counterflow velocities are as-
sumed to be bounded from above by 10 mm/s, which ensures,
from Vinen’s law for the mean density of vortex filament
length [37,38], that the mean distance δ between vortices
is much larger than the particles’ dimensions (δ > 50 μm).
Under these conditions, we do not expect to have vortex
shedding in the superflow past particles [39,40].

In order to investigate the dynamics and stability of VRP
states, we note that an interesting idealized situation is given
by the case where the axial symmetry axis of a vortex ring
is postulated to be parallel to an asymptotically uniform
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FIG. 2. (a) Sketch of the formation of VRP states as a three-stage
process A → B → C. The vortex ring evolution is represented on a
symmetry plane cut, as seen from the particle’s reference frame (see
the text, Sec. II, for details); (b) a vortex dipole hydrodynamically
interacts with a solid disk in the presence of a two-dimensional
superfluid stream.

background superflow and, furthermore, to cross the center
of a similarly sized near particle. A symmetry plane cut of
this axisymmetric configuration is shown in Fig. 2(a). Notice,
from the picture, that the velocity induced by the vortex ring
along its symmetry axis is oriented opposite to the superflow
direction.

The mechanism for the formation of stable VRP states, as
observed from the particle’s reference frame, is schematized
in Fig. 2(a), as a three-stage process A → B → C. During
stage A, the vortex ring gets advected by its image vortex ring
field towards regions where the background superflow veloc-
ity is intensified. The vortex ring is then advected backwards
by the locally stronger background superflow at stage B. As
the vortex ring moves away from the particle, the superpo-
sition of its self-induced flow and the flow produced by its
image dominates the dynamics along the axial direction, stage
C, leading, after consecutive loops, to an asymptotically stable
limit cycle. A bit of reflection tells us that VRP states cannot
be stabilized if the vortex ring orientation or the superfluid
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background flow, or even both, are reversed in Fig. 2(a). The
discussion on the stabilization of VRP states will be retaken
in Sec. VI, with further quantitative elements.

Our heuristic strategy in this work is to avoid compu-
tationally costly analyses, and center attention on the main
qualitative properties of VRP states. As it is clearly suggested
from the symmetry plane cut provided in Fig. 2(a), we can
devise a two-dimensional model that mimics the dynamics of
VRP states, where three-dimensional spherical particles give
place to disk-shaped particles, and vortex rings are replaced
by planar vortex dipoles. Figure 2(a), thus, is to be taken,
from now on, as a visual reference for two-dimensional mod-
eling. Following this line of thought, Fig. 2(b) depicts exact
two-dimensional superfluid streamlines, which have the same
topology as the ones obtained from a symmetry plane cut of
the three-dimensional superflow associated to an axisymmet-
ric VRP state.

III. TWO-DIMENSIONAL TOY MODEL

Relying on the usual complex representation for positions
and velocities in two-dimensional space, let, in the xy plane,
the center of a tracking particle, which has mass M and radius
R have, at time t , position zp(t ) and velocity u(t ) = żp(t ).
Quantum vortices, which carry circulations φ and −φ, have,
respectively, positions z+(t ) and z−(t ). The far background
velocities of the normal and the inviscid components of the
flow have fixed velocities V and −V , both real numbers. This
is just a counterflow regime where the mass densities of the
normal and inviscid components are the same.

We are interested to study mirror symmetric flow configu-
rations where zp(t ) is real and z+(t ) = z∗

−(t ), with initial con-
ditions Re[zp(t = 0)] > Re[z±(t = 0)] and Im[z+(t = 0)] >

0. Abstracting coordinate axes, this is the situation shown in
Fig. 2(b), for the case where the particle is momentarily at
rest, that is, u = 0.

As it is discussed in standard textbooks [41], incompress-
ible and inviscid two-dimensional flows can be completely
described in terms of complex potentials. Even though this
is a fundamental technical point in our analysis, it is not the
whole story, since we want to bring into two-dimensional
modeling at least two important phenomenological aspects of
three-dimensional dynamics, namely, (i) particles are subject
to viscous forces given by Stokes’ law, viz.,

FD = CR(V − u), (3.1)

where C plays the role of a friction coefficient, and (ii) the
evolution of quantum vortices is determined by Magnus and
drag contributions, besides background advection, in close
analogy with the three-dimensional Schwarz’s description of
vortex filament dynamics [42] (these forces are found in
intrinsic two-dimensional superfluid models as well).

To implement (ii), we note that a straightforward adapta-
tion of Schwarz’s vortex filament dynamics to planar positive
or negative vortices, which move with velocities v± and carry
circulations ±φ is given by

v± = v±
s ± iα(v±

n − v±
s ) + α′(v±

n − v±
s ), (3.2)

where v±
n and v±

s are the normal and superfluid velocities
at the positions of the positive and negative vortices, and α

and α′ are the usual mutual friction coefficients that model
the coupling between the normal fluid and quantum vortices
[43,44].

Equation (3.2) could be used as it stands, with the help of
postulated analytic expressions for v±

n and v±
s . However, to

attain a simpler formulation for the cases of interest (VRP
states), v±

n can be neglected due to the fact that the vortices
will stay close to the particle’s surface where the normal fluid
velocity is suppressed, whereas the superfluid velocity never
vanishes and is most of the time approximately the same as the
one of the far background superflow, that is, −V . Taking these
considerations into account, we write down, more simply,
that

v± = v±
s ± iαV + α′V. (3.3)

In other words, in the computation of vortex velocities, the
interaction between the normal fluid and quantum vortices is
encoded in the form of constant shifts of velocity, ±iαV +
α′V , over the fluctuating superfluid velocity background v±

s .
The rationale for not substituting the first term on the right-
hand side (RHS) of (3.3) by V is that the coefficients α and
α′ are in general small numbers [the second and third terms
on the RHS of (3.2) are, as a matter of fact, small perturbative
corrections to the background superflow velocities v±

s ].
Let W (z) be the complex velocity potential defined at

positions that are free from vortex singularities. To define
the velocity fields at the vortex positions, we introduce the
complex velocity potentials Ŵ+(z) and Ŵ−(z), which are just
W (z) subtracted by the singular contributions associated to the
respective self-induced velocity fields, that is,

Ŵ+(z) ≡ W (z) + i
φ

2π
ln(z − z+), (3.4)

Ŵ−(z) ≡ W (z) − i
φ

2π
ln(z − z−), (3.5)

so that

(v±
s )∗ = d

dz
Ŵ±(z)

∣∣∣∣
z=z±

. (3.6)

Observing, now, that v± = ż±, we take Eqs. (3.1) and (3.3)–
(3.6) to establish a closed set of evolution equations for the
vortex dipole-particle dynamical system,

ż∗
+ = V (α′ − iα − 1) + d

dz
Ŵ+(z)

∣∣∣∣
z=z+

, (3.7)

ż∗
− = V (α′ + iα − 1) + d

dz
Ŵ−(z)

∣∣∣∣
z=z−

, (3.8)

żp = u, (3.9)

Mu̇∗ = CR(V − u∗) + i
ρs

2

∮
∂D

(
dW

dz

)2

dz. (3.10)

We have, above,

W (z) = W+(z) + W−(z) + Wp(z), (3.11)
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where

W+(z) = i
φ

2π
ln

[
(z − zp)(z∗

+ − z∗
p) − R2

z − z+

]
, (3.12)

W−(z) = −i
φ

2π
ln

[
(z − zp)(z∗

− − z∗
p) − R2

z − z−

]
, (3.13)

are the complex potentials produced by the positive and
negative vortices together with their respective vortex images,
and

Wp(z) = −R2(V + u)

z − zp
(3.14)

is the complex potential for the flow around the circular
particle in its reference frame. The second term on the RHS of
Eq. (3.10) is the pressure force on the particle, as prescribed
by Blasius theorem [41]. The closed contour integral is per-
formed along the counterclockwise oriented boundary ∂D of
the solid particle.

It should be clear, furthermore, that we are not worried with
added mass issues in the equations of motion [41,45], as far
as this is a point of importance only in detailed quantitative
analyses. For all purposes, the mass parameter M in Eq. (3.10)
is to be taken as an effective quantity.

Besides the two dimensionless parameters α and α′, the
dynamical system (3.7)–(3.10) is, in principle, defined from
the six additional dimensionful parameters V,C, M, φ, ρs, and
R. We can define units of mass, length, and time from the
values of V , R, and M. Our dynamical system can then be
recast in dimensionless form through the substitutions

u → Vu, t → R

V
t, z → Rz,

(3.15)
z+ → Rz+, z− → Rz−, zp → Rzp,

and

C ≡ MV

R2
a, ρ ≡ M

R2
b, φ ≡ V Rc. (3.16)

The above set of relations, (3.15) and (3.16), allows us to
rewrite Eqs. (3.7)–(3.10) as

ż∗
+ = α′ − iα − 1 + d

dz
Ŵ+(z)

∣∣∣∣
z=z+

, (3.17)

ż∗
− = α′ + iα − 1 + d

dz
Ŵ−(z)

∣∣∣∣
z=z−

, (3.18)

żp = u, (3.19)

u̇∗ = a(1 − u∗) + i
b

2

∮
∂D

(
dW

dz

)2

dz, (3.20)

where, now,

Ŵ+(z) = W (z) + i
c

2π
ln(z − z+), (3.21)

Ŵ−(z) = W (z) − i
c

2π
ln(z − z−), (3.22)

with Eq. (3.11) still holding, provided that W+(z), W−(z), and
Wp(z) be redefined as

W+(z) = i
c

2π
ln

[
(z − zp)(z∗

+ − z∗
p) − 1

z − z+

]
, (3.23)

W−(z) = −i
c

2π
ln

[
(z − zp)(z∗

− − z∗
p) − 1

z − z−

]
, (3.24)

and

Wp(z) = − 1 + u

z − zp
. (3.25)

We find, therefore, that the vortex dipole-particle dynamical
system is actually determined by five independent dimension-
less parameters, i.e., α, α′, a, b, and c, where the last three
ones are defined from (3.16).

The exact evaluation of the complex integral in (3.20)
yields∮

∂D

(
dW

dz

)2

dz = 2i
c2

(2π )3

z∗
+ − z∗

−
|z+ − zp|2 − 1

− 2i
c2

(2π )3

z∗
+ − z∗

−
|z− − zp|2 − 1

+ c

2π2
(1 + u)

(z− − z+)(z+ + z− − 2zp)

(zp − z+)2(zp − z−)2
.

(3.26)

Since we focus our attention on flow configurations which are
mirror symmetric with respect to the x axis, it is not difficult
to show that the first two terms on the RHS of Eq. (3.26)
cancel each other. Our task, now, is to explore solutions of
the coupled Eqs. (3.17)–(3.20), to verify if they can have in
fact the form of VRP states.

IV. FLOW REGIMES

A rather elementary inspection of Eqs. (3.17)–(3.20) shows
that there are just two classes of flow regimes for the vortex
dipole-particle dynamical system:

(i) In the particle-vortex decoupled flow regime, the parti-
cle decouples from the vortex dipole and even arbitrarily small
Magnus contributions will make the distance between vortices
to grow without bound, so that they become independent
in the long run. The solid particle, on its turn, is dragged
by the background normal flow until it reaches its limiting
velocity. Using original units, at asymptotically large times the
particle’s velocity approaches V , while the vortices’ velocities
tend to V (α′ − 1 ± iα).

(ii) In the regimes of forward- or backward-moving VRP
states, the distance between vortices and the particle is upper
bounded, and all of them, respectively, move, in the mean,
along or opposite the direction of the background normal flow.

In order to investigate how flow regimes are distributed
over solutions of Eqs. (3.17)–(3.20), it is necessary to define
a set of initial conditions z+(0) = z∗

−(0) [taking, without
loss of generality zp(0) = 0] and u(0), besides values for
the dynamical system parameters a, b, and c, introduced
in (3.16), and the mutual friction coefficients α and α′.
We are, therefore, interested to study the eight-dimensional
phase space �, a subset of R8, defined by the coordinates
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(Re[z+(0)], Im[z+(0)], u(0), α, α′, a, b, c). We want to par-
tition the points of � into equivalence classes labeled by
asymptotic flow regimes.

It is reasonable to assume that the production of a VRP
state is more likely if the particle and the vortex dipole are
initially as close as possible, with the former at rest. For that
reason, we take, in all of our simulations,

z+(0) = z∗
−(0) = −1 + 1

2 i, (4.1)

u(0) = 0. (4.2)

We still need to select physically interesting regions in the
five-dimensional cut of � spanned by the a, b, c, α, and α′ pa-
rameters, with fixed z+(0) and u(0). It would be, in fact, very
difficult to figure out such regions without relying on physical
inputs. For the sake of parameter estimation, we build a bridge
between two-dimensional and three-dimensional superfluid
phenomenologies, resorting to dimensional arguments.

Let ρp, ν, and κ be, respectively, the particle mass density,
the kinematic viscosity of the normal component of the fluid,
and the circulation quantum. We may readily put forward the
estimates

ρ ∼ ρsR, (4.3)

M ∼ ρpR3, (4.4)

C ∼ ρnν, (4.5)

φ ∼ κ, (4.6)

where the quantities along the left- and right-hand sides of
(4.3)–(4.6) refer, respectively, to two-dimensional and three-
dimensional contexts. Therefore, it follows, from (3.16) and
(4.3)–(4.6), that

a = R2

MV
C ∼ ρnν

ρpV R
, (4.7)

b = R2

M
ρ ∼ ρs

ρp
, (4.8)

c = 1

V R
φ ∼ 1

V R
κ. (4.9)

For temperatures around T � 2 K as set in usual experiments,
we have [44] α � 0.3, α′ � 0.01, ν � 2.6 × 10−8 m2/s, and
ρn � ρs � 60 Kg/m3. We take, from reported experimental
data [36], ρp � ρ = ρs + ρn, V � 10−2 m/s, and R � 5 ×
10−6 m. Since κ � 10−7 m2/s, we find, using (4.7)–(4.9),

a ∼ ρnν

ρpV R
� 0.3, (4.10)

b ∼ ρs

ρp
� 0.5, (4.11)

c ∼ 1

V R
κ � 2. (4.12)

We note that a purely two-dimensional Gross-Pitaevskii
approach [46,47] is able to yield estimates for the α and
α′ coefficients, which, however, would be too small for the
production of VRP states. We reemphasize, at this point,
that our study is not related to particularities of strict two-
dimensional superfluid systems [48] but, instead, to the

dynamics of three-dimensional vortex ring-particle interac-
tions, discussed within a two-dimensional modeling perspec-
tive.

V. PHASE DIAGRAMS

The numerical values listed in (4.10)–(4.12) should not be
taken as strict definitions, but just as hints about phase-space
regions where one should search for nontrivial flow regimes
(that is, VRP states). We have investigated a set of four
two-dimensional slices of �, defined as the regions 0 � a �
0.2 and 0 � c � 1, for b = 0.5, 1.0, 2.0, and 4.0, with fixed
mutual friction coefficients α = 0.2 and α′ = 0.

Equations (3.17)–(3.20) have been solved with the initial
conditions (4.1) and (4.2) through the standard Euler’s method
with time step ε = 10−4, for the total evolution time T = 102.
The values of parameters a and c have been independently
incremented in steps of size δa = 2 × 10−3 and δc = 10−2,
respectively. Each one of the four phase diagrams shown in
Fig. 3 is, thus, the result of 104 complete simulation runs.

These phase diagrams show, notably, the occurrence of all
of the three possible asymptotic flow regimes for the vortex
dipole-particle dynamical system. Some observations are in
order:

(i) The larger is b, the larger is the phase-space region
associated to backward-moving VRP states. As it is clear from
(3.20), b defines the strength of pressure forces. This means
that for larger b, the particle is more strongly attracted towards
the vortex dipole and can be, in this way, carried (against
viscous drag) by the vortex dipole during outer excursions
of the limit orbits [trajectory sector that goes from B to C in
Fig. 2(a)].

(ii) No VRP states are found for a small enough. Looking
again at Eq. (3.20), we see that a controls the viscous drag.
As a consequence, the particle dynamics will be dominated
by the superfluid pressure force at smaller values of a, if b and
c are kept fixed. Due to inertia, however, the initial particle’s
backward motion will develop along evolution time scales that
are much larger than the ones for the vortex dipole, which then
decouples from the particle. Its worth emphasizing that an
analogous connection between small viscous dissipation and
the suppression of particle trapping in quantum vortices has
been previously noticed from three-dimensional numerical
simulations of particle dynamics in vortex tangles [33].

(iii) For a large enough, there is a transition, which is
independent of b and takes place at an approximately fixed
value of c, between particle-vortex decoupled and forward-
moving VRP flow regimes. We can understand this as follows.
For large a, viscous drag is more relevant than the opposite
pressure forces, so the particle moves along with the normal
flow. As c grows, the velocity field produced by the vortex
dipole image (a fictitious source inside the particle) gets more
effective in advecting the vortex dipole back to the particle
[see the discussion related to Fig. 2(a)]. At some threshold
value of c, determined essentially by Eqs. (3.17) and (3.18),
the advection becomes, then, strong enough to stabilize the
limit orbits of VRP states.

(iv) Relations (4.7) and (4.9) imply that
a

c
∼ ρnν

ρpκ
. (5.1)
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FIG. 3. Phase diagrams of flow regimes are depicted for some values of b: (a) b = 0.5, (b) b = 1.0, (c) b = 2.0, and (d) b = 4.0. The
numerical simulations, which have explored the regions 0 � a � 0.2 and 0 � c � 1, have all been carried out for α = 0.2 and α′ = 0. Red,
blue, and green points correspond to values of parameters associated, respectively, to particle-vortex decoupled flow regimes, backward-moving
VRP states, and forward-moving VRP states. It turns out that backward-moving VRP states are approximately bounded from above and from
below by physical lines, as particularly evidenced in the phase diagram for the case b = 4.0 (straight dashed lines).

The constancy of a/c against changes of V or R leads to inter-
esting consequences. Assuming that u is approximately con-
stant at large asymptotic times, the time average of Eq. (3.20)
gives, using (3.26),

u � a/c + ig

a/c − ig
, (5.2)

where, working in the particle’s reference frame (zp = 0),

g = − ib

π2

〈
Im(z+)Re(z+)

|z+|2
〉
. (5.3)

Equation (5.2) makes sense only for VRP states (otherwise,
u = 1, asymptotically). We expect, furthermore, that at fixed
a/c and b, the above expectation value, associated to ge-
ometric features of the vortex dipole stable orbits, do not
change substantially as a and c are modified by identical
factors. In this way, Eq. (5.2) predicts that on sets of constant
a/c in phase-space slices—we call them physical lines—u is
approximately constant as well. Observed flow regimes for a
given counterflow experiment are supposed to be related to the
phases found along fixed physical lines.

It turns out that phase-space regions of backward-moving
VRP flow regimes are roughly bounded by physical lines. This
is clearly indicated in Fig. 3 for the b = 4 phase diagram. It
is interesting to note that there are essentially no transitions
between backward- and forward-moving VRP flow regimes
along physical lines. This is a puzzling fact, if we want to

draw phenomenological lessons for three-dimensional super-
fluid flows, since such transitions have been observed in real
experiments [36].

A natural solution of this problem is to consider VRP states
with vortex rings that carry additional circulation quanta. This
amounts to replace the elementary circulation quantum κ in
Eq. (5.1) by nκ , where n is a positive integer. The higher
is n, the steeper will be the physical lines in phase-space
slices as the ones portrayed in Fig. 3. We conjecture, thus,
that the observed particles that move along directions opposite
to the normal flow (and are not trapped to vortex cores) can
be described as backward-moving VRP states that contain
topologically excited quantum vortex rings.

We have checked the role of physical lines for the case
b = 4, related to one of the phase diagrams showed in Fig. 3.
Results are given in Fig. 4, for two distinct physical lines, c =
10a and c = 2.5a, with the former crossing the phase-space
region of backward-moving VRP states. These two examples
support the approximate constancy of the asymptotic velocity
of VRP states suggested by Eq. (5.2).

These considerations offer a clear and simple explanation
for the bimodal velocity distributions of tracking particles
found in weak counterflow turbulence [30,31], where the
mean distance between quantum vortices is much larger than
the typical particle’s size, and one expects that VRP states
should be rarer due to the attenuated rate of particle-vortex
collisions. For stronger counterflow regimes, in contrast, the
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FIG. 4. Mean particle velocities ū along the physical lines c =
2.5a (black line) and c = 10a (red line) as a varies. They are
associated to simulation parameters α = 0.2, α′ = 0, and b = 4.0.

vortex tangles are denser, and VRP states should proliferate.
As a result, the velocity distributions become unimodal, but
peaked at anomalous values.

VI. DYNAMICAL BALANCE OF STABLE LIMIT ORBITS

Picking up an arbitrary VRP state as a representative
example, Fig. 5 shows its associated stable vortex orbits and
returning points as well, as seen from the particle’s reference
frame.

Keeping Fig. 5 in mind, we now take a closer look on the
various factors that contribute to the vortex dipole dynamics.
For this purpose, we write the velocity of the positive vortex
(in the laboratory reference frame) as the sum of four inde-
pendent contributions,

ż+ = I1 + I2 + I3 + I4, (6.1)

A

C
B

D

FIG. 5. Returning points of vertical (A and C) and horizontal
(B and D) vortex motions, as seen from the particle’s reference
frame. The positive (negative) vortex orbit, represented by the red
(blue) line, is counterclockwise (clockwise) oriented. Simulation
parameters are α = 0.2, α′ = 0, a = 0.01, b = 1.0, and c = 0.5.

where, according to (3.11), (3.17), (3.21), (3.23), and (3.25),

I1 = −i
c

2π

z+ − zp

|z+ − zp|2 − 1
, (6.2)

I2 = −i
c

2π

(
1

z∗+ − z∗−
− z− − zp

(z∗+ − z∗
p)(z− − zp) − 1

)
, (6.3)

I3 = −1 + 1 + u∗

(z∗+ − z∗
p)2

, (6.4)

I4 = α′ + iα (6.5)

are velocity contributions that come from the image of the
positive vortex (I1), from the negative vortex and its own
image (I2), from the background superflow (modified by the
presence of the particle) (I3), and from the combination of
Magnus and normal drag forces (I4).

The imaginary and real parts of the above complex quanti-
ties (6.2)–(6.5) yield, respectively, contributions to the y (ver-
tical) and x (horizontal) Cartesian components of the positive

Im
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 I 2

 +
 I 4

], 
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FIG. 6. Dynamical balance of a stable limit orbit, as observed
from the particle’s reference frame, for the (a) vertical and (b) hor-
izontal velocity contributions. The crossing points A, B, C, and D
refer to the points indicated in Fig. 5. Simulation parameters are
α = 0.2, α′ = 0, a = 0.01, b = 1.0, and c = 0.5.
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FIG. 7. Stable cycles for α = 0.0 (blue), 0.1 (green), and 0.2
(red). In all the simulations, α′ = 0.0, a = 0.01, b = 1.0, and c =
0.5. The tiny orbit for the case α = 0.0 is detailed in the inset.

vortex velocity vector. Graphs for convenient combinations of
the I ′s are provided in Fig. 6, for complete cycles of vortex
limit orbits.

Taking into account that Re[I3] and Im[I3] are negative-
valued functions of time, both Figs. 6(a) and 6(b) indicate that
the returning points of vortex limit orbits are associated to
situations where the background superflow (modified by the
particle) cancels all the other combined velocity contributions
due to the vortices and their images. This supports the stabi-
lization picture of VRP states outlined in Sec. II (focused on
the case of horizontal returning points).

The sharp peaks in the graphs of Figs. 6(a) and 6(b) are
related to the pieces of vortex trajectories that are the closest
to the particle’s boundary, where vortices are advected by the
velocity field induced by their images, which overcome the
local superfluid background flow.

In our particular toy model, the Magnus contribution
I4 = iα for the positive vortex only affects its vertical velocity.
The larger is α, the broader and more stretched along the
direction of the background superflow will be the vortex orbit,
as Fig. 7 shows.

The more stretched vortex orbits associated to larger values
of α are the ones that more effectively pull the particle along
the superflow direction. We have verified, through further
simulations, that the Magnus force is, in fact, a necessary
phenomenological ingredient for the occurrence of backward-
moving VRP states. It is important to stress, however, that for
α large enough, the stability of either backward- or forward-
moving VRP states is lost, and we are left in this case with
just vortex-particle decoupled flow regimes.

A further issue in the stability of VRP states has to do
with the fact that isolated vortex rings tend to shrink due
to mutual friction. Thus, the binding of a vortex ring to a
particle is only possible if the vortex ring collapse time scale
R2/α′κ is much larger than the transient time scale for the

formation of a VRP state, R/V . This leads to a necessary
condition for the existence of VRP states, given as α′ � c,
where c is estimated as in (4.12). While this condition is likely
to be realized at temperatures below 2 K, as the temperature
increases and approaches the superfluid critical temperature,
the friction coefficient α′ grows [44] up to the point where
VRP states are not expected to be observed anymore.

VII. CONCLUSIONS

Dynamical bound states of vortex rings and tracking parti-
cles (VRP states) have been proposed as a way to understand
puzzling PTV data obtained in counterflow turbulence. Our
work, which focus on the essential dynamical aspects of
VRP states, formulated with the help of simplified modeling
tools, is closely related to the general proposal addressed in
Ref. [32]. We have taken advantage of the analytical struc-
ture of incompressible and inviscid two-dimensional fluid
dynamics to discuss axisymmetric VRP states, likely to ap-
proximate the ones realized in real counterflow experiments.
As discussed in detail by means of straightforward and fast
numerical simulations, the present approach leads to several
results that agree with previous observations and, furthermore,
suggests the search of so far unsuspected phenomena, as the
role of topologically excited vortex rings in backward-moving
VRP states.

We call attention to the fact the VRP states produce pres-
sure oscillations, due to the closed vortex ring orbits, with
power spectrum peaked at frequencies of the order of V/R,
which is estimated to be in the range of a few KHz for com-
mon counterflow experiments. It would be very interesting
to look for such acoustic signals, in combination with PTV
analyses.

Our toy-modeling approach, of course, is not aimed at
providing accurate quantitative predictions. Rather, the idea is
to point out interesting phenomenological aspects that could
go unnoticed within more time-consuming three-dimensional
simulations.

To conclude, we note that there is an appealing connection
between the dynamics of VRP states and recent findings for
the slow fall of seeds from wind-dispersed plants [49]. It has
been found that the passive flight of dandelion seeds actually
relies on the existence of approximate axisymmetric VRP
states, with vertical symmetry axes. The vortex rings attached
to dandelion seeds, however, do not oscillate and are created
from a spontaneous flow separation mechanism, while the
ones of superfluid VRP states are inherited from previously
existing quantum vortex filaments.
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