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Random sequential adsorption of Platonic and Archimedean solids
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The aim of this study is the analysis of packings generated according to random sequential adsorption protocol
consisting of identical Platonic and Archimedean solids. The computer simulations performed showed that the
highest saturated packing fraction θ = 0.402 10(68) is reached by packings build of truncated tetrahedra and the
smallest one θ = 0.356 35(67) by packings composed of regular tetrahedra. The propagation of translational and
orientational order exhibited microstructural properties typically seen in random sequential adsorption packings
and the kinetics of three-dimensional packings growth were again observed not to be strictly connected with
the dimension of the configuration space. Moreover, a fast overlap criterion for Platonic and Archimedean
solids based on separating axis theorem has been described. The criterion, together with other optimizations,
allowed us to generate significantly larger packings, which translated directly to a lower statistical error of the
results obtained. Additionally, the polyhedral order parameters provided can be utilized in other studies regarding
particles of polyhedral symmetry.
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I. INTRODUCTION

Packings of objects are a mature field of theoretical, nu-
merical, and experimental studies, dating back to ancient
times. The problem of effective transportation of cannon-
balls on ships in colonial era aroused high interest among
mathematicians of that time. The first problem of this kind,
examined by Thomas Harriot around 1587, was the so-called
cannonball problem—how many cannonballs can be arranged
in both a square and a pyramid with a square base; in other
words: which squares of natural numbers are also pyramidal
numbers, which can be reexpressed as diophantic equation
k(k + 1)(2k + 1)/6 = n2 with the smallest solution k = 24,
n = 70. Only in 1918 did George Neville Watson prove, that
there are no other solutions of this equation [1]. Formulating
problems regarding packings is surprisingly easy; however,
solving them tends to be highly complicated. Johannes Kepler
was seeking the most optimal way to pack cannonballs. He
conjectured that the densest packing possible of packing den-
sity π/

√
18 ≈ 0.74 is achieved by fcc lattice arrangement [2].

Two hundred years later Carl Friedrich Gauss made a step
toward a proof by showing, that fcc packing of balls is the
most optimal Bravais lattice packing [3]. Only in 2017 was
the strict, complete proof presented by a mathematical group
lead by Thomas Hales that this is the global maximum [4].

Nowadays, maximal packings are made use of in a vari-
ety of science fields, from condensed matter physics, where
they model crystalline structures [5], to telecommunication,
where they indicate how to optimize transfer rates [6]. Recent
works incorporate various shapes, for example, Platonic and
Archimidean solids [7] or two-parameter families of polyhe-
dra [8]. Apart from maximal packings, extensive studies of
random packings are being conducted, especially regarding
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the so-called random close packings (RCP), because their
structure resembles one of liquid crystals, amorphous media,
granular matter, and various biological systems [9]. The term
random implies the lack of order, while close packing means
that the neighboring particles are in contact and continuation
of the process which has been used to obtain the packing
(e.g., shaking or tapping the containter) no longer increases
the packing density. However, as shown by Torquato [10], the
definition of RCP cannot be made mathematically precise and
basic properties, such as packing fraction, are highly sensitive
to the type of numerical or experimental protocol, which was
used to generate them.

This study focuses on a slightly different class of random
packings, which, contrary to RCP, have well-defined mean
values. They are obtained as a result of the so-called random
sequential adsorption (RSA). It is a simple protocol, which
consists of subsequent iterations of the following steps:

(i) The position and orientation of a trial object are se-
lected randomly.

(ii) If it does not overlap with any of previously placed
objects, then it is added to the packing and its position and
orientation remain unaltered to the end of the process.

(iii) If it does overlap, then it is removed and abandonded.
The packing is called saturated, when there is no space left

for placing any other particles. Historically, the first person
to present the RSA model was Flory, who analyzed the
statistics of adjacent pendant groups on long chains of vinyl
polymers [11]. It corresponds to one-dimensional (1D) RSA,
the mean saturated packing fraction of which was analyti-
cally calculated by Renyi’s as a solution to the so-called car
parking problem [12]. RSA is most commonly utilized in two
dimensions [13–15], because it models monolayers obtained
in irreversible adsorption process [13].

Three-dimensional RSA packings appear notably more
rarely, because there is no physical realization of that
process—it is unclear how a new particle could be placed
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FIG. 1. All Platonic and Archimedean polyhedra: (a) regular tetrahedron, (b) cube, (c) r. octahedron, (d) r. dodecahedron, (e) r.
icosahedron, (f) truncated tetrahedron, (g) truncated cube, (h) truncated octahedron, (i) truncated dodecahedron, (j) truncated icosahedron,
(k) cuboctahedron, (l) icosidodecahedron, (m) rhombicuboctahedron, (n) truncated cuboctahedron, (o) rhombicosidodecahedron, (p) truncated
icosidodecahedron, (q) snub cube, and (r) snub dodecahedron.

into the packing, which is already occupied by other particles,
and stay in the place of addition. However, three-dimensional
models are essential to understand RSA process. They can
also be used as a toy model for other kinds of packings,
because they share common properties with them, for exam-
ple, maximas of density of speroid packings are achieved by
similar particle dimensions both for RSA [16] and RCP [17]
packings. There are numerical studies regarding RSA pack-
ings of spheres [18], spheroids [16], unoriented cubes [19] and
cuboids [20,21] as well as oriented hypercubes in the context
of Palasti conjecture [22,23].

The natural continuation of three-dimensional RSA studies
are Platonic and Archimedean solids (see Fig. 1). The main
goal of this study is to find the mean saturated packing fraction
of all 18 polyhedra and to analyze how it is influenced by
the solids’ shape. RSA packings of those solids are also
interesting in terms of the kinetics of packing growth, which,
as presented later, have been lately discovered to be more
complex than what had been previously believed. Moreover,
it will also be interesting to compare the result with the recent
studies regarding maximal packings [7].

The paper is divided into four sections. Section II presents
the details of computer simulations performed. Section II A
describes their parameters and gives a brief discussion on
rotations sampling. Section II B is devoted to a fast overlap
test for Platonic and Archimedean solids which can be gener-
alized to other convex polyhedra. Section II C indicates where
additional optimizations that can be made are described.
Section III A presents the method to estimate saturated pack-
ing fractions and lists their values. Section III B discusses
the kinetics of packing growth, and then Sec. III C elaborates
on the correlation between packing fraction and the shape of
solids. Section III D describes the microstructural properties
of packings in terms of the propagation of translational and
orientational order. It presents orientational order parameters
conforming to point groups of polyhedral symmetries. Sec-
tion IV briefly summarizes the findings.

II. METHODS

A. Description of simulations

In order to study the properties of packings of Platonic and
Archimedean solids, packings were generated numerically

according to the RSA scheme described in the Introduction.
For the sake of convenience all solids had a unit volume. The
positions of their centers were selected randomly from a cube
with the edge size of 50. In order to reduce finite-size effects,
periodic boundary conditions were used. A brief discussion of
errors connected with finite size is presented in Sec. III D.

Trial particles, oriented in the same way at the beginning,
were rotated randomly in a way which assures that each final
orientation is equally probable. A natural way to obtain uni-
form distribution of SO(3) rotations can be given by a proba-
bilistic measure being translation-invariant Haar measure [as
the SO(3) group is compact, the right and left Haar measures
are equal]. It corresponds to the intuition that probability
of choosing rotation from a measurable subset A ⊂ SO(3)
should not change after a translation by an arbitrary rotation
�: P(R ∈ A) = P(R ∈ �A). The details of this reasoning can
be found in Ref. [24]. One way of obtaining such a distribution
is the composition of three rotations

R = R3R2R1, (1)

where R1, R2, R3 are rotations around consecutive coordinate
system axes by, respectively, 2πx1, arcsin(2x2 − 1) and 2πx3

radians, where x1, x2, x3 are random numbers from Unif(0, 1)
distribution. In Ref. [15] it was shown that for such a way of
sampling orientations, the correlations of orientations decay
to 0 for large-enough distances, which is additional, numerical
argument for the correctness of that choice.

The main parameter tracked during simulation was the
packing fraction defined as

θ (t ) = N (t )V

VC
= N (t )

VC
, (2)

where V = 1 is the particle’s volume, VC = 503 is the system
volume, and N (t ) is the number of particles in the packing
after dimensionless time t . Dimensionless time is defined as

t = nV

VC
= n

VC
, (3)

where n is the number of RSA iterations. Dimensionless time
is often used to compare the results regardless of V and VC .

The packing becomes saturated when there is no possibility
of adding another object. The mean saturated packing fraction
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θ depends only on particle’s shape and, contrary to RCP, the
mean value is well defined.

For practical reasons, one does not usually generate sat-
urated packings since there is no general method to detect
whether a packing is already saturated or not. Hence, in this
study packing generation was stopped after arbitrarily chosen
time t = 106 which corresponds to 1.25 × 1011 RSA algo-
rithm iterations. This value is a trade-off between the accuracy
of estimation of saturated state properties and computational
time.

For each solid 100 independent packings were generated,
which gives a few millions of particles in total. As it will
be discussed later, it was enough to yield statistical error of
mean packing fraction after t = 106 one order lower than the
uncertainty introduced by extrapolation to the saturated state.

B. Overlap detection

Detecting overlaps of Platonic and Archimedean polyhedra
is the most time-consuming operation during RSA packing
generation. The choice of the fastest overlap detection algo-
rithm shortens the simulation time significantly and effec-
tively enables obtaining better statistics. In case of polyhedra,
commonly used algorithm, especially in computer graphics,
is triangulating their surface and testing triangle pairs against
intersection. There exist fast triangle-triangle collision tests,
such as in Ref. [25]. However, it was shown in Ref. [20] that
in the case of cuboids another test—based on separating axis
theorem—can be up to 100 times faster.

Separating axis theorem (SAT) [26] asserts that two convex
multidimensional sets are disjunctive if and only if there exists
such an axis that projections of these sets on it are disjunctive.
This axis is then called separating axis, hence the theorem
name. The theorem does not provide any information how to
find this separating axis. It turns out, however, that in case of
3D polyhedra, such an axis does not exist if none of the axes
perpendicular to faces of any polyhedron or perpendicular to
two edges, each from one polyhedron, is a separating axis.

Let P1, . . . , Pn be the positions of vertices of polyhedron
P and u the normalized vector spanning potential separating
axis. The direct way to check whether projections of convex
polyhedra P and Q onto u overlap is to check the sing of the
expression

max
{

min
i

{Pi · u}, min
j

{Q j · u}}
− min

{
max

i
{Pi · u}, max

j
{Q j · u}}. (4)

If it is positive, then projections are disjunctive and if it
is negative, then they overlap. Zero value corresponds to
tangent projections. Gottschalk proposed an optimization of
this criterion for cuboids which enables us to calculate all
projections in one step [26]. It can be easily generalized for
sufficiently regular polyhedra.

Assume that eight vertices of a polyhedron form a cuboid
or four vertices form a rectangle. Let one choose the origin
and coordinate system axes ê1, ê2, ê3 so that coordinates of
those vertices are (±a,±b,±c), allowing one of a, b, c to be
zero to include the case of the rectangle. It is easy to notice
that the half length of a cuboid or rectangle projection onto u

is then

LC (u) = a|u1| + b|u2| + c|u3|
= a|u · ê1| + b|u · ê2| + c|u · ê3|. (5)

All achiral Platonic and Archimedean solids with octahedral
or icosahedral symmetry are built exclusively of concentric,
identically oriented groups of vertices arranged in cuboids or
rectangles—it is due to the fact that both full (achiral) octa-
hedral and icosahedral point groups contain rotations around
three perpendicular twofold axes and reflections through three
planes spanned by them. It reduces calculation of half length
LP of the polyhedron P to selecting maximal LC . Then one can
test a potential separating axis for solids P and Q with centers
OP and OQ by checking the sign of the expression

|(OQ − OP ) · u| − [
max
Ci⊂P

{LCi (u)} + max
Cj⊂Q

{LCj (u)}]. (6)

Due to this optimization one can significantly reduce the
number of calculations performed in an overlap test.

C. Additional optimizations

Although iterating the RSA steps described in the Intro-
duction without any modifications is enough to obtain RSA
packings, several optional optimizations can be made to in-
crease the speed of packing generation, allowing us to obtain
better statistic within the same computational time frame. For
example, one can utilize the so-called modified RSA using
exclusion zones to reduce the space from which new particles
are selected or neighbor lists of adjacent particles to reduce
the number of collision tests. To preserve the compact form of
the paper these technical details have been omitted; however,
they can be found in Ref. [18]. Although the RSA protocol
is serial in nature, some parts of the simulation, for example,
sampling new particles, can be done in parallel. It is discussed
in detail in Ref. [27].

III. RESULTS

A. Packing fraction estimation

Determination of a moment when a packing becomes
saturated requires tracking of regions not covered by shapes’
excluded volumes. Recently, two independent algorithms for
2D shapes—[28] for polygons and [27,29] for ellipses, sphe-
rocylinders, and rectangles—have been proposed; however,
there is no known generalization in higher dimensions. In case
of spheres one can use the Feder’s law [13,30] to extrapolate
finite-time simulations to infinite time:

θ − θ (t ) = At− 1
d . (7)

It is valid for large-enough times where d is the packing
dimension and A is a constant. Numerous studies, both an-
alytical [31,32] and numerical [15,21], have shown that this
relation holds for most anisotropic shapes but with different
values of d . Equation (7), after substituting (2) and differ-
entiating with respect to t , can be rewritten as ln(dN/dt ) =
ln(AVC/d ) − (1/d + 1) ln(t ), so d can be determined from
linear fit to points [ln t, ln dN/dt] (see Fig. 3). Here the fit was
made for t ∈ [104, 106]. Then substituting y = t−(1/d ) gives
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TABLE I. Extrapolated saturated packing fractions together with
corresponding d parameters and sphericity �. The values for sphere
are taken from Ref. [18]. The errors of packing fraction shown are
errors propagated from errors of fits. The standard deviation of mean
packing fraction after t = 106 was one order of magnitude smaller,
so it was not taken into account.

Polyhedron name θ d �

tr. tetrahedron 0.402 10(68) 7.631(93) 0.775
tr. cuboctahedron 0.396 31(30) 6.882(75) 0.943
tr. icosidodecah. 0.393 10(27) 6.599(87) 0.970
snub cube 0.391 33(30) 7.235(92) 0.965
tr. octahedron 0.390 32(32) 6.641(71) 0.910
cuboctahedron 0.390 32(28) 6.681(58) 0.905
snub dodecahedron 0.389 78(24) 6.320(92) 0.982
icosidodecahedron 0.389 22(32) 6.426(89) 0.951
rhombicuboctah. 0.386 55(32) 7.080(98) 0.954
rhombicosidodecah. 0.386 40(22) 6.102(89) 0.979
tr. icosahedron 0.386 10(25) 6.609(90) 0.967
tr. dodecahedron 0.385 49(22) 5.930(57) 0.926
icosahedron 0.384 97(30) 6.443(81) 0.939
sphere 0.384 130 7(21) 3.073 046(17) 1.000
truncated cube 0.380 75(21) 5.827(43) 0.849
octahedron 0.379 82(38) 6.737(70) 0.846
dodecahedron 0.379 36(28) 6.197(71) 0.910
cube 0.362 49(27) 6.037(53) 0.806
tetrahedron 0.356 63(67) 8.119(93) 0.671

θ (y) = θ − Ay, so θ is then finally given by intersection of fit
to θ (y) with the y axis.

The estimated saturated packing fractions are shown in
Table I. Moreover, the example packings of size 10 × 10 × 10
are shown in Fig. 2 and 3D models of them can be found in
the Supplemental Material [33]. The least dense packings are
made of regular tetrahedra, θ = 0.356 63(67), and the most
dense are made of truncated tetrahedra, θ = 0.402 10(68). To
put it in a context, the mean saturated packing fraction of
spheres is θ = 0.384 130 7(21) placing between them. The
errors given are propagated from linear regressions described
above. The statistical errors of mean packing fractions before
extrapolation have been neglected as they are one order lower.
The new results for cubes differ from the previous ones [19]
on the third decimal digit by the value slightly larger than the
tolerance threshold 3σ , for both θ and d . That study utilized
smaller simulation time t = 105 which can be the source of
the difference.

B. The kinetics of packing growth

In papers regarding RSA of cubic shapes [19–21] one ob-
serves the deviation from a typical interpretation of d param-
eter as the dimension of configuration space. This dimension
is equal to 6 in case of all 3D solids without axial symmetry,
cuboids, Platonic and Archimidean solids included, while the
reported values of d can be as high as 9. The values of
parameter d here, when fitting to t ∈ [104, 106], are for most
shapes higher than 6, peaking to 8.119(93) for tetrahedron.
For some shapes, namely rhombicosidodecahedron, truncated
dodecahedron, and cube, they are close to 6 with respect to
standard deviation. Apart from having the strong dependence

FIG. 2. Almost saturated packings of chosen polyhedra of size
10 × 10 × 10. (a) Tetrahedron, (b) snub cube, (c) truncated icosido-
decahedron, (d) truncated tetrahedron.

on particle shape, the d values seem to differ when fitting to
different ranges of t (see Fig. 3, inset) and it remains unknown
whether they can ever stabilize. This suggests that the esti-
mated packing fractions can carry systematic errors connected
with using slightly shifted d values in extrapolation. Unfortu-
nately, there is no known way of determining their magnitude.
There were attempts to use more sophisticated extrapolation
models than the Feder’s law [34]; however, they did not
render different θ values, so the simple power fit remains the
best approximation. To give the definite values of saturated

10-2 100 102 104 106

t

10-8

10-6

10-4

10-2

100

dN
/d

t

truncated tetrahedron
snub cube
icosahedron
truncated icosidodecahedron

102 103 104 105 106

[t/100, t] fit

4

8

12

d

FIG. 3. The dependence of dN/dt on dimensionless time t
(points) with fits to range [104, 106] (straight lines). Additionally, the
inset shows the dependence of the obtained d on time when fitting to
range [t/100, t].
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FIG. 4. The dependence of packing fraction θ on sphericity �

of Platonic and Archimedean solids. The left panel shows packing
fractions after t = 106 and the right for saturated packings. The
dashed line is a linear fit θ (t = 106) = 0.180 82 + 0.202 63 � to all
points excluding truncated tetrahedron.

packing fractions and determine the exact asymptotic behav-
ior, one needs to develop an algorithm allowing to generate
saturated packings in three dimensions.

C. The influence of polyhedron shape on packing fraction

Known results for 2D and 3D shapes, such as rect-
angles [14,29], ellipses, spherocylinders (capsules) [15,27],
dimers [15], spheroids [16], or cuboids [20,21], show that the
packing fraction grows with the increase of anisotropy in the
family of particles of a specific kind until it reaches maximum.
In case of studied polyhedra one can see that geometric
transformations, such as truncation, rectification, and expan-
sion, transforming Platonic solids into Archimedean solids,
increase the packing fraction. The most notable difference is
for tetrahedron—after truncating the shape packed, packings
become the most dense from the rarest of all analyzed. One
has to notice that those transformations actually lower the
sphericity of polyhedra, defined as [35]

� = π
1
3 (6V )

2
3

A
, (8)

which can be used as an indicator of particle anisotropy
with volume V and area A. � ∈ (0, 1], and maximal value
is reached only for sphere. Figure 4 shows the dependence
of packing fraction on the sphericity of the studied polyhedra.
Sphericity values are also included in Table I. The dependence
of θ (t = 106) on � resembles linear, with linear fit yielding
R2 ≈ 95 % having excluded truncated tetrahedron; however,
after the extrapolation to t = ∞ the differences between
points grow. The dependence is neither linear nor unimodal,
which shows that a packing fraction θ for 3D particles
strongly depends on the details of a particle shape. The last
statement is supported even more strongly, having noted that
the most densely packing shape—truncated tetrahedron—lies
the farthest from presumptive trends for both time regimes
thus its high packing fraction could not be predicted based
solely on its sphericity value.

Densities of RSA packings of Platonic and Archimedean
solids expose significant difference to maximal packings [7] in
terms of shape dependence. For that type of packing, Platonic
solids have generally higher densities than Archimedean,
peaking at 1 for cube, which is different than for RSA
packings, where the relation is opposite. On the other hand,
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3.0

G
(r

)

tetrahedron
tr. tetrahedron
tr. cube
dodecahedron

(b)

FIG. 5. The dependence of density pair correlation function on
the distance between particles. Panel (a) shows real distances in
simulations. In panel (b) they are normalized so that the smallest
distance possible is equal to 1. The error bars are smaller than the
width of the lines.

tetrahedral shapes show alike behavior—the least dense max-
imal packing is for tetrahedron with θ = 0.782 and truncated
tetrahedron is one of the most tightly packing shapes with
θ = 0.958. Interestingly, the optimal Bravais lattice packing
of tetrahedra has the density of θ = 0.367 which is similar to
RSA.

D. Microstructural properties

Apart from analyzing global packing parameters, such
as packing fraction, one can also investigate into their mi-
crostructural properties. Here they were studied in terms of
density pair correlation function and propagation of orienta-
tional order. The latter one required developing order param-
eters conforming to polyhedral point symmetries of Platonic
and Archimedean solids.

1. Density correlation

The density pair correlation function is defined as [36]:

G(r) = lim
dr→0

〈
N (r, r + dr)

4πr2θdr

〉
, (9)

where N (r, r + dr) is the number of pairs whose distance
is from [r, r + dr] interval. Figure 5 shows G(r) for chosen
particle types. It presents behavior typically found in RSA
packings—it decays superexponentially [36] with a series of
maxima and minima. There are additional maxima for parti-
cles with nonequivalent faces, such as truncated tetrahedron.
According to Ref. [37], G(r) is strictly connected with an error
in packing fraction introduced by finite-size effects, so, as
there are almost no correlations after r = 5, finite-size effects
should be negligible for a packing size used in this study.

2. Orientational order parameters

In order to measure full orientational order propagation,
the order parameters conforming to polyhedral groups of point
symmetries were used:

ρ4(r) = lim
dr→0

9

32

〈∑
i, j

(ui · vj)
3

〉
[r,r+dr]

, (10a)

ρ8(r) = lim
dr→0

1

6

˝
5

⎡
⎣∑

i, j

(ui · vj)
4

⎤
⎦ − 9

˛

[r,r+dr]

, (10b)
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FIG. 6. [(a)–(c)] The dependence of polyhedral order ρx for
chosen Platonic and Archimedean solids on the distance between
their centers. The x axis is normalized in such a way that the smallest
possible distance is 1. Additionally, panel (d) shows nematic order
ρn(r).

ρ20(r) = lim
dr→0

25

192

˝
7

⎡
⎣∑

i, j

(ui · vj)
6

⎤
⎦ − 36

˛

[r,r+dr]

, (10c)

where ρ4, ρ8, and ρ20 are for, respectively, tetrahedral, octahe-
dral, and icosahedral point groups. ui, vj are the smallest sets
of normalized equivalent rotational symmetry axes—namely
three-, four-, and fivefold axes respectively—for two particles.
The summation goes over all pairs of axes, each from one
particle, and the average is calculated for all pairs of particles
whose centers’ distance is in the [r, r + dr] interval. The
exponents are even for symmetries where orientation of a
particle is fully determined only by orientations of considered
axes and odd where both orientation and sense of axes is
needed. The values of the exponents are the smallest for
which the sum is not constant regardless of particles’ orien-
tations. The appropriate linear normalization ensures that the
value of these order parameters is 0 for isotropic ensemble
of particles and 1 for identically oriented particles. For ρ4

only, the normalization depends on the individual choices
of sense of each of four axes—here it has been assumed
that the ends of axes form regular tetrahedron when the
beginnings are in the same point. It is also worth noting that
ρ4, ρ8, ρ20 parameters are suitable for point groups both with
and without reflections, namely for both chiral and achiral
particles.

One can also check nematic order, using the standard P1

and P2 parameters

ρn(r) = lim
dr→0

〈
Pm

(
max

i, j
{|ui · vj|}

)〉
[r,r+dr]; (11)

however, in order to take degenerate axes into account, one has
to check all pairs and choose the dot product with the maximal
absolute value. The side effect of this operation is that ρn is not
zero even for isotropic set. P2 is used when both senses of axis
are equivalent and P1 when not. Nematic order parameters are
suitable for Platonic solids, because they have one class of
characteristic axes, which go through the middle of the faces.
For Archimedean solids the choice is ambiguous.

The dependence of full order parameters on distance is
shown in Figs. 6(a)–6(c). Is is typical for RSA packings.
The highest order is seen for almost touching particles, where
their faces have to be aligned to prevent an overlap; however,
full order is never achieved. It is due to the fact that aligned
particles still have rotational freedom around the normal axis
of close faces. Nematic order parameters (d) confirm full
nematic order for small distances. Both full and nematic
order parameters decay quickly with a distance, which is also
typical for RSA packings [38].

IV. SUMMARY

In this study RSA packings of five Platonic and thirteen
Archimedean solids were examined. It has been shown that
the loosest packings are formed by tetrahedra with packing
fraction θ = 0.356 63(67) and the densest are made of trun-
cated tetrahedra with packing density of θ = 0.402 10(68).
In general, Archimedean solids form denser packings than
Platonic solids; however, exact θ values depend strongly on
particle shape, not only on sphericity �. For the majority
of the polyhedra studied the exponent d describing packing
growth kinetics is not equal to configuration space dimension;
however, one needs to generate strictly saturated packings to
give the definite answer. There was no global translational or
orientational order observed. Additionally, rapid intersection
tests and order parameters conforming to polyhedral symme-
tries have been developed.
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[15] M. Cieśla, G. Pająk, and R. M. Ziff, J. Chem. Phys. 145, 044708

(2016).
[16] J. Sherwood, J. Phys. A: Math. Gen. 30, L839 (1997).
[17] A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys.

Rev. Lett. 92, 255506 (2004).
[18] G. Zhang and S. Torquato, Phys. Rev. E 88, 053312 (2013).
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