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Effect of line tension on axisymmetric nanoscale capillary bridges at the liquid-vapor equilibrium
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The effect of line tension on the axisymmetric nanoscale capillary bridge between two identical substrates
with convex, concave, and flat geometry at the liquid-vapor equilibrium is theoretically studied. The modified
Young’s equation for the contact angle, which takes into account the effect of line tension, is derived on a general
axisymmetric curved surface using the variational method. Even without the effect of line tension, the parameter
space where the bridge can exist is limited simply by the geometry of substrates. The modified Young’s equation
further restricts the space where the bridge can exist when the line tension is positive because the equilibrium
contact angle always remains finite and the wetting state near the zero contact angle cannot be realized. It is
shown that the interplay of the geometry and the positive line tension restricts the formation of capillary bridge.
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I. INTRODUCTION

The nanoscale liquid bridge which forms in a narrow
slit between two small objects is a ubiquitous phenomenon
occurring in humid atmospheres in our daily life. It plays a
fundamental role in many natural and geological phenomena
such as water retention in soil [1–4], wet friction [5], biolog-
ical adhesion of some insects [6,7], cloud formation [8], etc.
It also plays an important role in various industrial processing
such as that of the powders and the granular matters [9] and,
in particular, in the modern nanotechnologies and nanoflu-
idics [10,11].

This liquid bridge called capillary bridge forms via the
heterogeneous nucleation of capillary condensation of volatile
liquids [12–17]. This capillary condensation is a special case
of the heterogeneous nucleation in which the condensation
can occur at the liquid-vapor equilibrium, and even in an
undersaturated vapor with a relative humidity lower than the
saturation. The capillary bridge corresponds to the critical
nucleus of capillary condensation. In contrast, the usual ho-
mogeneous nucleation of a spherical droplet can occur only in
an oversaturated vapor with relative humidity higher than the
saturation. Then, the capillary bridge can easily form, which
is the reason why the capillary condensation is so ubiquitous.
Therefore, various theoretical [1,2,18,19], numerical [20–22],
and experimental [16,23,24] studies have been conducted by
many engineers and scientists for many years.

After the invention of various force spectroscopy tech-
niques such as the surface force apparatus (SFA) and the
atomic force microscopes (AFMs), the problem of the cap-
illary bridge, in particular, the normal capillary force by the
bridge, has attracted renewed interest recently [23,25,26].
Since the nanoscale liquid bridges can easily form even in
the low relative humidity, it is also a convenient tool to study
the surface properties such as the size dependence of surface
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tension of the nanoscale liquid bridges [16,24]. It can also
serve as a testing ground of various statistical mechanical
theories of nanoscale liquids [27–31].

Most of those theoretical studies rely on the atomic sim-
ulations [15,32], the mesoscopic disjoining pressure, and the
density functional theory using various model surface poten-
tials [12,13,29,30]. However, the classical capillary theory us-
ing the macroscopic concepts such as surface tension [17,33]
and line tension [33,34] is still useful [29,35,36]. In particular,
the analytical or semianalytical results obtained from the
classical capillary theory have been useful to understand the
physics of capillary phenomena and to analyze experimental
results directly [16,24].

In fact, Malijevský and Parry [37] recently showed that
the prediction of capillary condensation from the classical
capillary theory remains highly accurate down to the order of
tens of molecular diameters. They reached this conclusion by
comparing the results from the classical capillary theory with
those from the nonlocal density functional theory [29,31],
which is more accurate than the local square-gradient density
functional theory [38] or the second gradient theory [39].
There is growing evidence that the classical capillary theory
is accurate down to the order of nanometer and that it can
be served as a minimal model of nanoscale liquids [29,31].
The effect of disjoining pressure or the surface potential,
for example, can be partly taken into account by the line
tension [40,41].

In the present study, we study the axisymmetric nanoscale
capillary bridge at the liquid-vapor equilibrium theoretically
using the classical capillary theory, which is believed to be
accurate down to nanometer scale [16,24,29,32]. We consider
the axisymmetric bridge because the surface with constant
contact angle must be rotationally symmetric (axisymmet-
ric) [42,43]. We also consider the bridge only at the liquid-
vapor equilibrium because the liquid-vapor meniscus is ex-
actly given by the catenary [21,29,44], and we can avoid
numerical uncertainty of the shape of the meniscus due to
the numerical integration of differential equations. The mi-
croscopic effects for the nanoscale bridges will be taken into
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FIG. 1. The capillary bridge f (z) connecting two convex sub-
strate a1(z) and a2(z) at z1 and z2.

account by considering the effective line tension [34,35,45–
49]. This strategy has been already adopted by Dutka and
Napiórkowski [50,51], and Aveyard et al. [40] who showed
that the effective line tension can include the effect of dis-
joining pressure. However, they considered only special ge-
ometries such as the AFM-like geometry. In this paper, we
consider a few typical geometries [23,52]. Also, we pay
the most attention to the formation of the bridge under the
influence of a positive line tension. Since we will not consider
the microscopic disjoining pressure or the surface potential,
we will not consider the detail of surface phase transition such
as the wetting and the prewetting transition [27–29].

This paper is organized as follows. In Sec. II, we present a
general modified Young’s equation, which takes into account
the line tension, to determine the equilibrium contact angle
on a axisymmetric curved substrate using the variational
approach [53,54]. In Sec. III, we use the modified Young’s
equation to study the effect of line tension on capillary bridges
confined in slits of several typical geometries. We will show
that the positive line tension will severely restrict the param-
eter space where the capillary bridge can exist even though
the line tension does not contribute directly to the normal
capillary force [23]. Finally, in Sec. IV, we conclude by em-
phasizing the implication of our results to future experimental,
numerical, and theoretical studies of nanoscale bridges.

II. GENERALIZED YOUNG’S EQUATION ON
AXISYMMETRIC CURVED SUBSTRATES

A. Convex substrate

We consider the effect of line tension on the contact angle
of liquid bridge called capillary bridge shown in Fig. 1 when
the three-phase contact line is on an axisymmetric curved sub-
strate. We assume that the geometry is axisymmetric around
the z axis [23,52]. We use the classical capillary theory so that

the liquid-vapor surface is assumed to be sharp and the surface
tension is constant and does not depend on the curvature
of the meniscus. Then, the meniscus of the liquid bridge is
represented by a function f (z). Similarly, the two substrates
which are connected by the liquid bridge are represented by
two functions a1(z) and a2(z) as shown in Fig. 1. They are
connected by the liquid bridge spanning between z1 and z2.

Since we consider the capillary bridge of capillary con-
densation, we use the free energy called the grand poten-
tial [35,50,51]. The total free energy ��[ f ] of the system in
the capillary theory consists of three contributions,

��̃ = ��[ f ]

2πσlv
= ��̃lv + ��̃sl + ��̃slv, (1)

where the free energy �� is divided by 2πσlv, where σlv is
the liquid-vapor surface tension, and

��̃lv[ f ] =
∫ z2

z1

dzF [z; f , f ′] (2)

is the free energy of the liquid bridge, and

F [z, f , f ′] = f (z)
√

1 + f ′(z)2

+� p̃ [ f (z)2 − a1(z)2 − a2(z)2] (3)

is the free-energy density of the bridge (liquid), where �p̃ =
�p/σlv represents the pressure difference �p between the
liquid bridge and the surrounding vapor. Equation (3) consists
of the surface energy (the first term) and the volume energy
(the second term). The prime means the spacial derivative
f ′ = df /dz. In order to calculate the volume energy, we
should take into account the appropriate boundary conditions
by the geometry of substrates.

The second term of Eq. (1) is the solid-liquid surface
energy due to the wetting of the solid substrate by the liquid
bridge given by

��̃sl
[

f
] = −

∫ za1

z1

dz cos θY1a1(z)
√

1 + a′
1(z)2

−
∫ z2

za2

dz cos θY2a2(z)
√

1 + a′
2(z)2, (4)

which consists of the contribution from upper substrate 2 and
lower substrate 1, where za1 is the top of the substrate a1 and
za2 is the bottom of the substrate a2. The solid-liquid surface
energies in Eq. (4) are characterized by the wettability of
substrates represented by two Young’s contact angle θY1 and
θY2 defined by

cos θY1 = (σsv)1 − (σsl )1

σlv
,

cos θY2 = (σsv)2 − (σsl )2

σlv
, (5)

where σsv and σsl are the solid-vapor and solid-liquid surface
energy, and the subscripts 1 and 2 refer to the two substrates 1
and 2.

The last term of Eq. (1) is the line tension energy at the two
three-phase (solid-liquid-vapor) contact lines given by

��̃slv = τ̃1a1(z1) + τ̃2a2(z2), (6)
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FIG. 2. The contact angle θ2 between the tangent to the substrate
a2(z) and that to the meniscus f (z). The line tension force τ2/ f (z2)
which lies on the circular plane made from the three-phase contact
line is always perpendicular to the rotational axis z. Therefore, it does
not contribute to the normal capillary force.

where the line tensions τ1 and τ2 are scaled by σlv as τ̃1 =
τ1/σlv and τ̃2 = τ2/σlv.

The meniscus f (z) of the capillary bridge is determined
from the variation of the total free energy. The boundaries of
integration z1 and z2 are not fixed. Rather, the meniscus f (z) is
required to touch the surface of the substrate a1(z) and a2(z).
Therefore, the boundary conditions of the variational problem
are

f (z1) = a1(z1),

f (z2) = a2(z2). (7)

Using the standard variation [53] by δ f as well as by the
variable end points δz1 and δz2 (see the Appendix), we can
derive the Euler-Lagrange equation

∂F

∂ f
− d

dz

(
∂F

∂ f ′

)
= 2�p̃, (8)

which is written explicitly as [50,51]

1

f (z)
√

1 + f ′(z)2
− d

dz

f ′(z)√
1 + f ′(z)2

= −2� p̃, (9)

and determines the capillary meniscus f (z). Since we will
consider the liquid-vapor equilibrium, we will set � p̃ = 0
later in the next section. In addition, the boundary condition
at z2, for example, called the transversality condition [53,54]
is given by (see the Appendix for details)

cos θY2 − 1 + f ′(z2)a′
2(z2)√

1 + f ′(z2)2
√

1 + a′
2(z2)2

− τ̃2
a′

2(z2)

a2(z2)
√

1 + a′
2(z2)2

= 0, (10)

where the second term is the cosine of the equilibrium contact
angle θ2 at z2 (Fig. 2),

cos θ2 = 1 + f ′(z2)a′
2(z2)√

1 + f ′(z2)2
√

1 + a′
2(z2)2

, (11)

between the tangent to the substrate a2(z) and that to the
liquid-vapor surface f (z). The boundary condition at z1 will

be obtained simply by replacing the subscript 2 by 1. Equa-
tions (10) and (11) lead to

cos θ2 = cos θY2 − τ̃2
a′

2(z2)

a2(z2)
√

1 + a′
2(z2)2

, (12)

which is the general form of the modified Young’s equation
on an axisymmetric convex substrate with a′

2(z2) > 0.
Since the angle φ2 between the tangent to a2(z) at z2 and the

three-phase contact line perpendicular to the rotational axis (z
axis) satisfies (Fig. 2)

cos φ2 = a′
2(z2)√

1 + a′
2(z2)2

, (13)

Eq. (12) is written as

cos θ2 = cos θY2 − τ̃2

a2(z2)
cos φ2, (14)

or

cos θ2 = cos θY2 − τ̃2

f (z2)
cos φ2, (15)

which is also know as the modified Young’s equation. The
effect of line tension τ2 on the equilibrium contact angle θ2

on an axisymmetric surface is determined from Eq. (15). It
also expresses the force balance condition of the four tensions
due to the three surface tensions σlv, (σsl )2, and (σsv)2, and
that due to the line tension τ2/ f (z2) along the tangent to the
surface a2(z) at z2 (Fig. 2), which is the generalization of a
similar force balance condition on a spherical surface [36,48].
A boundary condition on a conical surface has already been
obtained by Dukta and Napiórkovsky [50,51].

When the substrate is convex [cos φ2 > 0 in Eq. (15)
or a′

2(z2) > 0 in Eq. (12)] and hydrophilic (cos θY2 > 0), a
positive line tension (τ̃2 > 0) makes the equilibrium contact
angle θ2 larger than Young’s contact angle θY2 since 0 <

cos θ < cos θY2. Therefore, a positive line tension makes the
hydrophilic substrate less hydrophilic (θ > θY2).

Since the line tension force τ2/ f (z2) acting at the three-
phase contact line always stays within the circular plane of
the three-phase contact line (Fig. 2), the line tension does not
contribute directly to the normal capillary force [16,23,24]
parallel to the rotational axis (z axis). Therefore, the normal
capillary force can probe only the surface tension force at the
three phase contact line and the capillary pressure due to the
pressure difference between the liquid and the vapor phase.
The line tension affects the normal capillary force and the
condensation indirectly through the modification of contact
angle [4] through Eqs. (10) or (15).

B. Concave substrate

For the concave substrate shown in Fig. 3, the upper and the
lower bounds of the integral should be exchanged in Eq. (4),
which is now written as

��̃sl[ f ] = −
∫ z1

za1

dz cos θY1a1(z)
√

1 + a′
1(z)2

−
∫ za2

z2

dz cos θY2a2(z)
√

1 + a′
2(z)2, (16)
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FIG. 3. The capillary bridge f (z) connecting two concave sub-
strates a1(z) and a2(z) at z1 and z2.

where za1 is the bottom of the substrate a1 and za2 is the top of
the substrate a2. Then, the transversality condition in Eq. (10)
should be replaced by

− cos θY2 − 1 + f ′(z2)a′
2(z2)√

1 + f ′(z2)2
√

1 + a′
2(z2)2

− τ̃2
a′

2(z2)

a2(z2)
√

1 + a′
2(z2)2

= 0, (17)

where the second term is related to the cosine of the equilib-
rium contact angle θ2 at z2 through

cos θ2 = − 1 + f ′(z2)a′
2(z2)√

1 + f ′(z2)2
√

1 + a′
2(z2)2

(18)

for the concave substrate. Equations (17) and (18) lead to

cos θ2 = cos θY2 + τ̃2
a′

2(z2)

a2(z2)
√

1 + a′
2(z2)2

, (19)

which is the general form of the modified Young’s equation
on an axisymmetric concave substrate with a′

2(z2) < 0, which
corresponds to Eq. (12) for a convex substrate with a′

2(z2) > 0.
Therefore, a positive line tension (τ̃2 > 0) also makes the

equilibrium contact angle θ2 larger than Young’s contact angle
θY2 (0 < cos θ2 < cos θY2) on a hydrophilic substrate from
Eq. (19) since a′

2(z2) < 0 on a concave substrate.

C. Flat substrate

Although the effect of line tension on a flat substrate is
already well documented [45,46], we briefly touch on the case
when the substrate is horizontally flat and infinite. Suppose the

substrate a1(z) at z1 is flat, the grand potential is given by

��̃[ f ] =
∫ z2

z1

dzF [z, f , f ′]

−
∫ z2

z1

dz cos θY2a2(z)
√

1 + a′
2(z)2

− cos θY1
f (z1)2

2
+ τ̃1 f (z1) + τ̃2a2(z2). (20)

Since the boundary z1 is fixed and f (z1) is unknown, we
have to impose the natural boundary condition [53] instead of
the transversality condition in Eq. (10). The natural boundary
condition at z1 for the free energy in Eq. (20) is given
by [50,51]

cos θY1 + f ′(z1)√
1 + f ′(z1)2

− τ̃1

f (z1)
= 0, (21)

where the equilibrium contact angle θ1 at z1 is given by

cos θ1 = f ′(z1)√
1 + f ′(z1)2

, (22)

and the boundary condition Eq. (21) becomes

cos θ1 = cos θY1 − τ̃1

f (z1)
, (23)

which is the modified Young’s equation on a flat sub-
strate [45,46]. Equation (23) also represents the force balance
condition along the flat substrate. The supersaturation or the
undersaturation of vapor � p̃ does not affect the boundary
condition and only affects the capillary meniscus f (z) from
Eq. (9).

III. LINE TENSION EFFECT ON CAPILLARY BRIDGES

In order to study the line tension effect on the capillary
bridge, we will restrict ourselves to the simplest axisymmet-
ric geometry where the upper and the lower substrate have
exactly the same axisymmetric shape and the same wetting
property so that the line tensions and Young’s contact angles
of two substrates are the same (τ1 = τ2 = τ , θY1 = θY2 = θY,
and θ1 = θ2 = θ ).

In general, the liquid-vapor meniscus f (z) would be de-
termined from the numerical solution of the Euler-Lagrange
equation (8) [20,21]. Although many analytical approxi-
mations such as the circular or the toroidal approxima-
tion [2,23,52] and others [18,19,22] have been proposed, their
use is restricted to special morphology [2,23,52] when the
neck width of the bridge is much wider than the narrow gap
between the two substrates.

In order to avoid numerical uncertainty due to the nu-
merical solution of Eq. (8) or the approximate expression
for the meniscus f (z), we will only consider the bridge at
the liquid-vapor equilibrium when � p̃ = 0 in Eq. (8). Even
at the liquid-vapor equilibrium, the heterogeneous nucleation
and capillary condensation can occur, and the liquid-vapor
meniscus of the capillary bridge is the catenary [21,29,44]

f (z) = w cosh
( z

w

)
, (24)
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FIG. 4. Various axisymmetric (a) flat plate-plate, (b) convex
cone-cone, (c) convex sphere-sphere, and (d) concave cap-cap geom-
etry to study the line tension effect on the catenary capillary bridge
in Eq. (24).

where w is the neck width (radius) at z = 0 where we choose
the origin of the z axis since the configuration of the two
substrates is symmetric about z = 0. In the next subsections,
we will use Eq. (24) for several typical shapes a1(z) and a2(z)
to study the interplay of line tension and geometry in the
stability of the liquid bridge. We start from the simplest and
well-documented flat geometry formulated in Sec. II C. Then,
we will proceed to the convex and the concave geometry in
Secs. II A and II B.

A. Flat plate-plate geometry

To begin with, we consider the catenary liquid bridge in
Eq. (24) formed between two identical flat and horizontal
plates [Fig. 4(a)] separated by a gap height h. The modified
Young’s equation in Eq. (21) is written as

cos θY = tanh α + τ̂
α

cosh α
, (25)

and the equilibrium contact angle in Eq. (22) at the substrate
is given by

cos θ = tanh α, (26)

where

α = h

2w
(27)

is the gap height relative to the bridge neck width 2w, and

τ̂ = 2τ̃

h
= 2τ

hσlv
(28)

is the nondimensional line tension. Suppose τ ∼ 10−9 N (typ-
ical size) [49], and σlv ∼ 2 × 10−2 N m−1 (typical alcohol);
the nondimensional line tension becomes as large as τ̂ ∼ 0.1
for a nanoscale gap height h ∼ 50 nm.

Figure 5 shows the cosine of Young’s contact angle θY

versus the scaled bridge height α defined by Eq. (27) cal-
culated from Eq. (25). The morphology of the bridge α and
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FIG. 5. The cosine of Young’s contact angle (cos θY) vs α for
various sign and sizes of line tension τ̂ calculated from Eq. (25).
When τ̂ is positive and α is larger than the maximum value αmax,
the bridge cannot exist for any realistic substrate with cos θY � 1.
The curve for τ̂ = 0 represents the cosine of the equilibrium contact
angle cos θ in Eq. (26), which will be actually realized.

the equilibrium contact angle θ , which is in fact θY for τ̂ = 0
in Fig. 5, are determined from Young’s contact angle θY as
indicated by the up and the down arrow in Fig. 5. The neck
width w of the bridge is determined from the gap height
h of the substrate through α, which is determined from the
wettability of substrate θY.

When the line tension is positive (τ̂ > 0), the contact line
shrinks to avoid the increase of the free energy of the positive
line tension. Then the equilibrium contact angle θ would be
larger than Young’s contact angle θY so that cos θY > cos θ >

0. The substrate will be less hydrophilic when the line tension
is positive. For example, when cos θY ∼ 0.75 and τ̂ = 0.3 in
Fig. 5, the cosine of the equilibrium contact angle will be
smaller, cos θ ∼ 0.55 (down arrow in Fig. 5). In contrast, the
negative line tension will make the substrate more hydrophilic
so that the contact line expands and 0 < cos θY < cos θ (up
arrow in Fig. 5).

When the line tension is positive τ̂ > 0, there exists a
maximum αmax (a minimum w for fixed h or a maximum h
for fixed w) determined from

αmax + ln αmax = − ln τ̂ , (29)

which is derived from Eq. (25) by setting cos θY = 1 or
θY = 0◦. The catenary bridge cannot exist when cos θY > 1 or
α > αmax because the equilibrium contact angle θ cannot be
realized for any realistic substrate with cos θY � 1. In Fig. 6,
we show the maximum αmax as a function of the scaled line
tension τ̂ > 0. When the line tension becomes larger, the
maximum αmax becomes smaller so that the existence of the
capillary bridge will be restricted.

Since the shape of meniscus f (z) and those of two sub-
strates a1(z) and a2(z) are analytical functions, the free energy
in Eqs. (1)–(6) can be analytically calculated [44]. They are
written as

��lv = πσlvw
2[sinh 2α + 2α], (30)
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FIG. 6. The maximum αmax vs scaled positive line tension τ̂ . The
height h or the width w of the bridge is bounded (α = h/2w < αmax)
when the line tension is positive.

��sl = −πσlv cos θYw2[cosh 2α + 1], (31)

��slv = 4πσlvτ̃ cosh α, (32)

which give the total grand potential �� = ��lv + ��sl +
��slv written as

��

2πσlvw2
= α(1 + 2τ̂ cosh α). (33)

In Fig. 7, we show the total grand potential �� as a function
of α for various values of line tension τ̂ . Apparently, the
energy is mostly positive since it corresponds to the free
energy barrier of heterogeneous nucleation of capillary con-
densation [13–16] and the capillary bridge corresponds to the
critical nucleus (Fig. 8). The total grand potential becomes
negative �� < 0 only when the line tension is negative (τ̂ <

0) and α satisfies

α > arccosh
−1

2τ̂
. (34)
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FIG. 7. The grand potential ��/2πσlvw
2 in Eq. (33) as a func-

tion of the scaled gap height α.
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FIG. 8. The schematic diagram of capillary condensation at
the liquid-vapor equilibrium. The grand potential ��/2πσlvw

2 in
Eq. (33) corresponds to the energy barrier of heterogeneous nucle-
ation of capillary condensation from vapor to liquid phase.

In Fig. 8, we show the schematic diagram of capil-
lary bridge formation and subsequent capillary condensation.
The grand potential ��/2πσlvw

2 in Eq. (33) corresponds
to the energy barrier of capillary condensation. The capillary
bridge is the critical nucleus of heterogeneous nucleation, and
the capillary condensation occurs through the usual thermally
activated process. It cannot occur if cos θY > 1 or α > αmax

when the line tension is positive and large as shown in Figs. 5
and 6 as the capillary bridge cannot exist. The capillary
condensation occurs only through the capillary bridge with
α < αmax when the gap height h is low relative to the bridge
width w. When the line tension is large and negative, this
free energy can be negative as the length of contact line (or
α) becomes large and the line tension contribution ��slv

becomes dominant. Then the capillary condensation can occur
spontaneously via the capillary bridge, which satisfies the
condition in Eq. (34).

As has been noted in the previous section, the line ten-
sion cannot contribute directly to the normal capillary force
parallel to the z axis. The contribution of line tension to the
total grand potential (free energy) is featureless unless the line
tension is large negative. However, the line tension severely
restricts the existence of the bridge as shown in Figs. 5 and 6
when the line tension is positive because the low contact angle
around the complete wetting of vanishing equilibrium contact
angle θ = 0 cannot be realized. In the next section, we will
explore the bridge formation for the convex and the concave
geometry.

B. Convex cone-cone geometry

Next, we consider the liquid bridge formed between two
identical conical substrates [Fig. 4(b)] separated by the gap
height h, which is the simplest model of AFM probe [23,50–
52]. The functional forms a1(z) and a2(z) are given by

a1(z) = −
(

z + h

2

)
tan ψ, z � −h

2
, (35)

a2(z) =
(

z − h

2

)
tan ψ, z � h

2
, (36)

where ψ is the half of the opening angle of the cone.
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FIG. 9. The phase diagram in variables (α, cot ψ ) showing the
possible region of the existence of bridge. The bridge can exist only
in the region enclosed by two curves αmin and αmax purely from the
geometrical constraint. When the line tension is positive τ̂ > 0, the
region around the vanishing contact angle θ = 0 enclosed by αYmin

and αYmax is further excluded and the bridge can exist only in two
narrow regions between αmin � α � αYmin and αYmax � α � αmax.

Since the bridge touches the substrate at z2 (and z1 = −z2),
the contact condition f (z2) = a2(z2) given by

cosh α =
(

α − h

2w

)
tan ψ, (37)

where

α = z2

w
, (38)

leads to

w = h/2

α − cosh α cot ψ
. (39)

Since the neck width must be positive (w > 0), the opening
angle ψ of the cone must satisfy

α

cosh α
� cot ψ (40)

from Eq. (39). In Fig. 9 we show the left-hand side of Eq. (40)
which has a maximum, where the neck width w of the bridge
diverges (w → ∞). Therefore, the opening angle must be
obtuse and larger than the critical angle ψc, which can be
easily obtained numerically at the maximum when cot ψc =
0.663 (Fig. 9), and is given by

ψc = 56.5◦. (41)

When the opening angle ψ is larger than the critical angle ψc,
the position of the contact point α (or z2) is limited by the
inequality (40), and should stay within the range αmin � α �
αmax, where αmin and αmax are determined from

α

cosh α
= cot ψ (42)

and are shown in Fig. 9. Therefore, the catenary capillary
bridge in Eq. (24) can exist only within the region enclosed
by αmin and αmax in Fig. 9 due to the geometrical constraint.

A similar concept of geometrically imposed stability
bounds was argued by Finn [43] more than two decades ago.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  0.5  1  1.5  2  2.5  3  3.5

τ=-0.3^

α

τ=-0.1^
τ=0^

τ=0.1^

Y
co

s θ
co

s θ
(

)

α min α maxα Ymin α Ymax

cot ψ=0.3 (ψ=73.3   )
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FIG. 10. The cosine of Young’s contact angle θY (cos θY) vs α,
which becomes larger than 1 (cos θY > 1) in the interval αYmin �
α � αYmax when the line tension is positive (τ̂ > 0). Then, the
bridge cannot exist for any realistic substrate with cos θY � 1 and
the capillary bridge can exist only in two narrow intervals between
αmin � α � αYmin and αYmax � α � αmax as shown in Fig. 9.

He used a refined mathematical formulation and discussed the
stability of sessile droplet on a flat horizontal plane under the
influence of the gravity. The stability is controlled by the Bond
number [43] and, therefore, by the gravity. In our case, the
geometrical constraint is due to the two walls that sandwich
the droplet. Therefore, the stability bounds come not from the
gravity but from the incompatibility of contact angles at the
two walls.

As far as the opening angle is larger than the critical angle
(ψ > ψc or cot ψ < cot ψc), the capillary bridge can exist
within the range αmin � α � αmax shown in Fig. 9. When
the line tension is positive, the area around the equilibrium
contact angle θ = 0 will be further excluded because the small
contact angle around the complete wetting with θ = 0 cannot
be realized when τ̂ > 0 from the modified Young’s equation
in Eq. (10).

In fact, the modified Young’s equation (10) on the conical
surface in Eq. (36) is written as

cos θY = cos ψ + sin ψ sinh α

cosh α
+ τ̂

α

cosh α
(43)

and the equilibrium contact angle θ at the substrate is
given by

cos θ = cos ψ + sin ψ sinh α

cosh α
, (44)

from Eq. (11), where the scaled line tension τ̂ is defined by
Eq. (28).

Figure 10 shows the cosine of Young’s contact angle cos θY

as a function of α. Since the cosine is always positive, the
substrate must be hydrophilic to form a catenary capillary
bridge in Eq. (24). When the line tension is positive, the cosine
of Young’s contact angle θY can be larger than 1 (cos θY > 1)
as shown in Fig. 10, which means that the contact angle θ

near the complete wetting (θ = 0) cannot be realized for any
realistic substrate with cos θY � 1. The substrate becomes less
hydrophilic θ > θY or cos θ < cos θY by the effect of positive
line tension. Then, the interval between αYmin and αYmax
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around θ = 0 is not accessible, where αYmin and αYmax are the
solutions of cos θY = 1 of Eq. (43). The capillary bridge can
exist only in two narrow intervals between αmin < α < αYmin

and αYmax < α < αmax shown in Fig. 10. The equilibrium
contact angle cannot reach zero and has a minimum angle,
and the existence of a capillary bridge will be further restricted
when the line tension is positive.

Again, it is possible to write down the analytical formula
for the grand potential for the cone-cone geometry, which
becomes exactly the same form as in Eq. (33). Since the grand
potential is featureless as it corresponds to the energy barrier
of heterogeneous nucleation, we will not consider the grand
potential (free energy) in the following discussion.

C. Convex sphere-sphere geometry

As the third example, we consider the liquid bridge
formed between two identical spherical substrates of radius
R [Fig. 4(c)] separated by the gap height h. This geometry is a
typical model of various problems of science and engineering,
and has been the subject of continuous interest of many
scientists and engineers for many years [1,2,18–23,25,27–
30,55].

The functional forms a1(z) and a2(z) of the two spherical
substrates are given by

a1(z) =
√

R2 −
(

z + R + h

2

)2

, z � −h

2
, (45)

a2(z) =
√

R2 −
(

z − R − h

2

)2

, z � h

2
, (46)

where R is the radius of two spheres separated by h [Fig. 4(c)].
In this case, the contact condition f (z2) = a2(z2) leads to

w = h/2

α − ρ +
√

ρ2 − cosh2 α
, (47)

where

ρ = R

w
(48)

is the scaled radius of the spherical substrate and α is defined
by Eq. (38). Since the neck width must be positive w > 0,
the position of contact point α and the scaled radius ρ of the
sphere satisfy

α − ρ +
√

ρ2 − cosh2 α � 0 (49)

from Eq. (47). Since the left-hand side of Eq. (47) is a convex
function of α and has a maximum at α = αc given by

cosh2 αc = ρ, (50)

the inequality (49) will be satisfied as far as the maximum of
Eq. (47) at αc is positive. This condition is written as

arccosh
√

ρ − ρ +
√

ρ(ρ − 1) � 0 (51)

from Eq. (49). Equation (51) can be satisfied when ρ � ρmin,
where

ρmin = 1.47 (52)
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FIG. 11. The phase diagram in variables (α, ρ ) showing the
possible region of the existence of catenary bridge. The bridge can
exist only in the region enclosed by two curves αmin and αmax. When
the line tension is positive τ̂ > 0, the region around the vanishing
contact angle θ = 0 enclosed by αYmin and αYmax is further excluded.
Then, the bridge can exist only in two narrow regions between
αmin � α � αYmin and αYmax � α � αmax.

at

αc = 0.639. (53)

When the radius of the sphere is larger than this minimum size
(ρ > ρmin), the capillary bridge can exist only when αmin �
α � αmax, where αmin and αmax are the solution of

α − ρ +
√

ρ2 − cosh2 α = 0, ρ � ρmin, (54)

from Eq. (49) and are shown in Fig. 11.
The modified Young’s equation in Eq. (10) for the sphere-

sphere geometry is given by

cos θY = cosh α + sinh α
√

ρ2 − cosh2 α

ρ cosh α

+ τ̂ (α − ρ +
√

ρ2 − cosh2 α)

√
ρ2 − cosh2 α

ρ cosh α
,

(55)

where τ̂ is defined by Eq. (28), and the equilibrium contact
angle θ at the substrate is given by

cos θ = cosh α + sinh α
√

ρ2 − cosh2 α

ρ cosh α
, (56)

from Eq. (11), which is Eq. (55) when τ̂ = 0.
In this sphere-sphere geometry, the cosine of Young’s con-

tact angle cos θY calculated from Eq. (55) shows a maximum
similar to that in Fig. 10 and becomes larger than 1 when the
line tension is positive. Since cos θY > cos θ , the substrate is
less hydrophilic (θY < θ ) when the line tension is positive.
Then, the region around θ = 0 in Fig. 11 will be excluded
when the line tension is positive (τ̂ > 0). Similar to the case
of the cone-cone geometry, the capillary bridge can exist
only in two narrow intervals between αmin < α < αYmin and
αYmax < α < αmax, shown in Fig. 11, where αYmin and αYmax

are the solutions of cos θY = 1 in Eq. (55).
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FIG. 12. The two boundaries αYmin and αYmax as functions of
the scaled line tension τ̂ when ρ = 3.0 indicated by the horizontal
line in Fig. 11. The horizontal lines represent αmin, αmax and the line
corresponds to the equilibrium contact angle θ = 0, which does not
depend on the size of line tension τ̂ .

In Fig. 12 we show the line tension dependence of the two
boundaries αYmin and αYmax as well as αmin, αmax and α that
corresponds to the vanishing equilibrium contact angle θ = 0
when ρ = 3.0 indicated by the horizontal line in Fig. 11. The
bridge cannot exist outside the two boundaries αmin and αmax.
In addition, the region around the complete wetting state with
θ = 0 is excluded when the line tension is positive (τ̂ > 0).
Two intervals between αmin < α < αYmin and αYmax < α <

αmax where a bridge can exist become narrower as the line
tension becomes larger.

D. Concave cap-cap geometry

Finally, we consider the case when the substrate is concave.
As a simplest example, we consider the catenary capillary
bridge formed between two half-spherical cap-shaped sub-
strates. This problem would be relevant to some biological
problems such as the wet adhesion of insect legs [6,7].

The shapes of two substrates are given by

a1(z) =
√

R2 −
(

z + R − h

2

)2

, R − h

2
� z � −h

2
,

(57)

a2(z) =
√

R2 −
(

z − R − h

2

)2

,
h

2
− R � z � h

2
.

(58)

In this case, the contact condition f (z2) = a2(z2) leads to

w = h/2

α + ρ −
√

ρ2 − cosh2 α
(59)

and the bridge can exist as far as

ρ � cosh α. (60)
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FIG. 13. The phase diagram in variables (α, ρ ) showing the
possible region of existence of bridge. The bridge can exist above
the curve ρ = cosh αmax and ρ > ρmin = 1. When the line tension is
positive τ̂ > 0 and the radius ρ = R/w is large, the region around
small contact angle θ = 0 enclosed by αYmin and αYmax is further
excluded. Then, the bridge can exist only in two regions between
0 � α � αYmin and αYmax � α � αmax.

Given the radius of substrate R or ρ, the maximum of α is
determined from

cosh αmax = ρ. (61)

In Fig. 13, we show the curve ρ = cosh αmax in Eq. (61). The
bridge can exist above this curve from Eq. (60). Clearly there
exists a lower bound for the scaled radius ρmin = 1 below
which the bridge cannot exist. However, the bridge between
concave substrates can exist in a relatively wide area in Fig. 13
compared to the bridges between convex substrates in Figs. 9
and 11.

The modified Young’s equation for the cap-shaped concave
substrate is written as

cos θY = cosh α − sinh α
√

ρ2 − cosh2 α

ρ cosh α

− τ̂ (α + ρ −
√

ρ2 − cosh2 α)

√
ρ2 − cosh2 α

ρ cosh α
,

(62)

from Eq. (17) instead of Eq. (10), and the equilibrium contact
angle θ at the substrate is given by

cos θ = cosh α − sinh α
√

ρ2 − cosh2 α

ρ cosh α
. (63)

from Eq. (18). These results in Eqs. (62) and (63) are similar
to those of the convex sphere-sphere geometry in Eqs. (55)
and (56).

In Fig. 14, we show the cosine of Young’s contact angle
cos θY as a function of α when the radius of the substrate is
ρ = 2.0. Naturally, the cosine is mostly negative. Therefore,
the hydrophobic substrate is necessary for the bridge forma-
tion when the radius of the substrate ρ is small. Since the sub-
strate will be less hydrophilic or more hydrophobic by positive
line tensions, the hydrophilic substrate with cos θY > 0 (e.g.,
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FIG. 14. The cosine of Young’s contact angle (cos θY) vs α when
the radius of substrate is small ρ = 2.0. The cosine is mostly negative
(cos θY < 0) indicating the hydrophobic substrate with the contact
angle higher than 90◦ which is necessary for bridge formation when
the radius of the substrate ρ is small. Then, the capillary bridge can
exist only on hydrophobic substrates.

the line τ̂ = 0.3 in Fig. 14) turns to effectively hydrophobic
with cos θ < 0 (the line τ̂ = 0 in Fig. 14).

When the radius ρ is large, two concave substrates become
flatter so that the effect of line tension would become notice-
able. In fact, when the radius ρ is large and the line tension
is positive (τ̂ > 0), the cosine of Young’s contact angle θY

can be positive and larger than 1 (cos θY > 1) as shown in
Fig. 15. The concave cap-shaped hydrophilic substrate can
sustain the catenary bridge. The interval between αYmin and
αYmax around θ = 0◦ will not be accessible, where αYmin

and αYmax are the solutions of cos θY = 1 of Eq. (62). Then,
the capillary bridge can exist only in two intervals between
0 < α < αYmin and αYmax < α < αmax shown in Fig. 13.
The equilibrium contact angle cannot reach zero and has a
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FIG. 15. The cosine of Young’s contact angle (cos θY) vs α when
the radius of substrate is large ρ = 30.0 indicated by the horizontal
line in Fig. 13. The cosine is positive and can be larger than 1
(cos θY > 1) in the interval αYmin � α � αYmax when the line tension
is positive and large (τ̂ = 0.3). Then, the capillary bridge can exist
only in two narrow intervals between 0 � α � αYmin and αYmax �
α � αmax shown in Fig. 13.

(a) Convex surface (b) Flat surface (c) Concave surface

Liquid Liquid Liquid

FIG. 16. The surface tension of convex, flat, and concave sur-
faces. Since the number of broken bonds between neighboring atoms
would be larger for the convex substrate and smaller for the concave
substrate than that for the flat substrate, the surface tension would be
higher for the convex substrate and lower for the concave substrate
than that for the flat substrate.

minimum angle (Fig. 15). The existence of capillary bridge
with the equilibrium contact angle close to zero will be
prohibited even for concave substrates when the radius ρ is
large and the line tension τ̂ is positive. The story is similar to
that for the convex spherical substrates. However, the radius
ρ for the concave substrate must be much larger than that for
the convex substrate (Figs. 11 and 13).

Recently, there appear the normal capillary force measure-
ments of nanoscale bridges [16,24], which are interpreted by
the size- or curvature-dependent liquid-vapor surface tension
of nanoscale liquids using Tolman’s formula [56,57]. As
shown in Fig. 16, the atomic bonds between neighboring
atoms are broken near the liquid-vapor interface, which results
in an increase of surface energy called surface tension. Since
the number of broken bonds between neighboring atoms
would be larger for the convex substrate and smaller for the
concave substrate than that for the flat substrate, the surface
tension would be higher for the convex substrate and lower
for the concave substrate than that for the flat substrate.
Therefore, the curvature correction which is represented by
the Tolman’s length can be negative for convex surface and
positive for concave surface [57]. In fact, several model cal-
culations [57,58] indicate both positive and negative Tolman’s
length. The issue of curvature-dependent surface tension for
membranes and vesicles with elastic surface is also well
known [59,60]. In this paper, however, we concentrate on the
capillary bridge with liquid surface.

However, the curvature of the bridge surface is a combina-
tion of a positive and a negative curvature and, in particular,
it vanishes for the catenary meniscus at the liquid-vapor equi-
librium. Then, Tolman’s curvature correction to the surface
tension would be very small or vanish. Then, the line tension
would be another option to consider the nanoscale effect
on liquid capillary bridges. Of course, the real surface of
liquid is not as sharp as Fig. 16. The real surface must be
diffuse [38,39] which further contributes to the size or the
curvature dependence of surface tension. Therefore, the effect
of size- or curvature-dependent liquid-vapor surface tension
to the capillary bridge might not be negligible. Of course, the
line tension is not merely a phenomenological parameter but
it needs detailed consideration and should be interpreted as an
effective line tension which includes various nanoscale effects
such as the disjoining pressure [40,41], Tolman’s correction
to the surface tension [49,58,61], and the adsorption to the
substrate [62,63]. At the present stage, even the sign of
line tension is unpredictable [49]. Further experimental and
theoretical effort is certainly necessary to elucidate the nature
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of the nanoscale capillary bridge with a positive and negative
curvature.

IV. CONCLUSION

In the present study, we considered the effect of line tension
on the catenary capillary bridge between two identical sub-
strates with convex, concave, and flat geometry using the clas-
sical capillary theory. The modified Young’s equation, which
takes into account the effect of line tension, is derived on a
general axisymmetric curved surface from the variation of the
grand potential. Although the derived formula is used to study
the effect of line tension only on flat, conical, and spherical
substrates, it is easy to extend our analysis to other geometry
as well [23,52,64]. Since we did not consider the disjoining
pressure or the surface potential, the adsorption layer around
the substrates is not considered [27–30]. This problem can
be partially circumvented by regarding the effective substrate
which dresses the adsorption layer [25,55]. Although only the
catenary bridge at the liquid-vapor equilibrium is considered,
the results will be applicable as far as the supersaturation or
the undersaturation of vapor pressure is not too far from the
liquid-vapor equilibrium.

It is clearly demonstrated that even without the effect of
line tension, the existence of the bridge is already restricted
simply by geometrical constraint. The modified Young’s equa-
tion further restricts the bridge formation when the line ten-
sion is positive because the equilibrium contact angle which
is necessary for the bridge formation cannot be achieved.
Then, the heterogeneous nucleation of capillary bridge for-
mation and subsequent capillary condensation will not occur.
Although the line tension cannot contribute directly to the
normal capillary force between two substrates, the line ten-
sion indirectly affects the force through modification of the
equilibrium contact angle [4]. Therefore, the interpretation of
normal capillary force of nanoscale bridges needs caution, and
the contact angle determination combined with the normal
capillary force measurement should be carefully conducted.
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APPENDIX

The transversality condition for the grand potential in
Eq. (1) at z2 on a convex substrate

δ

δz2

[
δ��̃

δ f2

]
= 0, (A1)

where f2 = f (z2), leads to [53]

[(
f2

√
1 + f ′2

2 − cos θY 2a2

√
1 + a′2

2 + τ̃2a′
2

)]
δz2

+
[

∂F

∂ f ′

]
z2

δ f2 −
∫ z2

z1

[
d

dz

(
∂F

∂ f ′

)
− ∂F

∂ f

]
δ f dz = 0,

(A2)

where we have used abbreviations f ′
2 = f ′(z2), a′

2 = a′
2(z2),

and a2 = a2(z2).
The last term of Eq. (A2) gives the Euler-Lagrange equa-

tion in Eq. (8), which is explicitly written as in Eq. (9) by
using

∂F

∂ f ′ = f f ′√
1 + f ′2 , (A3)

∂F

∂ f
= 1√

1 + f ′2 + 2� p̃ f (A4)

from Eq. (3).
Due to the boundary condition a2 = f2 at z2, we have [53]

δz2 = δ f2

a′
2 − f ′

2

. (A5)

Using Eqs. (A3) and (A5), the first and the second term in
Eq. (A2) immediately leads to the modified Young’s equation
for the convex substrate given by Eq. (10) of the main text.
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