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Noise amplification in frictional systems: Oscillatory instabilities
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It was discovered recently that frictional granular materials can exhibit an important mechanism for
instabilities, i.e., the appearance of pairs of complex eigenvalues in their stability matrix. The consequence
is an oscillatory exponential growth of small perturbations which are tamed by dynamical nonlinearities. The
amplification can be giant, many orders of magnitude, and it ends with a catastrophic system-spanning plastic
event. Here we follow up on this discovery, explore the scaling laws characterizing the onset of the instability,
the scenarios of the development of the instability with and without damping, and the nature of the eventual
system-spanning events. The possible relevance to earthquake physics and to the transition from static to dynamic
friction is discussed.
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I. INTRODUCTION

Understanding how granular materials fail is a problem of
great geophysical importance due to its relevance to com-
mon phenomena like earthquakes and landslides. From a
theoretical viewpoint, a micromechanical description of the
failure process is difficult due to the absence of a Hamiltonian
description of granular systems. To stress the importance of
this, recall that starting from the pioneering works of Malan-
dro and Lacks [1,2], plastic failures in athermal amorphous
systems (with forces derivable from a Hamiltonian) have been
identified as resulting from saddle node bifurcations occurring
as a minimum of the energy landscape becomes a saddle
point as the system deforms. In this approach, one considers
a system of N particles whose center of mass coordinates are
r1, r2, . . . , rN at temperature T = 0 which is endowed with a
Hamiltonian U (r1, r2, . . . rN ). The dynamics of the system is
written as Newton’s equations of motion:

mi
d2ri

dt2
= F i(r1, r2, . . . , rN ) ≡ −∂U (r1, r2, . . . rN )

∂ri
. (1)

When the system is in mechanical equilibrium, the force F i

on each particle vanishes,

F i ≡ −∂U (r1, r2, . . . rN )

∂ri
= 0 in equilibrium . (2)

The stability against perturbations of the equilibrium state
is determined by the second derivative of the Hamiltonian,
which is the Hessian matrix:

Hαβ
i j ≡ ∂Fα

i

∂rβ
j

≡ −∂2U (r1, r2, . . . rN )

∂rα
i ∂rβ

j

. (3)
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The Hessian matrix is evidently real and symmetric, and it
has real eigenvalues which are all positive as long as the ma-
terial is mechanically stable. Subjected to mechanical strain
or stress, the system may display a saddle node bifurcation
with an eigenvalue going to zero. Generically this bifurcation
results in the localization of the associated eigenfunction,
in accordance with a local release of stress and energy [3].
The modes of the Hessian matrix which are associated with
such instabilities are known as “plastic” or “soft” modes,
and their probability density function differs from the usual
Debye density of stats in purely elastic materials [4,5]. Work
was devoted to understand the system size dependence of the
eigenvalues of the Hessian [5] and their role in determining
the mechanical characteristics such as the elastic moduli [6],
the failure of nonlinear elasticity in such materials [6–8],
and their relevance to shear banding and mechanical failure
[9–11].

The dynamics of granular systems is governed by interpar-
ticle interaction forces, which have both normal and tangential
components, obtained by coarse graining the microscopic de-
grees of freedom of the particles. A variety of different models
exist [12–17], reflecting the different assumptions made in the
derivation of the effective forces. In all cases, these forces
cannot be expressed as derivatives of a Hamiltonian function
with respect to the coarse-grained degrees of freedom, which
are the translational and the angular displacements of the
particles. It is worth stressing that the lack of a Hamiltonian
description is not exclusively related to the presence of vis-
cous or hysteretic forces but rather is inherent in the coupling
between the coarse-grained tangential and normal forces. This
implies that granular materials lack a Hamiltonian description
even when dissipative forces may play a negligible role. As
a consequence, the micromechanics of the failure process of
granular systems cannot be understood using Hessian meth-
ods. Hence the question arises: How do granular materials
fail?
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Previous works investigating the loss of mechanical rigid-
ity of granular assemblies have suggested that this could
originate [18] from local events related to the discontinuity
of the frictional interaction between macroscopic objects.
Indeed, the magnitude |F (t )

i j | of the tangential force acting
between two macroscopic objects i and j is bounded by
μ|F (n)

i j |, where F (t )
i j is the normal interaction force and μ

is Coulomb’s friction coefficient. Accordingly, contacts may
reach their Coulomb threshold and start slipping as stress or
stain is applied to a granular assembly. The failure of a contact
could trigger subsequent rearrangements of other grains in
an avalanche process [19,20] or lead to the emergence of a
percolating cluster of unstable grains [21–23], hence inducing
the macroscopic failure of the system. A complementary ap-
proach to rationalize the failure of granular systems has been
devised building on the theory for the instability of elastic-
plastic solids [24], describing failure as a sharp increase of
the kinetic energy of the system. When a granular system is
slowly deformed, work is done on the system. Failure might
occur when the system becomes unstable, meaning that the
work done on the system, and possibly other work done by
the system, is converted into kinetic energy. This so-called
second-order work failure criterion [25] is formalized at the
level of continuum equations and is therefore not suitable to
investigating the underlying microscopic features leading to
the instability. Nevertheless, this criterion is indirectly related
to the instability criterion developed for Hamiltonian systems
and hints towards the existence of collective failure modes.
Support for the existence of a collective failure mechanism not
initiated by the Coulomb failure of a contact also comes from
detailed numerical simulations of model frictional granular
particles, subject to an increase in shear stress. These simula-
tions have shown that a granular system may become unstable
without any new contact reaching its Coulomb threshold
[26]—only after the system becomes unstable and starts slip-
ping are new contacts seen to reach their Coulomb limit. An
indirect support towards the existence of collective failure
mechanisms also stems from the existence of a linear regime
in the response of granular systems to applied perturbations
[27–31], which is not easily rationalized assuming failure to
originate from an underlying discontinuous process such as
the Coulomb failure of a contact.

In a recent article [32] we identified an instability mech-
anism in systems lacking a Hamiltonian description, such
as frictional amorphous solids. This instability mechanism
involves an oscillating exponential growth of deviations from
the state of mechanical equilibrium, and it is not related
to the existence of a Coulomb threshold. It cannot exist in
amorphous solids in which the interparticle forces are derived
from a Hamiltonian. These oscillatory instabilities furnish
a micromechanical mechanism for a giant amplification of
small perturbations that can lead to system-spanning plastic
events and mechanical failure. This physics was demonstrated
in the context of amorphous assemblies of frictional disks, but
the mechanism is generic for systems with friction. In this
paper we follow up and discuss the phenomenon in greater
detail.

The structure of the paper is as follows: In Sec. II
we explicitly show that the coarse-grained description of
the interparticle interaction of granular systems is not

Hamiltonian and introduce a modified interaction model that,
while not-Hamiltonian, is at least differentiable. In Sec. III
we review the instability mechanism for frictional systems
that we identified in Ref. [32] and then describe its critical
features. Using the numerical model illustrated in Sec. IV,
we test our theoretical predictions concerning the birth of
the instability in Sec. V. We discuss the growth of the in-
stability until nonlinear dynamics set in, culminating in a
system-spanning catastrophic event in Sec. VI. Section VII
provides information on the effect of damping. The upshot
of the discussion is that a threshold damping frequency can
be defined (based on the instability amplification frequency)
below which the instability dynamics is unperturbed by damp-
ing. Section VIII raises the important issue of how generic
is the instability discussed in this paper. Does its existence
depend on the details of the coarse-grained model used, or
do we expect it to appear generically in any models that
employ a reduced set of coordinates like the positions of the
centers of mass of the granules and their angular coordinates.
We provide arguments for the generality of the phenomenon
but propose that at this point in time experiments should be
invoked as the final test. In Sec. IX we summarize the paper
and discuss the possible connection of the present findings to
remote triggering in earthquakes and to the transition from
static to dynamic friction. The road ahead and future research
are described.

II. NON-HAMILTONIAN DESCRIPTION
OF GRANULAR SYSTEMS

Coarse-grained descriptions of frictional amorphous
solids, in which the effective degrees of freedom are the
translational and the angular positions of the particles, do not
admit a Hamiltonian description. To explicitly show that this
is the case, we recap here a popular and time-honored model
used to describe the interaction between frictional granular
particles, but the conclusion remains valid for other models.

The interaction between two particles, that we assume
spherical for simplicity, has a normal and a tangential com-
ponent. The normal force is determined by the overlap δi j ≡
σi + σ j − ri j between the particles, where ri j ≡ ri − r j and σi

is the radius of particle i, and it is given by the Hertzian model,

F (n)
i j = knδ

3/2
i j r̂i j , r̂i j ≡ ri j/ri j . (4)

The tangential force is a function of the tangential displace-
ment t i j between the particles, a vector which is always
orthogonal to r̂i j . Upon first contact between the particles,
ti j = 0. Providing every particle with the angular coordinate
θi, the change in tangential displacement is given by

dt i j = dri j − (dri j · ri j )r̂i j + r̂i j × (σidθi + σ jdθ j ) . (5)

Accordingly, t i j is obtained by integrating over time the
relative velocity of the particles at the point of contact. In the
Mindlin model, the tangential force depends on t i j and on the
contact area, which is proportional to

√
δi j [12],

F (t )
i j = −ktδ

1/2
i j ti j t̂i j , (6)

and satisfies the Coulomb condition

F (t )
i j � μF (n)

i j , (7)
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where μ is the friction coefficient. Usually this law is inter-
preted such that the tangential force reaches the limit abruptly,
not analytically, thus not allowing derivatives of the tangential
force to be computed.

We can see now why the interaction is not Hamiltonian
and the Hessian does not exist in this case. The first reason
is somewhat trivial, stemming from the nonanalyticity of the
Coulomb law. This can be easily taken care of by smoothing
out the Coulomb law such that the tangential force will have
smooth derivatives; we choose

F (t )
i j = −ktδ

1/2
i j

⎡
⎣1 + ti j

t∗
i j

−
(

ti j

t∗
i j

)2
⎤
⎦ti j t̂i j,

(8)

t∗
i j ≡ μ

kn

kt
δi j .

Now the derivative of the force with respect to ti j vanishes
smoothly at ti j = t∗

i j and the Coulomb law Eq. (7) is fulfilled.
The second reason for the loss of the Hessian matrix is not

trivial at all [33]. The time honored Hertz-Mindlin effective
forces presented here, even for disks or balls, are not derivable
from a potential, due to the coupling between the normal and
the tangential displacement in the tangential force. Notice that
this coupling is physical, as the tangential force depends on
the normal force since it determines the contact area. This is
the origin of the term δ

1/2
i j in Eqs. (6) and (8). It is easy to see

that, because of this term, the derivative of the normal force
with respect to t does not equal the derivative of the tangential
force with respect to δ, which is what occurs when the forces
are derived from a Hamiltonian U (δ, t ).

III. OSCILLATORY INSTABILITIES: THEORY

A. Stability matrix

While granular materials are not Hamiltonian, their dy-
namics is still Newtonian, with an extended set of coordinates
qi = {ri, θi}:

mi
d2ri

dt2
= F i(q1, q2, . . . , qN ) , (9)

Ii
d2θi

dt2
= T i(q1, q2, . . . , qN ) , (10)

where mi are masses for the center of mass coordinates, Ii

are moments of inertia for the angles, and F i are forces and
T i are torques, respectively. Using the smoothed-out force
Eq. (8), this allows us to define the stability matrix, which is
an operator obtained from the derivatives of the force F i and
the torque T i on each particle with respect to the coordinates.
In other words,

Jαξ
i j ≡ ∂F̃α

i

∂qξ
j

, F̃ i ≡
∑

j

F̃ i j , (11)

where q j stands for either a spatial position or a tangential
coordinate, and F̃ i stands for either a force or a torque. Since
in the usual case F i = −∂U/∂ri, we see that the operator
J is an analog of the Hessian, even when a Hamiltonian
description is lacking, but with a huge difference: J is not
a symmetric operator. Being real, it can possess pairs of

complex eigenvalues. When these appear, the system will
exhibit oscillatory instabilities, since one of each complex pair
will cause an oscillatory exponential divergence of any per-
turbation and the other an oscillatory exponential decay. The
actual calculation of the operator J is somewhat cumbersome
if conceptually straightforward. A detailed calculation for the
present case of frictional disks interacting via Eqs. (4) and (8)
is presented in Appendix.

B. The oscillatory instability

When a pair of complex eigenvalues λ1,2 = λr ± iλi is
born, an instability mechanism develops. It should be stressed
that the birth of a pair of complex eigenvalues is not a Hopf
bifurcation [34]. A pair of complex conjugate eigenvalues
correspond to FOUR solutions eiωt to the linearized equation
of motion with

iω1,2 = ωi ± iωr , iω3,4 = −ωi ± iωr , (12)

with ωr ± iωi = √
λr ± iλi. The first pair in Eq. (12) will

induce an oscillatory motion with an exponential growth of
any deviation q(0) from a state of mechanical equilibrium:

q(t ) = q(0)eωit sin(ωrt ). (13)

The second pair represents an exponentially decaying oscilla-
tory solution. The actual spatial dynamics that sets in due to
this instability will be discussed below in Sec. VI A.

C. Universal scaling laws

Noticing that the instability under discussion is somewhat
unusual, we address the question of how the coalescence of
two real eigenvalues and the bifurcation of two imaginary
parts take place as a function of the imposed strain. As noticed
above, we need at least four degrees of freedom to have this
instability, which means either four first-order equations or
two second-order equations. Since we are solving Newton’s
equations of motion we will discuss the instability in the latter
form.

The bifurcation we are dealing with has codimension 1, as
it is driven by the change of a single parameter [34]. We note
this parameter as γ for obvious reasons. We therefore consider
the pair of equations

ẍ1 + f1(x1, x2, γ ) = 0,
(14)

ẍ2 + f2(x1, x2, γ ) = 0.

We assume that both functions f1, f2 are analytic with respect
to all their arguments. Let us also assume that the system (14)
has a family of equilibrium points [x̃1(γ ), x̃2(γ )] for some
interval of γ , so that

f1[x̃1(γ ), x̃2(γ ), γ ] = 0 ,

f2[x̃1(γ ), x̃2(γ ), γ ] = 0, γ ∈ (γ1, γ2). (15)

Next we define the new variables y1 = x1 − x̃1(γ ), y2 = x2 −
x̃2(γ ). Then, system (14) is rewritten as follows:

ÿ1 + F1(y1, y2, γ ) = 0,

ÿ2 + F2(y1, y2, γ ) = 0,

Fk = fk[y1 + x̃1(γ ), y2 + x̃2(γ ), γ ] , k = 1, 2. (16)
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By construction, Eqs. (16) possesses equilibria (y1, y2) =
(0, 0) for γ ∈ (γ1, γ2). Therefore, using analyticity, we
rewrite Eqs. (16) as follows:

ÿ1 + c11(γ )y1 + c12(γ )y2 + O(|y1|2, |y2|2, |y1y2|) = 0,

ÿ2 + c21(γ )y1 + c22(γ )y2 + O(|y1|2, |y2|2, |y1y2|) = 0,

ckl (γ ) = ∂Fk (y1, y2, γ )

∂yl

∣∣∣∣
(y1,y2 )=(0,0)

. (17)

Removing the nonlinearities and taking y1 =
y(0)

1 exp(iωt ), y2 = y(0)
2 exp(iωt ), one obtains the following

equation for the eigenvalues:

[c11(γ ) − λ][c22(γ ) − λ] − c12(γ )c21(μ) = 0, λ=ω2 .

(18)

The solution is obvious:

λ1,2 = c11(γ ) + c22(γ ) ± √
D(γ )

2
,

(19)
D(γ ) = [c11(γ ) − c22(γ )]2 + 4c12(γ )c21(γ ).

Finally, we identify the critical point where the real eigen-
values coincide as γ = γc, γc ∈ (γ1, γ2). Then it must be that
D(γc) = 0. In the vicinity of γc we assume generic depen-
dence of all functions on the parameters and get the following:

λ1,2 = c11(γc) + c22(γc) ± √
α(γ − γc)

2
+ O(|γ − γc|) ,

(20)
α = D′(γ )

∣∣
γ=γc

.

Without loss of generality, we can assume α > 0. Finally,
for the eigenvalues near the bifurcation point we have

λ1 − λ2 =
√

α(γ − γc) + O(|γ − γc|) , γ > γc,
(21)

�(λ1 − λ2) =
√

α|γ − γc| + O(|γ − γc|) , γ < γc ,

with �(.) denoting the imaginary component.
We thus conclude that the bifurcation is characterized by

a square-root singularity for both the coalescence of the real
eigenvalues and for the bifurcation of the imaginary parts. We
verify this prediction in Sec. V B.

IV. NUMERICAL MODEL

To demonstrate the predictions presented above (which are
based on a linearized stability matrix) we employ the follow-
ing numerical simulations. In addition, we will use numerical
simulations to investigate the evolution of the instability away
from the linear regime, where no theoretical predictions are
available, as well as the effect of damping.

We focus on a specific example of a binary assembly of
N frictional disks, half of which with radius σ1 = 0.5 and
the other half with σ2 = 0.7, unit mass m = 1, and moment
of inertia Ii = 0.5miσ

2
i . The normal interaction between the

grains is given by Eq. (4), while the tangential interaction
is given by Eq. (8), with kt = 2kn/7. We use m, 2σ1, and√

m(2σ1)−1/2k−1
n as our units of mass, length, and time,

respectively. We consider different values for the friction
coefficient μ and the system size N .

The equations of motion are solved using two types of
algorithms: “Newtonian” and “overdamped.” The first is sim-
ply a solution of the Newton equations of motion with the
given forces Eqs. (4) and (8). The second algorithm solves
the same equations of motion but with a damping force that
is proportional to the velocities of the disks with a coefficient
of proportionality ηv = mη0. If not otherwise mentioned, we
use η0 = 2.2 × 10−2 expressed in reduced units. This value of
η0 ensures that the dynamics is overdamped, as the damping
timescale η−1

v is of the order of the time that sounds needs to
travel one particle diameter. In the overdamped limit, even in
the presence of complex eigenvalues the oscillatory instability
is suppressed, as accelerations can be neglected and the equa-
tions of motion become of first order. We use LAMMPS [35]
to perform the numerical integration for these two algorithms,
with an integration time step of 10−5

√
(2σ1)1/2knm−1.

V. CRITICAL FEATURE OF THE INSTABILITY

A. Birth of complex conjugate pairs

To demonstrate the instability mechanism and describe its
critical features, we start recapping the results of Ref. [32]
with regard to the emergence of a pair of complex eigenvalues.
An initial configuration is prepared by arranging binary par-
ticles randomly in a two-dimensional box and then perform
two consecutive runs of overdamped dynamics to bring the
configuration at mechanical equilibrium. The initial configu-
ration is prepared by focusing on a frictionless system (i.e.,
μ = 0) and hence has no complex eigenvalues. Afterwards,
we switch on friction and perform athermal quasi static (AQS)
simulations: starting from the initial stable configuration, we
shear the simulation box along the horizontal direction (x) by
the amount δγ and then we run the overdamped dynamics
until the system reaches mechanical equilibrium. Operatively,
we consider the system to be in mechanical equilibrium when
the net force on each particle is less than 5 × 10−14. Here δγ

varies in the range 10−4–10−6, depending on the precision
needed for the identification of the instability. After every
AQS step we diagonalize the matrix J to find its eigenvalues.
At some value of γ we find the birth of a conjugate pair
of complex eigenvalues, as seen in Fig. 1. If we continue
to increase the strain using the same protocol, we see the
continuous emergence of other complex pairs as well as the
death of existing ones. We note that we observe complex
eigenvalues, which corresponds to an unstable system, as we
are using in this investigation an overdamped dynamics which
kills the growth of the instability. The effect of damping is
discussed in Sec. VII

B. Numerical tests of the universal square-root singularity

The calculation in Sec. III C shows that the approach to
the instability has critical features. Here we examine the nu-
merical ramifications of this criticality. We note that when the
strain is increased, two real eigenvalues can collide to produce
a complex conjugate pair, but the opposite can also happen as
long as we increase the strain subject to overdamping; a pair of
complex conjugate pairs can give rise to two real eigenvalues.
The square-root singularity applies to both transitions.
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0.1550

0.1555
λ

r

0.0015 0.0018
γ

-3×10
-5

0
3×10

-5

λ
i

γ
c1

FIG. 1. Upon increasing the strain γ two modes with real eigen-
values λ coalesce at γc1 (dashed vertical lines) and a pair of complex
conjugate modes gets born. The upper and the lower panels show the
evolution of the real and imaginary components of these modes for a
system with N = 500, μ = 0.5.

A good indicator for the birth and presence of two complex
conjugate eigenfunctions over some range of strain values is
provided by the scalar product of the two colliding modes.
The scalar product of two eigenvectors is defined as 〈um|un〉 =
| ∑3N

j=1(um
r; j + ium

i; j )(u
n
r; j + iun

i; j )|. 〈um|un〉 varies in the interval
[0, 1]. At the critical value γc the scalar product reaches
unity. This is quite obvious, since at the critical point the
eigenfunctions also become complex conjugates. We show
this first in Fig. 2 for a system of 10 disks and in Fig. 3 for
500 disks. Note that the eigenvectors of a real nonsymmetric
matrix are linearly independent but in general not orthogonal.

A direct test of the universality predicted in the last section
is provided by the difference between the two real eigenval-
ues. The data are consistent with |λ1

r − λ2
r | ∝ (γc − γ )x, and

x � 0.5. This is shown in Fig. 4.

VI. DEVELOPMENT OF THE INSTABILITY

A. Linear response regime

To investigate the development of an instability, we con-
sider the Newtonian (no damping) evolution of a configuration
having a pair of complex conjugate eigenvalues. As long as
the deviations from mechanical equilibrium are sufficiently

0.118 0.119 0.12
γ

10
-3

10
-2

10
-1

10
0

<
um

|u
n >

FIG. 2. Scalar products between the eigenvector |um〉 of a fixed
mode m (here m = 25) and all the other eigenvectors (total 29) over
shear strain γ for a system of 10 disks. The dashed line is added to
guide the eye.

0.4

0.6

0.8

1

<
um

|u
n >

0.15213

0.15216

λ
r

9.0×10
-4

1.0×10
-3

1.1×10
-3

γ

-1×10
-5

0

1×10
-5

λ
i

real complex real

(a)

(b)

(c)

γ
c1

γ
c2

FIG. 3. (a) The scalar product of two eigenvectors for a system of
N = 500 and μ = 10. The two modes are complex conjugate in the
strain interval varying between γc1 and γc2. (b) The real and (c) the
imaginary term of the two corresponding eigenvalues consistently
show that these are complex conjugates for strain values in between
γc1 and γc2.

small, the eigenvalues and the eigenfunctions of J furnish
an accurate prediction for the developing instability. To see
this we denote the complex mode m of J whose complex
eigenvalue λm = λr + iλi is

|um〉 = ∣∣um
r

〉 + i
∣∣um

i

〉
. (22)

Since the dimension of J is 3N × 3N , then |um
r 〉 and similarly

|um
i 〉 have 3N components. As

J|um〉 = λm|um〉, (23)

-6 -5.5 -5 -4.5 -4
log

10
(γ

c1
-γ)

-6

-5

-4

-3

lo
g 10

(λ
r2

-λ
r1

)

slope 0.5

-6 -5.5 -5 -4.5 -4
log

10
(γ-γ

c2
)

-6

-5

-4

-3

lo
g 10

(λ
r2

-λ
r1

)

slope 0.5

real to complex

complex to real

(a)

(b)

FIG. 4. Critical behavior of the difference between two real
eigenvalues as they collide as γ approaches γc1 (a) or depart as
γ overcomes γc2. The different curves refer to events occurring in
different samples with N (500, 1000) and μ (0.5, 10). The solid lines
are straight lines with slope 0.5.
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FIG. 5. A typical image of spiral trajectories of 500 disks in lin-
ear response regime. Here actual particle displacements are amplified
by a factor of 106.

we can rewrite the above equation in the form

J
∣∣um

r

〉 = λr

∣∣um
r

〉 − λi

∣∣um
i

〉
, (24)

J
∣∣um

i

〉 = λi

∣∣um
r

〉 + λr

∣∣um
r

〉
. (25)

In matrix notation this can be expressed as follows:

J
[
um

r um
i

]
3N×2 = [

um
r um

i

]
3N×2 ×

[
λr λi

−λi λr

]
2×2

. (26)

The right-hand side of the above equation produces a
dynamic matrix of dimension 3N × 2:

[
ü1 ü2

]
3N×2 = [

um
r um

i

]
3N×2 ×

[
λr λi

−λi λr

]
2×2

. (27)

In particular, under the operation of this matrix, the resultant
of ü1 and ü2, i.e.,

üm = ü1 + ü2, (28)

is subject to a rotation-scaling operation and is therefore
expected to predict a spiral trajectory with exponentially
increasing speed. To demonstrate this, we consider a system
in equilibrium and set the velocities of the particles (both
translational and rotational) along the direction fixed by üm

and then follow the evolution of the system. Figure 5 clearly
shows that particles display the expected spiral motion. The
corresponding evolution of the mean square displacement of
the center of mass M(t ) and the mean square change in the
angular coordinate A(t ) can also be determined. Denoting

�rx
i (t ) ≡ rx

i (t ) − rx
i (t = 0) ,

�ry
i (t ) ≡ ry

i (t ) − ry
i (t = 0) , (29)

�θi(t ) ≡ θi(t ) − θi(t = 0) ,
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FIG. 6. (a) M(t ) and (b) A(t ) during the early stage of Newtonian
dynamics after setting the velocities (both translation and rotation) of
500 disks along the resultant vector üm, Eq. (28). Both quantities
display sinusoidal motion with the expected real eigenfrequency
ωr . (c) M(t ) and (d) A(t ) grow exponentially following the form
∼ sin2(ωrt + φ) exp(2ωit ), where φ is the initial phase, zero for M(t )
and π/2 for A(t ). The growth stops typically at M(t ) ∼ 10−7 when
either a few contacts break or a few new contacts are created.

we define

M(t ) ≡ 1

N

N∑
i

[
(�rx

i (t ))2 + (�ry
i (t ))2

]
,

(30)

A(t ) ≡ 1

N

N∑
i

(�θi(t ))2 .

According to Eq. (13), the system should behave as M(t ) ∝
A(t ) ∝ e2ωit sin2(ωrt ). As shown in Fig. 6, both quantities dis-
play sinusoidal motion since the beginning of the Newtonian
dynamics with the expected frequency ωr and the expected
exponential growth e2ωit .

B. The nonlinear regime

When the instability develops sufficiently, the system exits
from the linear response regime. It is of interest to con-
sider how this happens and what is the long-time fate of
the instability. We address this point following the evolution
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of a number of unstable configurations in which the linear
instability is associated with complex eigenvalues with very
different frequencies. It is noteworthy that while these ini-
tial configurations usually have more than a single pair of
complex eigenfunctions, the dynamics in the linear regime is
dominated by the complex mode with the largest ωi, which
defines the growth rate of the instability. We illustrate the
evolution of these different systems in Fig. 7, which reports
the time evolution of the mean square displacement (a), of the
pressure (b), and of the shear stress (c). From these figures,
we identify in the dynamics the following regimes:

(1) A transient regime where the mean square displace-
ment M(t ) grows subdiffusively, approximately as a power
law. This growth, which is minute in magnitude, M(t ) <

10−22, might originate from the excitation of stable modes due
to numerical noise.

(2) The effect of the oscillatory instabilities becomes dom-
inant when time reaches ∼ω−1

i . An exponential growth is
evident as expected in M(t ) ∼ sin2(ωrt ) exp(2ωit ). Similarly,
as illustrated in the inset of Fig. 7(b), the pressure P oscillates
around its initial value with the oscillation amplitude increas-
ing exponentially as P(t ) − P(0) ∼ sin(ωrt ) exp(ωit ). The
dashed lines in the inset illustrate the envelope ± exp(ωit ),
where ωi ∼ 2.3 × 10−5. The shear stress is also oscillating as
the pressure around a constant value in the linear response
regime, already shown explicitly in [32].

(3) The exponential growth is interrupted when M(t ) ∼
10−7, which occurs at a characteristic time proportional to
ω−1

i . At this time the two unstable complex conjugate modes
annihilate as a consequence of the breaking of a few contacts
(see below) and M(t ) enters a plateau regime. In this plateau
regime, P and σ exhibit enhanced fluctuations but no notice-
able change in their mean values.

(4) The plateau regime is interrupted by a fast growth of
M(t ) driven by a second instability, which is triggered by the
emergence of a number of complex eigenvalues. Afterward,
the system enters a diffusive regime. This second instability
leads to a sharp increase in the pressure and to a dramatic drop
in shear stress σxy.

Figure 8 illustrates how the development of the instability
is related to the change in the spectrum. The inset follows the
evolution of the imaginary part of the complex eigenvalues
dominating at short time and shows that this vanishes when
the exponential grow phase ends for the considered ωi ∼
2.3 × 10−5. The main panel follows the evolution of the
imaginary part of all eigenvalues and demonstrates that the
secondary instability is triggered by the emergence of several
unstable modes. The two consecutive vertical black dashed
lines in Fig. 8 represent the end of the exponential growth and
the beginning of the second instability.

The comparison of Fig. 8 and Figs. 7(b) and 7(c) clarifies
that the effect of a dying complex mode might be eventful
from a mechanical viewpoint. On the one hand, it activates
many new complex modes. On the other hand, the shear
stress σxy drops almost to zero. Regarding the structure of the
system, we observe in Fig. 9(a) that the end of the exponential
growth is associated with the destruction of a few contacts. In
addition, a few contacts achieve the Coulomb threshold (in-
set). A significant restructuring of the contact network occurs
only during the second instability, which is associated with a
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FIG. 7. Long-time fate of the oscillatory instability evolving with
a Newtonian dynamics for N = 500 and μ = 10. Different lines
correspond to different initial configurations, identified by their com-
plex eigenvalue with the largest imaginary component (growth rate).
(a) Mean square displacement M(t ), (b) pressure P, and (c) shear
stress σxy. Inset of (b) P (solid line) in the linear response regime for
ωi ∼ 2.3 × 10−5. Two dashed lines are ± exp(ωit ) functions.

drop in the number of contacts between grains. This drop leads
to a significant change in the probability distribution of the
number of contacts per particle, P(zi ), due to the emergence
of particles with few contacts, as in Fig. 9(b).
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eigenvalues λi during a Newtonian dynamics. The initial configura-
tion contains one single pair of complex eigenpairs with ωi ∼ 2.3 ×
10−5, whose evolution is illustrated in the inset. The left vertical
dashed line signifies the end of the existing complex eigenpair
that further coincides with the end of exponential growth in M(t ).
The right vertical dashed line signifies the birth of many complex
eigenpairs that initiates the second instability in M(t ), see Fig. 7.

We finally clarify that the sharp increase in the pressure
observed during the second instability is associated with the
fluidization of the system. To this end, we introduce a per-
particle pressure defined as Pi = 1

4L2

∑N
j=1 ri j · Fi j such that

P = ∑N
i=1 Pi. Figure 10(a) illustrates the distribution of Pi j =

ri j · Fi j at time t = 0 and at a later time after the secondary
instability. Clearly, in the final state the pressure distribution
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FIG. 9. Newtonian dynamics. (a) Number of contacts z on aver-
age a disk has exhibiting a sharp drop at second instability shown in
Fig. 7. The dashed lines correspond to (i) the collapse of the initial
complex pair that coincides with a few make or break contacts and
(ii) birth of many complex modes coincides with the verge of the
drop in contacts, see Fig. 8. (Inset) Number of contacts are at the
Coulombic threshold. (b) The probability distribution function for a
disk to have z contacts before and after the drop.
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FIG. 10. Newtonian dynamics: (a) the distribution of binary
pressure Pi j and (b) the pressure Pi exerted on each particle having
contacts z before and after the nonlinear dynamics, see text for
details.

has a longer tail, consistent with the observation of a larger
average pressure value. Figure 10(b) illustrates the average
value of Pi of the particles having z contacts. In the final
configuration, the pressure is higher for all values of z as a
consequence of the existence of large particle deformation
associated with the flow of the system.

VII. THE EFFECTS OF DAMPING

While we have investigated the development of the oscil-
latory instability solving Newton’s equations with no dissi-
pation, in most real system applications there is some form
of damping. It can be due to the water and grit in a fault,
to the interparticle interaction, or to additional friction with
a confining substrate. It is therefore important to ask if and
how damping affects the observed instabilities.

We have clarified in Sec. IV that the instability disappears
in the truly overdamped limit as the equations of motion
become first order. Here we show that a finite damping tames
but does not kill the instability. In particular, the instabilities
associated with a small exponential growth rate (and hence
emerging from the collision of low-frequency modes) are
more affected by the damping.

For our investigation we consider a starting configuration
obtained from our athermal quasistatic simulations, which
has a complex eigenpair with eigenfrequency ωr ± iωi =
0.390 064 3 ± i0.000 022 8. We then evolve the system ac-
cording to a Newtonian dynamics, where in Eq. (9) we add
a damping force −m̃iη0ṙi on the right-hand side. Figure 11
shows that the evolution of this damped dynamics depends
on how the damping rate η0 compares with the instability
growth rate ωi, focussing on the time dependence of the
mean square displacement (a) and of the pressure (P). For
η0 � ωi, the exponential growth is suppressed. For η0 < ωi,
the dynamics has all the same features we have found in
Fig. 7. As an example, in the inset of the lower panel we
show that the pressure P oscillates around its initial value
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FIG. 11. The effect of damping on complex eigenfrequency.
(a) Mean square displacement M(t ) and (b) pressure P display the
same characteristic behaviors as for zero damping force when the
damping frequency η0 is smaller than the complex eigenfrequency
ωi.

while the oscillation amplitude increases exponentially as
P(t ) − P(0) ∼ sin(ωrt ) exp(ωit ), as observed in the absence
of damping in Fig. 7(b). Overall, this analysis clarifies that
damping suppresses the instabilities with a small growth
rate ωi, not those corresponding to a large growth rate ωi.
Let us finally mention that we have explicitly checked that
the instability occurs for damping values typical of granular
systems [32].

VIII. HOW GENERIC IS THE OSCILLATORY
INSTABILITY?

Having presented the oscillatory instability and its ability
to self-amplify small perturbations, it is important to ask
how generic is this instability. In particular, is the oscillatory
instability a consequence of the structure of the Hertz-Mindlin
model, as interpreted, for example, by Cundall and Strack
[36], or is it expected to appear in any dynamical model
of frictional disks. The answer to this question depends on
what we mean by “a model” of frictional disks. During
the last few decades the granular community has accepted
that assemblies of disks can be described by coarse-grained
coordinates, for example, the coordinates ri of the centers of
mass and θi for the angle of the disk [with reference to an
initial angle θi(t = 0)]. From the knowledge of these coordi-
nates one writes down a physical model of the normal and
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FIG. 12. (a) The typical characteristic of a complex eigenpair
during an AQS simulation is recovered for a granular assembly
of 500 particles where the normal interaction force is a harmonic
function knδ, and the tangential force is a smooth and continuous
function kt [1 + (t/t∗) − (t/t∗)2]t , and at Coulomb threshold t =
t∗, it is μknδ with μ = 10. (b) Newtonian dynamics displays an
exponential growth in mean square displacement, as expected for a
system initially having a complex eigenpair.

tangential forces at each contact between neighboring disks.
The other possibility is to track the exact microdynamics at
each contact, paying attention to its leading and trailing edges,
and taking into account the roughness of the contact and the
plastic and elastic events that take place. This approach is
not realistic for large assemblies of frictional disks and even
less so for arbitrarily shaped granules. Thus, if one follows
the approach of coarse-grained coordinates, the options are
somewhat limited. Imagine, for example, that we decide to
use the harmonic-type normal interaction and delete the

√
δi j

term from the tangential force in Eq. (6). Then, on the face of
it, the forces could be derived from a Hamiltonian of the form

U (δi j, ti j ) = 1
2 kn(δi j )

2 + 1
2 kt (ti j )

2 . (31)

Will this suffice to eliminate the oscillatory instability? The
answer is no, as long as we do not remove the Coulomb
law and the requirement of smoothness of forces to allow
derivatives. We stress here that any smoothing of the type done
in Eq. (8) brings back the dependence of the tangential force
on the normal force and makes the system non-Hamiltonian.

To demonstrate this, we have rerun our dynamics after
removing the term

√
δi j from the tangential force in Eq. (6) but

keeping the smoothing of this force at the Coulomb threshold.
The resulting oscillatory instability is displayed in Fig. 12.
As explained, the system still does not have a Hamiltonian
structure, and the oscillatory instability remains generic. To
drive home the message even further, we now remove the
requirement of a smooth tangential force at the Coulomb
threshold, allowing the tangential force to reach the limit
in an abrupt way. Now the oscillatory instability disappears,
since the Hamiltonian (31) now remains valid all the way
to the Coulomb threshold. The price is, of course, that the
Jacobian matrix J does not exist since the tangential force is
not derivable at the threshold.
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The above findings lead us to an interesting juncture
for studying frictional properties in granular materials. The
Hamiltonian models which oversimplify the role of deforma-
tion between two particles on static friction do not possess the
oscillatory instabilities. In reality, the deformation between
contacts is complex, as found by various experiments and
atomistic simulations, and a direct intrusion of overlap dis-
tance in the tangential force is the culmination of this fact.
The overall dynamics becomes a non-Hamiltonian that further
displays oscillatory instabilities with a cost of no guarantee
in energy conservation. At this point one depends on experi-
ments to verify or refute the existence of this micromechanics
in granular materials.

IX. SUMMARY AND THE ROAD AHEAD

It appears from our discussion that oscillatory instabilities
should be expected as a generic feature present in physical
systems whose dynamics are not derivable from a Hamilto-
nian. This instability was recently reported for frictional as-
semblies of disks [32]. In this article, we have explored further
the characteristics and the consequences of such instabilities
on similar frictional granular systems.

We have shown that the birth and death of an oscillatory
instability upon athermal quasistatic shear are a critical phe-
nomenon. A pair of complex eigenpairs is born when two
real eigenmodes align to one another; the relative difference
between the two real eigenvalues vanishes with shear strain
following a power law function with exponent 1/2. Similarly,
the death of the complex eigenpair takes place when the
alignment between the two eigenvectors is lost. The rela-
tive difference between the two real eigenvalues gradually
increases following the same power law as a function of the
strain.

With Newtonian dynamics the presence of a complex
eigenpair generates instabilities where the oscillatory am-
plitudes increase exponentially. During this linear response
regime, particles move in spiral trajectories whose direc-
tions are determined by the two complex eigenvectors of
the corresponding eigenpair. We have presented a formalism
describing the direction of the spiral trajectories in the real
plane; it is determined by the two complex eigenvectors. The
linear response regime comes to an end when the oscillatory
amplitude becomes so large that it breaks or makes a few
pair contacts. This has a dramatic consequence, triggering
a second instability due to which the system goes through
a structural change. The number of contacts of a particle
becomes broadly distributed, resulting in an increase of pres-
sure. The dynamics becomes diffusive, helping the system to
dissipate the shear stress. The above phenomena are generic
for a whole range of complex eigenvalues and even in the
presence of damping force, as long as the damping frequency
is smaller than the imaginary eigenfrequency.

Probably the most important conclusion is that we have
uncovered here a mechanism for a giant amplification of small
perturbations. This finding may have further consequences
in the context of a number of physics problems that involve
frictional interactions. One fundamental question is how static
friction turns into dynamical friction [37–39]. So far it is
not quite clear what is the precise instability that allows two

compressed interfaces to start moving with respect to one
another. It is worthwhile in the near future to examine whether
the type of instability discussed above may be responsible
for setting in this interesting transition. Another context of
interest is that of remote triggering. It is known that one earth-
quake can induce another earthquake far away [28,40,41].
Since strong seismic waves are strongly damped, only weak
perturbation can travel a long distance. So the phenomenon of
remote triggering requires a mechanism for self-amplification.
While we are fully aware that geological faults are very much
more complex than assemblies of frictional disks, it appears
highly worthwhile to explore the relevance of the kind of
self-amplification of small perturbation discussed above as it
relates to the problem of remote triggering. It is certainly on
our agenda in the near future.
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APPENDIX: CALCULATION OF THE OPERATOR J

The Jacobian operator J, which is the dynamical response
of the system, represents the derivative of the forces and of the
torques acting on the particles with respect to all the degrees
of freedom. The interaction forces used in this study are re-
called in subsection 1 of Appendix then the expression of the
tangential displacement and its derivative in (subsection 2 of
Appendix), and the derivatives of forces and torques with re-
spect to generalized coordinates in (subsection 3 of Appendix)
are stated. Finally, we show the expressions for all the com-
ponents of J subsection 4 of Appendix and how these compo-
nents are arranged as a matrix (subsection 5 of Appendix).

1. Interaction force

In our simulation, a pair of granular particles interacts
when they overlap. The overlap distance δi j is measured as

δi j = σi + σ j − ri j, (A1)
where ri j is the center-to-center distance of a pair i and j, and
σi is the radius of particle i. The pair vector ri j is defined as

ri j = ri − r j . (A2)

The pair-interaction force F i j has two contributions: F (n)
i j is

the force acting along the normal direction of the pair r̂i j , and
F (t )

i j is the force acting along the tangential direction of the
pair t̂i j . The normal force is Hertzian,

F (n)
i j = knδ

3/2
i j r̂i j, (A3)

where kn is the force constant with dimension: force per
length3/2. The tangential force F (t )

i j is a function of both the
overlap distance δi j and the tangential displacement t i j . We
have modified the standard expression for F (t )

i j and included a
few higher-order terms of ti j (i.e., |t i j |) such that the derivative
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of the force function F (t )
i j with respect to tangential distance ti j

becomes continuous and it goes to zero smoothly. We use the
following form:

F (t )
i j = −ktδ

1/2
i j

⎡
⎣1 + ti j

t∗
i j

−
(

ti j

t∗
i j

)2
⎤
⎦ti j t̂i j

= −ktδ
1/2
i j t∗

i j t̂i j, if ktδ
1/2
i j ti j > μ

∣∣F (n)
i j

∣∣, (A4)

where kt is the tangential force constant. Its dimension is force
per length3/2. t∗

i j is the threshold tangential distance:

t∗
i j = μ

kn

kt
δi j, (A5)

where μ is the friction coefficient, a scalar quantity which
essentially determines the maximum strength of the tangential
force with respect to the normal force at a fixed overlap δi j .
The derivative of F (t )

i j with respect to ti j vanishes at t∗
i j , as it

turns out

∂F (t )
i j

∂ti j
= ktδ

1/2
i j

⎡
⎣1 + 2

ti j

t∗
i j

− 3

(
ti j

t∗
i j

)2
⎤
⎦

= 0, if ktδ
1/2
i j ti j > μ

∣∣F (n)
i j

∣∣. (A6)

We stress here that the above forces imply a non-
Hamiltonian dynamics. That is, there is not a function U (δ, t )
such that F (n) = − ∂U

∂δ
and F (t ) = − ∂U

∂t .

2. Tangential displacement

The tangential force is a function of both t i j and ri j . The
derivative of this force thus includes the derivative of the two
latter quantities. Here we evaluate these derivatives using the
chain rule.

The derivative of tangential displacement t i j with respect
to time t is

dt i j

dt
= vi j − vn

i j + r̂i j × (σiωi + σ jω j ), (A7)

where vi j = vi − v j is the relative velocity of pair i and j. vn
i j

is the projection of vi j along the normal direction r̂i j . vi j − vn
i j

is the tangential component of the relative velocity. ωi and ω j

are the angular velocity of i and j, respectively. In differential
form, the above equation reads

dt i j = dri j − (dri j · r̂i j )r̂i j + r̂i j × (σidθi + σ jdθ j ), (A8)

where dθi is the angular displacement of i, which follows the
relation dωi = dθi

dt .
From here forward, we assume the two-dimensional (2D)

system. Therefore, ωi, and so θi, have only one compo-

nent along ẑ, perpendicular to the xy plane, and r̂i j × dθi =
dθi(yi j x̂ − xi j ŷ)/ri j . This allows one to write Eq. (A8) as

dtα
i j = drα

i j − (dri j · r̂i j )
rα

i j

ri j
+ (−1)α (σidθi + σ jdθ j )

rβ
i j

ri j
,

(A9)

where α and β can take values of 0 and 1, which correspond
to the x and y components, respectively. Now if particle i
changes its position, the angular displacement remains unaf-
fected, i.e., dθi

drα
i

= 0. Thus, the change in tangential displace-
ment along β due to the change in position of particle i along α

contributes only in translations, and it can be written as [using
(A9)]

dtβ
i j

drα
i

= �αβ − rα
i j r

β
i j

r2
i j

, (A10)

where �αβ is the Kronecker δ, which is 1 when α = β, or else
zero. Similarly, a change in rotational coordinates does not

modify the particles’ relative distance, i.e.,
drβ

i j

dθi
= 0. Thus, the

change in tangential displacement along β due to the change
in θi is [from (A9)]

dtβ
i j

dθi
= (−1)βσi

rα
i j

ri j
. (A11)

In the above equation α and β are always different. Now
the magnitude of tangential distance ti j can be obtained
from the relation t2

i j = ∑
α tα

i j
2. Its differential follows dti j =∑

α

tα
i j

ti j
dtα

i j . The derivatives of tangential distance ti j with re-
spect to rα

i and θi can be expressed as

dti j

drα
i

=
(

t x
i j

ti j

)
dtx

i j

drα
i

+
(

t y
i j

ti j

)
dty

i j

drα
i

, (A12)

dti j

dθi
=

(
t x
i j

ti j

)
dtx

i j

dθi
+

(
t y
i j

ti j

)
dty

i j

dθi
. (A13)

With the help of Eqs. (A10) and (A11) we can solve the above
two differential equations. As the tangential threshold is a
linear function of overlap distance δi j [see (A5)], it also is
modified due to a change in rα

i as

dt∗
i j

drα
i

= −μ

(
kn

kt

)
rα

i j

ri j
, (A14)

and it is unaffected by the change in rotation, i.e.,
dt∗

i j

dθi
= 0.

3. Evaluation of J

The derivative of tangential force [Eq. (A4)] with respect
to rα

i :

∂F (t )
i j

β

∂rα
i

= −kt
∂

∂rα
i

[
δ

1/2
i j

(
tβ
i j + t̃ tβ

i j − t̃2tβ
i j

)]

= −1

2
δ−1

i j

rα
i j

ri j
F (t )

i j
β − ktδ

1/2
i j

[
(1 + t̃ − t̃2)

∂tβ
i j

∂rα
i

+ (t̃β − 2t̃ t̃β )
∂ti j

∂rα
i

+ (−t̃ t̃β + 2t̃2t̃β )
∂t∗

i j

∂rα
i

]
. (A15)
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Here we use the notation t̃ to represent the ratio ti j/t∗
i j and the notation t̃β for ti j

β/t∗
i j . The expressions for all three partial

differentiations in (A15) are already shown in (A11), (A12), and (A14).
Similarly, the derivative of tangential force with respect to θi (using the same notation as above) can be found as

∂F (t )
i j

β

∂θi
= −ktδ

1/2
i j

[
(1 + t̃ − t̃2)

∂tβ
i j

∂θi
+ (t̃β − 2t̃ t̃β )

∂ti j

∂θi

]
. (A16)

From the above two equations it is then understood that if ri j and t i j are known the differential equations can be solved easily.

When t̃β is negligible for all β, then t̃ ≈ 0. This translates to
∂F (t )

i j
β

∂θi
= −(−1)βktσiδ

1/2
i j

rα
i j

ri j
with α �= β, implying that even in the

case of zero tangential displacement and therefore, zero tangential force, the above derivative can be finite.
The derivative of normal force [Eq. (A3)] with respect to rα

i is the following:

∂F (n)
i j

β

∂rα
i

= kn
∂

∂rα
i

[
δ

3/2
i j

rβ
i j

ri j

]
= knδ

1/2
i j

[
�αβ

δi j

ri j
− 3

2

rα
i j r

β
i j

r2
i j

−
(

δi j

ri j

)
rα

i j r
β
i j

r2
i j

]
, (A17)

where �αβ is the Kronecker δ. The derivative of total force,
which reads

∂Fi j
β

∂rα
i

= ∂F (n)
i j

β

∂rα
i

+ ∂F (t )
i j

β

∂rα
i

, (A18)

∂Fi j
β

∂θi
= ∂F (t )

i j
β

∂θi
, (A19)

can be solved using (A17), (A15), and (A16).
The torque of particle j due to tangential force F (t )

i j

is T j = −σ j (r̂i j × F (t )
i j ) ≡ σ jT̃ i j . In 2D, T̃ i j has only a z

component:

T̃ z
i j = −

[(
xi j

ri j

)
F (t )

i j
y −

(
yi j

ri j

)
F (t )

i j
x
]
. (A20)

The derivative of T̃ z
i j then becomes

∂T̃ z
i j

∂rα
i

= −
(

δαx

ri j
− xi jrα

i j

r3
i j

)
F (t )

i j
y −

(
xi j

ri j

)
∂F (t )

i j
y

∂rα
i

+
(

δαy

ri j
− yi jrα

i j

r3
i j

)
F (t )

i j
x +

(
yi j

ri j

)
∂F (t )

i j
x

∂rα
i

, (A21)

where δαx (similarly, δαy) is the Kronecker δ, such that δxx = 1
and δyx = 0, and

∂T̃ z
i j

∂θi
= −

[(
xi j

ri j

)
∂F (t )

i j
y

∂θi
−

(
yi j

ri j

)
∂F (t )

i j
x

∂θi

]
. (A22)

The above two differential equations can be solved using
Eqs. (A15) and (A16). If the tangential displacement tβ

i j is
negligible compared to the threshold t∗

i j , t̃β ≈ 0 for all β. This

results in t̃ ≈ 0. Therefore,
∂T̃ z

i j

∂θi
= ktσiδ

1/2
i j .

4. Jacobian

The dimension of Jacobian operator J is force over length.
To be consistent with the dimension we redefine the torque T

and rotational coordinate θ as

T̃i = Ti

σi
, and θ̃i = σiθi . (A23)

In addition, the dynamic matrix has a contribution from the
moment of inertia Ii = I0miσ

2
i as �ωi = T i/Ii�t . In our

calculation, we assume that mass mi and I0 both are 1. The
remaining contribution of Ii, i.e., σ 2

i , is taken care of by
rescaling the torque and the angular displacement as T̃i and
θ̃i (A23). For I0 �= 1, the contribution of I0 can be correctly
anticipated if we rewrite (A7) as below:

dt i j

dt
= vi j − vn

i j + 1

I0
r̂i j × (σiωi + σ jω j ). (A24)

J essentially contains four different derivatives:
(1) First type—Derivative of force with respect to the

position of particles:

Jαβ
i j =

N−1∑
k=0;k �= j

∂Fβ

k j

∂rα
i

= ∂Fβ
i j

∂rα
i

, for i �= j

Jαβ
ii =

N−1∑
j=0; j �=i

∂Fβ
ji

∂rα
i

= −
N−1∑

j=0; j �=i

Jαβ
i j , (A25)

where N is the total number of particles. Jαβ
i j is symmetric if

we change pairs, i.e., Jαβ
i j = Jαβ

ji ; however, the symmetry is
not guaranteed with the interchange of α and β.

(2) Second type—Derivative of force with respect to the
rotational coordinate:

Jβ
i j = −

N−1∑
k=0;k �= j

∂Fβ

k j

∂θ̃i
= −∂Fβ

i j

∂θ̃i
, for i �= j

Jβ
ii = −

N−1∑
j=0; j �=i

∂Fβ
ji

∂θ̃i
= −

N−1∑
j=0; j �=i

Jβ
i j . (A26)

The negative sign makes sure that in stable systems all the
eigenvalues are positive. Jβ

i j is asymmetric: Jβ
i j = −Jβ

ji.
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(3) Third type—Derivative of torque with respect to
position:

Jα
i j =

N−1∑
k=0;k �= j

∂T̃ z
k j

∂rα
i

= ∂T̃j

∂rα
i

, for i �= j

Jα
ii =

N−1∑
j=0; j �=i

∂T̃ z
ji

∂rα
i

=
N−1∑

j=0; j �=i

Jα
i j . (A27)

Jα
i j is also asymmetric: Jα

i j = −Jα
ji.

(4) Fourth type—Derivative of torque with respect to ro-
tational coordinate:

Ji j = −
N−1∑

k=0;k �= j

∂T̃ z
k j

∂θ̃i
= −∂T̃j

∂θ̃i
, for i �= j

Jii = −
N−1∑

j=0; j �=i

∂T̃ z
ji

∂θ̃i
=

N−1∑
j=0; j �=i

Ji j . (A28)

The negative sign makes sure that in stable systems all the
eigenvalues are positive. Ji j is symmetric: Ji j = Jji.

5. Arrangement of Jacobian matrix

In two dimensions D = 2, for N particles the total number
of elements in J is (D + 1)N × (D + 1)N . In the matrix, first
DN × DN elements contain the first type of force derivative,
i.e., Jαβ

i j . Here the row index ro and column index co of
J runs in the range 0 � ro < DN and 0 � co < DN . Rows
from DN � ro < (D + 1)N and columns 0 � co < DN of J
contain Jβ

i j , i.e., the second type of derivative. Rows from 0 �
ro < DN and columns DN � co < (D + 1)N of J contain the
third type Jα

i j . Finally, rows from DN � ro < (D + 1)N and
columns DN � co < (D + 1)N of J hold Ji j , i.e., the fourth
type of derivative. For a fixed type of derivative, at a fixed row,
the column index first runs over j starting from 0 to N − 1.
Then β is incremented, if it exists for that particular derivative
type. Similarly, at a fixed column, the row index first runs over
i ∈ [0, N ) and then α is incremented.
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