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Structural relaxation affecting shear-transformation avalanches in metallic glasses
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Avalanche behaviors, characterized by power-law statistics and structural relaxation that induces shear
localization in amorphous plasticity, play an essential role in deciding the mechanical properties of amorphous
metallic solids (i.e., metallic glasses). However, their interdependence is still not fully understood. To investigate
the influence of structural relaxation on elementary avalanche behavior, we perform molecular-dynamics
simulations for the shear deformation test of metallic glasses using two typical metallic-glass models comprising
a less-relaxed (as-quenched) glass and a well-relaxed (well-aged) glass exhibiting a relatively homogeneous
deformation and a shear-band-like heterogeneous deformation, respectively. The data on elementary avalanches
obtained from both glass models follow the same power-law statistics with different maximum event sizes, and
the well-relaxed glass shows shear localization. Evaluating the spatial correlation functions of the nonaffine
squared displacements of atoms during each elementary avalanche event, we observe that the shapes of the
elementary avalanche regions in the well-relaxed glasses tend to be anisotropic, whereas those in the less-relaxed
glasses are relatively isotropic. Furthermore, we demonstrate that a temporal clustering in the direction of the
avalanche propagation emerges, and a considerable correlation between the anisotropy and avalanche size exists
in the well-relaxed glass model.
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I. INTRODUCTION

Whereas metals usually form ordered (i.e., latticed) struc-
tures under moderate conditions, various glass states can be
realized by quenching the multicomponent metals from their
liquid state. These types of amorphous metals are called
metallic glasses [1,2]. Such materials have excellent material
properties, such as high strength, corrosion resistance, and soft
magnetic properties [1–4]. However, a high level of macro-
scopic brittleness and catastrophic failure of the metallic
glasses caused by shear localization hinders their applicability
as structural materials, whereas localized deformation (i.e.,
shear banding) induces ductility at microscopic scales [4–7].
Thus, this localization of deformation is a major concern for
the brittle failure of metallic glasses.

Some experimental and numerical studies have reported
that structural relaxation using specific thermal treatments
determined whether the shear plastic deformation of metallic
glasses was localized or homogeneous [8–13]. Studies on
molecular dynamics (MD) simulations indicated that well-
relaxed glasses (i.e., well-aged glasses) using thermal relax-
ation exhibit shear banding by localized deformation, whereas
less-relaxed glasses (i.e., as-quenched glasses) exhibit ho-
mogeneous deformation [8,11–13]. Thus, understanding the
effects of structural relaxation by thermal treatments on the
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shear localization is expected to lead to an improvement of
the ductility of metallic glasses.

In the context of nonequilibrium physics, the avalanche be-
havior in plasticity (intermittent plasticity or avalanche plas-
ticity) observed in various types of amorphous solids, such
as glasses, granular materials, colloids, and metallic glasses,
has gathered considerable attention [14–20]. One of the sig-
nificant characteristics of avalanche plasticity is its power-law
statistics. The probability that a plastic event of size of s
occurs is proportional to an algebraic function, P(s) ∝ s−α ,
where α is a constant. This statistical feature, following a
power-law distribution, is a sign of nonequilibrium critical
phenomena, including self-organized criticality [21,22]. The
same power-law behavior also emerges in crystalline solids
through the collective motion of dislocations, and the behavior
is thought to represent the intrinsic nature of plasticity in
solids [23–28]. The plastic events obeying power-law statis-
tics in amorphous solids correspond to avalanche-like collec-
tive motions of local atomistic rearrangements. The minimum
unit of plastic deformation in amorphous solids is considered
to be a set of atomic rearrangements in a local region known as
a shear-transformation zone (STZ) [29,30]. The deformation
of an STZ can activate the deformation of other STZs through
the redistribution of the elastic energy stored in the STZ.
The chain-reaction propagation of this type of deformation
in STZs behaves like an avalanche (we refer to this as an
elementary avalanche as described in Sec. III). The plastic
deformation of amorphous solids is a result of several shear-
transformation avalanches [31]. Thus, the localization of the
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deformation (i.e., shear banding in amorphous solids) can
be considered a spatial concentration of shear-transformation
avalanches. Hence, avalanche plasticity is expected to be
closely related to ductility in metallic glasses [18].

Annealing’s influence of structural relaxation on avalanche
plasticity (e.g., the difference of the avalanche behaviors
between the localized deformation of well-relaxed glasses
and homogeneous deformation of less-relaxed glasses) is
still not well understood. Furthermore, it is not known how
avalanches in well-relaxed glasses result in shear banding
or how structural relaxation influences the shape of the
avalanche. One may expect that less-relaxed glasses would not
exhibit avalanche behaviors, because the excess free volume
within their atomic configurations should prevent avalanche
formation. Elucidating the relationship between the localiza-
tion and behavior of the avalanche plasticity is expected to
contribute to the improvement of the mechanical properties
of metallic glasses. Furthermore, it is expected to provide an
understanding of nonequilibrium critical behaviors of amor-
phous plasticity.

In this study, we investigate the influence of structural
relaxation on avalanche plasticity and the contribution of the
avalanche to shear localization via MD simulations using
well-relaxed and less-relaxed metallic glasses exhibiting lo-
calized and homogeneous deformations induced by specific
thermal treatments. First, we confirm the localization and the
avalanche statistics of plastic deformation in the two metallic
glasses (Sec. III). Next, we analyze the avalanche shapes in the
two metallic glasses Secs. IV and V) by extracting individual
avalanche events from our simulations and calculating spatial
correlation functions of the nonaffine squared displacements
[30]. Finally, we discuss the evolution of the avalanche shape
over time and the correlation of the shape with the magnitude
of the avalanche events in Secs. VI and VII).

II. NUMERICAL METHOD

In the present study, the atomic structure of a less-relaxed
glass model with homogeneous deformations was prepared by
quenching a copper-zirconium (Cu-Zr) binary alloy from the
liquid state, whereas a well-relaxed glass model with localized
deformations was achieved using specific thermal annealing
of the homogeneous glass, as described below.

For these two typical glass configurations, we performed
MD simulations of shear deformation with constant tem-
peratures and strain rates. We selected the Cu-Zr system to
perform the simulations, because this alloy exhibits excel-
lent glass formability [32]. To perform the MD simulations,
we used the Lennard-Jones potential and parameters for the
Cu-Zr mixtures, which were developed by Kobayashi et al.
[33]. The atomic radii of Cu and Zr at this potential are
approximately 2.7 and 3.3 Å, respectively [33]. The number
of atoms in the simulations was 50 000 with a 1:1 ratio of Cu
and Zr atoms.

To obtain the atomic structure of the two different glasses,
we applied a specific thermal loading with the following
conditions used in a previous study to generate either ho-
mogeneous or localized deformations [12]. First, the ran-
domly packed configurations of the Cu-Zr atoms under the
periodic boundary condition were heated to a temperature of

3000 K, greater than the melting temperature. Furthermore,
the molten configurations were equilibrated for 100 ps un-
der an isothermal-isobaric (NPT) ensemble with zero normal
stresses after performing equilibration for 100 ps at the same
temperature under the canonical ensemble (NVT ensemble).
Quenching the equilibrated liquid to 0 K with a cooling rate
1013 K/s resulted in the formation of a less-relaxed glass
with homogeneous deformation, because the structure did not
undergo any structural relaxation by annealing. Henceforth,
we refer to the glass as the as-quenched model.

The glass structure exhibiting localized deformation was
obtained after additional thermal loading resulting in struc-
tural relaxation. After quenching the equilibrated liquid to
0 K with a relatively slow cooling rate of 1012 K/s, we
heated the quenched structure to 900 K (slightly higher than
the glass transition temperature [12] Tg = 898 K), and then
we annealed it for 2 ns under the NPT ensemble. Next, we
quenched the well-annealed configurations to 0 K at a rate
of 3 × 1011 K/s. This thermal annealing leads to a struc-
tural relaxation in the glass structure without recrystalization,
whereas the annealing temperature was slightly higher than
Tg. We confirmed that the radial distribution function of
this well-annealed configuration did not show a significant
difference with the as-quenched configuration. The structural
relaxation resulting from this annealing process was estab-
lished by the evaluation of the change in the atomistic volumes
(as illustrated in the next paragraph) and the aging of the
as-quenched and the well-annealed configuration [12]. Hence-
forth, this well-relaxed glass configuration will be referred to
as the well-aged model.

The simulation cell volume of the as-quenched model
at the initial state was VAQ = 893.97 ± 0.02 nm3, whereas
that of the well-aged model was VWA = 890.19 ± 0.02 nm3.
The variation of the number density was (ρWA − ρAQ)/ρAQ =
(VAQ − VWA)/VWA � 0.42%, where ρAQ and ρWA were the
number densities of the as-quenched and the well-aged model,
respectively. This density variation is comparable to those
reported in some experimental and numerical studies [34–36].
This variation indicates that the as-quenched model contained
a larger atomic-free volume than the well-aged model because
structural relaxation occurred during thermal annealing in the
latter model.

For these two typical glass configurations, we added simple
shear deformation with an engineering strain rate, γ̇ = γ̇zx =
107 1/s, for 100 ns under the NPT ensemble condition at
10 K using the Lee-Edwards periodic boundary condition [37]
and zero normal stresses using the Parrinello-Rahman method
[38], where γxy and γyz were fixed at zero. The simulation cell
for the periodic boundary condition had a cubic shape with
9.62 nm edges at the initial state. The above simulations were
performed using LAMMPS [39].

To remove thermal fluctuations from the original time se-
ries of the shear stress, σ ∗

xz(t ), obtained from the simulations,
we smoothed the time series using a Gaussian filter. Gaussian
filtering is an averaging method involving a Gaussian weight.
This is shown in the following equation:

σxz(t ) =
∫ ∞

−∞
G(t ′ − t ) σ ∗

xz(t ) dt ′, (1)
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FIG. 1. (a) Stress-strain curves of the as-quenched model (red)
and the well-aged model (blue). (b) Enlarged view of the stress drops
corresponding to the (n − 1)th and the following nth elementary
avalanche events, indicated by the arrows.

where G(t ) is the Gaussian weight, and

G(t ) = 1√
2πδ2

exp[−t2/2δ2], (2)

where δ represents the extent of the filter. In this study, we
computed the sum over a discrete range from −3δ to +3δ, as
shown below, instead of calculating the above integral over an
infinite range, because σ ∗

xz(t ) is discrete time series:

σxz(m�t ) =
m+3d∑

n=m−3d

1√
2πd2

exp

[
− (n − m)2

2d2

]
σ ∗

xz(n�t ),

(3)

where d = δ/�t , m = t/�t . Here the standard deviation,
δ, and time segment, �t , were chosen as 2 ps and 4 fs,
respectively. To quantify the extent of local plastic deforma-
tions in the simulations, we employed the nonaffine squared
displacement, D2

min, developed by Falk and Langer [30]. The
quantity well represents atomic displacements that cannot be
represented by affine transformations (i.e., the atomic dis-
placement by nonelastic deformation in amorphous solids).

III. AVALANCHE STATISTICS OF AS-QUENCHED
AND WELL-AGED GLASSES

In Fig. 1(a) the evolution over time of the shear stress,
σxz, obtained in our MD simulations for the as-quenched and
well-aged models, are depicted by the red and blue lines,
respectively. The stress increased almost monotonously until
γ̇ t � 0.05 (t � 5 ns). Around γ̇ t � 0.07, the well-aged model
exhibited a significant overshoot and a sudden descent in
shear stress compared to the as-quenched model. This yielding
drop is a common feature of localized deformation of relaxed
metallic glasses [8,11,12,40]. After the drop, both models

x

z

y

(a) (b)
103

0

D2
min

5 nm

FIG. 2. Snapshots of the (a) as-quenched and (b) well-aged
model at γ̇ t = 0.4. Atoms are colored according to their nonaffine
squared displacements, D2

min (in Å2), where displacements were
calculated in reference to the positions of the atoms at γ̇ t = 0.

showed serrated stress fluctuations comprising numerous in-
creases and sudden drops of the shear stress. Whereas the
increasing shear stress was caused by elastic deformation
caused by external shear deformation, the sudden stress drops
were the result of plastic deformation (avalanche) events.
This serrated behavior indicates the emergence of avalanche
plasticity and is consistent with results obtained from previous
experimental and numerical studies of amorphous and crys-
talline solids [15,18,20,41–43].

Snapshots of the as-quenched and well-aged models at
γ̇ t = 0.4 are shown in Figs. 2(a) and 2(b), respectively,
where the color of the atoms represents the magnitude of
the nonaffine squared displacements, D2

min, from the initial
position of each atom [30]. The magnitude of the displace-
ment indicates the extent of plastic deformation caused by
local atomic rearrangements. Visualization of the snapshots
and calculation of the displacements were performed using
the Open Visualization Tool (OVITO) [44]. From the snap-
shots, shear localization occurred in the well-aged model, in
contrast to the relatively homogeneous deformation pattern in
the as-quenched model. Atoms exhibiting plastic deformation
localized in two bandlike regions along the horizontal and
vertical directions in the snapshot of the well-aged model
[Fig. 2(b)]. The emergence of the vertical shear banding was
caused by conjugate shear strain, in turn caused by the applied
simple shear deformation (a similar behavior of supercooled
liquids was discussed in Ref. [45]). The above results repro-
ducing a heterogeneous deformation with the large yielding
drop in the thermal annealed metallic glass and homogeneous
deformation in the nonannealed glass were consistent with
those of a previous study [8,11,12].

To verify whether our simulations accurately reproduced
the avalanche plasticity, we calculated the statistical
distributions of the stress drop, �σ , duration, T , and
waiting time, τ , of each elementary plastic deformation
event. The elementary plastic deformation event is defined
as the plastic deformation caused during a monotonic
decrease in the shear stress, σxz(t ). The period of the nth
deformation event ranges from the start time, t (s)

n (where
the stress reaches the nth local maximum) to the end time,
t (e)
n (where the stress reaches the local minimum just after

the maximum), as depicted in Fig. 1(b). By the definition,
the stress drop, duration, and waiting time of the nth
elementary deformation event are determined by �σn =
σxz(t (s)

n ) − σxz(t (e)
n ), Tn = t (e)

n − t (s)
n , and τn = t (s)

n − t (e)
n−1,

respectively.
The statistical distributions of the stress drop, duration,

and waiting time, P(�σ ), P(T ), and P(τ ) are depicted in
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FIG. 3. Statistical distributions of the (a) stress drop, (b) dura-
tion, and (c) waiting time of plastic deformation (avalanche) events.
The distributions obtained from the as-quenched and well-aged
models are represented by red squares and blue circles, respectively.

Figs. 3(a), 3(b), and 3(c), respectively. All distributions de-
cayed algebraically over a range of one or more orders of
magnitude (i.e., the stress fluctuation by plastic deformation
follows power-law statistics). The exponents of the power-law
distributions are not significantly out of the range of those
reported in previous studies; the exponents of event size,
duration, and waiting time have been estimated around 1, 3,
and 1, respectively, in proceeding studies [15,17,18,46,47].
This indicates that our simulations successfully reproduced
the avalanche behavior of amorphous solids, where each ele-
mentary plastic deformation corresponded to one avalanche of
plastic deformation. Thus, we simply refer to elementary de-
formation events as elementary avalanche events or avalanche
events. By comparing the statistics of the as-quenched and
well-aged models, we can see that both distributions follow
the same power-law distribution. However, there is a no-
table difference in the size distributions, P(�σ ), where the
maximum size of the stress drops in the well-aged model
is approximately four times larger than that observed in the
as-quenched model [Fig. 3(a)]. Thus, the well-aged glasses
have the potential to produce larger avalanches than the as-
quenched glasses, whereas plastic deformation of the well-
aged model is limited to a narrow band region as depicted in
Fig. 2(b).

IV. TECHNIQUE FOR EVALUATING THE
AVALANCHE GEOMETRY

In this section, to clarify the spatial features of avalanche
plasticity in the as-quenched and well-aged glasses, we intro-
duce a spatial correlation function of the nonaffine squared
displacements [30] and demonstrate that this correlation func-
tion can quantify the geometry of the elementary avalanche
events. The nonaffine squared displacements for the nth
avalanche event were calculated using the displacements of
atoms at t (e)

n with reference to the positions of the atoms at
t (s)
n . We refer to the nonaffine squared displacement of the ith

atom at the nth avalanche event as D2
min(ri(t (e)

n )), where ri(t (e)
n )

is the position of the ith atom at t (e)
n .

Typical snapshots of atoms at several avalanche events
are depicted in Fig. 4, where atoms with D2

min < 1 Å are

0

D2
min

15
)c()a(

x

z

y

(d)

(b)

(c)

(b)

(a)

FIG. 4. Snapshots at the three typical elementary avalanche
events that were associated with stress drops at (a) γ̇ t = 0.0765,
(b) 0.0960, and (c) 0.0988, where atoms are colored according to
their nonaffine squared displacements, D2

min(ri(t (e)
n )) (in Å2), and only

atoms with D2
min � 1 Å2 are shown (see text). (d) Segmentary view

of the stress-strain curves including the stress drops corresponding
to the snapshots (a), (b), and (c) indicated by arrows, respectively.
Enlarged stress-strain curve of the as-quenched model around the
stress drop event at γ̇ t = 0.0765 is imposed.

not shown. It can be observed that atoms contributing to
plastic deformation tend to localize in space. As observed
in Fig. 4(a), the participating atoms clump spherically (the
cluster consists of 333 atoms) after a small avalanche with
a very small stress drop (�σ = 0.817 × 10−3 GPa) occurs
in the as-quenched model. This clumping shape indicates
that the avalanche of atomistic rearrangements in the event
developed in an isotropic manner. In a larger avalanche event
that is observed in the as-quenched model [Fig. 4(b)], the
avalanche shape is no longer spherical and does not show
any discernible direction. Thus, it can be considered that
this massive avalanche is also isotropic. This is quantitatively
verified later. In contrast to the as-quenched model, partic-
ipating atoms in a large avalanche event in the well-aged
model clearly gather around a bandlike region along the z
axis [Fig. 4(c)] (i.e., the avalanche developed anisotropically).
Note that the highly deformed region (red in the snapshot) ap-
proximately corresponds to the shear-banding region depicted
in Fig. 2(b). Whereas the direct observation is useful to yield
intuitive recognition of the geometrical nature of avalanches,
the observation is qualitative and depends on the threshold
value of D2

min. Thus, the quantification of the extent of the
propagated region in an avalanche event with no consideration
of a threshold value is required. For this, we introduce a planar
spatial correlation function, Cxy,Cyz, and Czx, of D2

min(ri(t (e)
n ))

at an avalanche event described below. In this study, Cαβ is
introduced as a two-body correlation function that can be
given as follows (its correlation is limited to a plane parallel
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to the αβ plane):

Cαβ (rαβ ) = 〈δD(ri )δD(r j )〉αβ
i j

〈δD(ri )2〉i
, (4)

where (α, β, γ ) are the cyclic permutations of (x, y, z), rαβ

is the distance between two points on the αβ plane, and
δD(ri ) ≡ D2

min(ri(t (e)
n )) − 〈D2

min(rk (t (e)
n )]〉k . The bracket, 〈〉k ,

refers to the average of any one-body scalar quantities A(rk )

over all the atoms: 〈A(rk )〉k = ∑N
k=1 A(rk )/N , where N is

the total number of atoms in a system. The bracket, 〈〉αβ
i j ,

is the average of any two-body scalar quantities, B(ri, r j ),
over specific particle pairs, such that the distance between
two atoms on the αβ plane,

√
(αi − α j )2 + (βi − β j )2, is in

a range from rαβ to rαβ + �r, and the distance along the γ

axis, |γi − γ j |, is less than �γ . We used a �r value of 0.01
nm and selected a sufficiently small width of 0.8 nm for �γ .
By employing a window function, the planar average, 〈〉αβ

i j , is
explicitly described as

〈B(ri, r j )〉αβ
i j = 〈wαβ (|γi − γ j |; �γ ) wr (rαβ − |ri j |; �r) B(ri, r j )〉i j

〈wαβ (|γi − γ j |; �γ ) wr (rαβ − |ri j |; �r)〉i j
, (5)

where wr and wαβ are the rectangular window functions given
as follows:

w(x; �x) =
{

1 (0 � x < �x)

0 (otherwise),
(6)

and the bracket, 〈〉i j , is the average over all particle pairs:
〈B(ri, r j )〉i j = 2

N (N−1)

∑N
i< j B(ri, r j ). Note that if one omits

wαβ from Eq. (5), Cαβ becomes the conventional spatial cor-
relation function of the distance between any two atoms. By
integrating the correlation function, we can obtain the spatial
correlation length of an avalanche event along the αβ plane
corresponding to the average linear size of one avalanche area
projected onto the αβ plane in the following manner:

〈r〉αβ =
∫

rαβ Cαβ (rαβ ) drαβ

/∫
Cαβ (rαβ ) drαβ. (7)

The functions, especially correlation lengths, 〈r〉xy, 〈r〉yz,
and 〈r〉zx, indicate how far one avalanche spread parallel
to xy, yz, and zx planar directions, respectively. The ratio
of these correlation lengths provides information regarding
the geometry of one avalanche (or the aspect ratio of the
avalanche shape). It should be noted that the spatial corre-
lations introduced in this study were applied to individual
avalanche events, whereas similar spatial correlations em-
ployed in previous studies were applied to the accumulation
of some avalanche events [48,49].

Here we illustrate how this spatial correlation func-
tion works to characterize the geometry of the elementary
avalanche events using several examples in the as-quenched
and well-aged model. The planar spatial correlation func-
tions for typical avalanches are shown in Fig. 5, where
the correlation functions, Cxy(rxy),Cyz(ryz ), and Czx(rzx ), are
colored red, black, and green, respectively. The correlation
functions depicted in Fig. 5(a) are for the event at γ̇ t =
0.0765 in the as-quenched model. The corresponding snap-
shot is shown in Fig. 4(a). All correlation functions in the
figure decay following the exponential function, Cαβ (rαβ ) ∝
exp[−rαβ/r̄] and show the characteristic length, r̄ � 0.5 nm,
which is consistent with the average correlation lengths of the
event: 〈r〉xy = 0.679, 〈r〉yz = 0.725, and 〈r〉zx = 0.627 nm.
The small differences between r̄ and 〈r〉αβ are attributed to
the excluded volume effect of atoms that results in a lack of
the correlation in the regime, 0 � rαβ � 0.2 nm. The result

clearly indicates that the avalanche region for this event is
almost isotropic, consistent with the direct observation of the
event [Fig. 4(a)]. The correlation functions with larger charac-
teristic lengths, as shown in Fig. 5(b), correspond to a larger
avalanche event at γ̇ t = 0.0960 in the as-quenched model,
where the corresponding snapshot is shown in Fig. 4(b).
The correlation functions decay exponentially in accordance
with various cutoffs, and the correlation lengths are 〈r〉xy =
0.886, 〈r〉yz = 1.204, and 〈r〉zx = 0.891 nm. Whereas these
various correlation lengths imply the anisotropic geometry of
the event, the difference observed is approximately 36% at
most.

In contrast with the characteristics of the events in the
as-quenched model, a more anisotropic feature can be found
in the well-aged model. The spatial correlation functions of an
avalanche at γ̇ t = 0.0988 in the well-aged model [Fig. 5(c)]
show that Cyz shows only a small decrease with an increasing
ryz. Actually, it follows an algebraic decay, whereas Cxy and
Czx decay exponentially. As a result, the correlation length
parallel to the yz plane is about twice larger than that to
the xy and xz planes. 〈r〉xy, 〈r〉yz, and 〈r〉zx are 1.052, 1.917,
and 0.978 nm, respectively. The anisotropy in the estimated
correlation lengths of the avalanche is consistent with the
snapshot depicted in Fig. 4(c). These results verify that spatial

(a) (b) (c)

FIG. 5. Spatial correlation functions of the nonaffine squared
displacement at γ̇ t values of (a) 0.0765, (b) 0.0960, and (c) 0.0988,
where the functions at γ̇ t = 0.0765 and 0.0960 are obtained from
the as-quenched model and that at γ̇ t = 0.0988 is obtained from the
well-aged model. The correlation functions along the xy, yz, and zx
planes are depicted by the red, black, and green lines, respectively.
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FIG. 6. Relationship between the spatial correlation lengths of
D2

min on the xy, yz, and zx planes for (a), (c), (e) the as-quenched
model and (b), (d), (f) the well-aged model.

correlation functions and correlation lengths can be used to
characterize the geometric features of one avalanche event.

V. SPATIOTEMPORAL FEATURES OF ANISOTROPIC
AVALANCHES

In this section, we compare overall trends in avalanche
geometry in the as-quenched and well-aged models by esti-
mating the aspect ratio of all avalanche geometries.

Figure 6 shows the correlation lengths, 〈r〉xy, 〈r〉yz, and
〈r〉zx, calculated from all avalanche events as functions of
each other’s correlation length. The data shown in Figs. 6(b)
and 6(d) deviate from the linear relation (indicated by the
diagonal line) to the upper-left region of the graphs (i.e.,
dashed boxes). This deviation indicates that avalanches in the
well-aged model tend to evolve parallel to the xy or yz planar
directions rather than the xz direction. These xy and yz direc-
tions correspond to the observed shear banding [Fig. 2(b)].
In this discussion, we focus on 〈r〉xy and 〈r〉yz, the correlation
lengths parallel to these two preferable directions. Figures 6(e)
and 6(f) show 〈r〉yz values obtained in the as-quenched
and well-aged models as a function of 〈r〉xy. The data for
the well-aged model spread farther away from the diagonal
line, compared to those of the as-quenched model at higher

)b()a(

FIG. 7. Aspect ratios of the region over which the avalanche
propagates during a plastic event as a function of strain; R =
〈r〉yz/〈r〉xy for the (a) as-quenched model and (b) well-aged model.
The boxes indicated by dashed line and dash-dotted line are events
during the primary and secondary stage, respectively.

correlation lengths indicated by the dashed boxes. These data
indicate that the avalanches in the well-aged model tend
to evolve parallel to the two directions, whereas avalanche
evolution in the as-quenched model is nearly isotropic. Thus,
structural relaxation by thermal annealing in metallic glasses
can enhance both the localization of plastic deformations and
anisotropy of the elementary avalanche propagations.

This anisotropy seems to depend on the size of the
avalanche event. In Figs. 6(b), 6(d), and 6(f), the plots sig-
nificantly deviate from the diagonal trend line for larger cor-
relation lengths, 〈r〉αβ � 1 nm. Hence, anisotropy is mainly
observed in avalanche events with a large deformation area
(as discussed in Sec. VI). In addition to the spatial correla-
tions, we investigate the temporal clustering of the avalanche
anisotropy. Figure 7 shows the aspect ratio of the geometry of
each avalanche event in the form of the ratio of correlation
lengths, R = 〈r〉xy/〈r〉yz, as a function of time (strain). An
R value of 1 for an avalanche signifies isotropic behav-
ior, whereas R > 1 and R < 1 indicate that the anisotropic
avalanche propagations are biased toward the xy and yz planar
directions, respectively. Note that, in this figure, the aspect ra-
tio is plotted on a logarithmic scale to show the two directions
equivalently.

Figure 7(a) shows that R of the as-quenched model is
evenly spread around unity, indicating quite isotropic behav-
ior. This is consistent with the results shown in Figs. 6(a),
6(c), and 6(e). In contrast, the aspect ratio of the well-aged
model shown in Fig. 7(b) tends to be higher than unity in the
primary stage (enclosed by the dashed line), whereas in the
secondary stage, the R values tend to be lower than unity from
around γ̇ t = 0.32 (enclosed by a dashed-dotted line). This
indicates that the preferred direction of avalanche propagation
in the well-aged model switched from the yz to xy direction at
around γ̇ t = 0.32. The direction of avalanche propagation is
not determined randomly but is clustered over time.

This temporal clustering behavior of the avalanche direc-
tions in the well-aged model may indicate weakening by
plastic deformation. The region where a previous avalanche
occurred can be weakened, facilitating subsequent avalanches
occurring in the same region and direction. This behavior
implies that avalanche plasticity in amorphous solids has the
memory of an area that was weakened by previous avalanches.
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To comprehensively quantify the tendencies in the
anisotropic feature of the avalanche propagation, we calcu-
lated the sample deviation, d , of the aspect ratio from unity:

d2 = 〈(R′ − 1)2〉, (8)

where the bracket represents the sample average of all
avalanche events. We calculate the aspect ratio, R′, as
〈r〉xy/〈r〉yz or 〈r〉yz/〈r〉xy in such a way that R′ � 1. We do
this to treat the deviations in the two directions equivalently.
The deviations calculated from the results of the as-quenched
model and the well-aged model are d = 0.1554 and 0.1890,
respectively. The deviation of the well-aged model increases
by approximately 22%. The result also indicates that the struc-
tural relaxation by thermal treatment enhances the anisotropic
propagation of the elementary avalanches in metallic glasses.

VI. CORRELATION BETWEEN ANISOTROPY AND SIZE
OF AN AVALANCHE

The relationship between the magnitude and anisotropy of
an avalanche event is investigated. Figure 8 shows the rela-
tionship between the aspect ratio, R, and the stress drop, �σ ,
corresponding to the magnitude of each elementary avalanche
event, where only the region of interest of �σ � 10−3 GPa is
shown. It can be seen that �σ has a wide range of magnitudes.
The plots of the as-quenched model [Fig. 8(a)] show no
significant correlation between �σ and R, whereas there is
a clear correlation in the regime �σ > 10−1 GPa for the
well-aged model as shown by the bifurcated plots spreading
along the diagonal lines in Fig. 8(b). Thus, larger avalanche
events result in stronger anisotropy of the deformation region.
This trend is consistent with anisotropic avalanches being
mainly observed for large deformation regions, as discussed in
Sec. V. See also Figs. 6(b), 6(d), and 6(f). Thus, elementary
deformation avalanches in well-aged metallic glasses have a
tendency to propagate anisotropically in large deformation
areas.

The observation that larger avalanches show stronger
anisotropy provides interesting insights. An avalanche of
plastic deformation of metallic glasses develops mainly via
propagation of local atomistic rearrangements from a small
starting region. Thus, small avalanches can be considered as
the propagation of atomic rearrangements with their devel-
opment halts at an early stage. In contrast, the development
of large avalanches does not stop until a later stage. Thus,

)b()a(

FIG. 8. Relationship between the aspect ratio R and the magni-
tude of an avalanche event �σ for the (a) as-quenched model and
(b) well-aged model.

we can consider that a small isotropic avalanche will de-
velop anisotropically along a favored direction from a cer-
tain point in time rather than a small anisotropic avalanche
increases in size with no change in its aspect ratio. In other
words, the propagation of a deformation avalanche in metallic
glasses may bifurcate during the avalanche growth. The time
evolution behavior of the avalanches requires more detailed
analysis.

VII. SIZE DEPENDENCE OF AVALANCHE ANISOTROPY

Whereas the avalanches in the well-aged model tend to
develop anisotropically, the aspect ratios of these anisotropic
avalanches are not as large as one might expect. The observed
R values remain in the range 0.5–2, as shown in Fig. 7(b).
These small values are caused by the finite size effect. Thus,
the integration range for calculating 〈r〉αβ is limited to half
of the length of the simulation cell defined by the periodic
boundary condition. This also explains why 〈r〉yz was only
<2 nm, even when Cyz decayed algebraically [Fig. 6(c)]. In
the present simulations, we used a periodic cell with sides
of ∼9.5 nm. Therefore, the correlation length, 〈r〉αβ , can be
only 2 nm at a maximum, even when Cαβ does not decay at
all, because the maximum integration range is about 4 nm.
Thus, MD simulations with larger systems are expected to
result in enhanced anisotropic behavior. To confirm this, we
calculated the aspect ratios for additional MD simulations
employing larger models with 19.3 nm edges in the initial
state (400 000 atoms), performed under the same simulation
conditions. The temporal evolution of the aspect ratios of the
elementary avalanche regions and the relationship between
aspect ratio R and the event size, �σ , of each avalanche are
shown in Fig. 9. Snapshots of the larger as-quenched and
well-aged models at γ̇ t = 0.4 are inserted in Figs. 9(c) and
9(d), respectively.

The snapshot shows that the larger well-aged model also
exhibits shear localization. An intense concentration of plastic
deformation appears in a horizontal bandlike area in the larger
well-aged model [Fig. 9(d)]. Whereas the larger as-quenched
model also exhibits a certain level of localization [Fig. 9(c)],
its deformation region spreads much wider than that of the
well-aged model. This difference indicates that the structural
relaxation caused by thermal annealing enhances the localiza-
tion of deformation, even in larger models.

A relatively strong bias in the aspect ratio of isotropic
shapes in the larger well-aged model, compared to the one
in the larger as-quenched model, is clearly visible in Fig. 9(b).
The aspect ratios of some extreme events in the larger well-
aged model drop to 1/3, whereas a switch in the preferred
avalanche direction is not observed in this case. This sig-
nificant anisotropic trend is also verified by the deviation
of aspect ratios defined by Eq. (8) in the well-aged model,
as d = 0.473. The as-quenched model also exhibits some
anisotropic avalanche propagations. However, the deviation is
only d = 0.259. Therefore, the structural relaxation increases
the deviation by approximately 83%. As shown in Figs. 9(c)
and 9(d), whereas the correlation between the magnitude
and anisotropy of the avalanche events can be seen in the
larger as-quenched model, and not just in the larger well-aged
model, the latter is linked to a more definite correlation than
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FIG. 9. (Upper panels) Aspect ratios of the avalanche regions as
a function of strain; R = 〈r〉yz/〈r〉xy for the larger (a) as-quenched
model and (b) well-aged model. (Lower panels) Relationship be-
tween the aspect ratio R and the magnitude of an avalanche event
�σ for the larger (a) as-quenched model and (b) well-aged model.
Snapshots of the larger as-quenched and larger well-aged model at
γ̇ t = 0.4 are inserted in panels (c) and (d), respectively. Atoms are
colored according to D2

min (in Å2), where the displacements were
calculated in reference to the positions of the atoms at γ̇ t = 0.

the former. This correlation is more apparent in the larger
well-aged model than in the smaller one. Therefore, it is
confirmed that the influence of the structural relaxation on
the anisotropy remains, even in the larger systems. Moreover,
the relative influence in the well-aged model, compared to the
as-quenched model, grows as the system size increases.

VIII. DISCUSSION

The avalanche motion of deformation in amorphous solids
can be interpreted as the chain reaction of local shear trans-
formation. Atoms in a small local area (an STZ [29,30])
can rearrange to release external shear stress. This rear-
rangement (i.e., the shear transformation of the local atomic
configuration) causes stress concentration around the area, as
described by the Eshelby inclusion theory, and can induce
other local rearrangements through the stress concentration.
The chain reaction of this shear transformation results in a
shear-transformation avalanche. Thus, the avalanche behavior
illustrated in this study poses an important question regarding
the manner in which thermal preparation enhances or sup-
presses the chain reaction of the shear transformation.

The thermal annealing used in this study causes relaxation
of the internal structural states characterized by various fea-
tures, such as short- and medium-range order, free volumes,
or effective disorder temperature of glasses [8,50–52]. The
structural states and the resultant shear banding are well
described by the effective temperature [8,52], but we herein
provide a speculative explanation of the avalanche features

based on the atomistic free volumes [53] because free volume
is a convenient and intuitive concept in the discussion of
atomic-scale dynamics.

As discussed before, the as-quenched model exhibiting rel-
atively small avalanches has more free volume than the well-
aged model as mentioned in Sec. II, and one can consider that
the excess free volume in the as-quenched metallic glasses
could absorb and thus prevent chain reactions in local shear
transformations. Moreover, large free volumes might allow
the surrounding regions to transform along with directions
other than that of external shear direction because excess
free volumes can provide additional space for surrounding
atoms to move and rearrange themselves, independent of
the external shear direction. Conversely, the well-aged glass
with less free volume lacks adequate space to absorb the
chain reaction. This may explain the as-quenched glass model
showing neither large nor anisotropic avalanches [54].

Although there seems to be a significant relationship be-
tween shear banding and the avalanche behaviors, further
researches on this subject is essential so that a more com-
prehensive study based on evidence can be performed. The
scope of the present study comprises only a comparison
of shear-banding patterns [Fig. 2(b)] and the snapshot of
a large avalanche event emerging in the well-aged model
[Fig. 4(c)]; the focal region of the avalanche largely overlaps
with the shear-banding region. This shows that relatively few
extremely large and anisotropic (strip-shaped) avalanches, and
not many small and isotropic avalanches, contribute to shear
banding in metallic glasses.

The influence of environmental temperature on avalanche
behaviors, which plays an essential role in amorphous plas-
ticity [55–57], is another subject of future research. It is
expected that the thermal fluctuation by the temperature will
provide both enhancement and suppression effects on the
avalanche growth and anisotropy; the enhancement is due to
the reduction of atomistic free volume caused by structural
relaxation driven by the temperature, and the suppression
effect is produced by the thermal activation of the STZs,
which is supposed to be activated as part of an avalanche
when the temperature was low, prior to the avalanche. The
opposition of these two effects at high temperature could
affect the avalanche behaviors.

In this discussion, we assumed that the excess free volumes
of metallic glasses lead to the ease of deformation in local
area. This assumption is inferred from the fact that the as-
quench glass with a large free volume started to deform at a
relatively lower stress than the well-aged glass with a higher
energy state [12] as shown in Fig. 1. (Note that a large free
volume does not always lead to less strength and high energy
state [13].) A more valid and comprehensive explanation for
the avalanche behaviors with respect to other factors such as
effective temperature is necessary and should be a subject of
future investigation.

IX. CONCLUSION

Using three-dimensional molecular dynamics simulations
of shear deformations in Cu–Zr metallic-glass models,
we compared the avalanche plasticity of a well-relaxed
metallic-glass model (i.e., well-aged model) with localized
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deformation produced by thermal annealing and a less-relaxed
glass model (as-quenched model) that did not undergo struc-
tural relaxation by annealing, showing homogeneous defor-
mation. We focused on analyzing the geometrical feature
of elementary shear deformations (i.e., elementary shear-
transformation avalanches). The simulations showed that the
statistics of stress drops, durations, and waiting times of
elementary avalanche events followed power-law distribu-
tions for both models. The as-quenched model showed a
homogeneous deformation pattern, whereas a heterogeneous
pattern like a shear band was observed for the well-aged
model, as shown in the previous numerical and experimental
studies [8,11,12]. We quantified the geometrical features of
elementary shear-transformation avalanches by introducing a
planar spatial correlation function of the nonaffine squared
displacements of all atoms in each avalanche event. The
spatial correlations and their characteristic lengths parallel to
the xy, yz, and zx planes revealed that deformation regions
caused by each avalanche event in the well-aged glass tended
to be anisotropic, whereas those in the as-quenched glass were
generally isotropic. The direction of anisotropic avalanche
propagation in the well-aged glass was not random but showed
temporal clustering. Moreover, we demonstrated that the

well-aged glass had a significant correlation between the
anisotropy and avalanche magnitude. The observed differ-
ences between the two glass models might be attributed to
differences in the atomic-free volume, which can be removed
by thermal structural relaxation.
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