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Weakly attractive interactions between the tips of rodlike colloidal particles affect their liquid-crystal phase
behavior due to a subtle interplay between enthalpy and entropy. Here we employ molecular dynamics
simulations on semifiexible, repulsive bead-spring chains where one of the two end beads attract each other.
We calculate the phase diagram as a function of both the volume fraction of the chains and the strength
of the attractive potential. We identify a large number of phases that include isotropic, nematic, smectic-A,
smectic-B, and crystalline states. For tip attraction energies lower than the thermal energy, our results are
qualitatively consistent with experimental findings: We find that an increase of the attraction strength shifts
the nematic to smectic-A phase transition to lower volume fractions, with only minor effect on the stability
of the other phases. For sufficiently strong tip attraction, the nematic phase disappears completely, in addition
leading to the destabilization of the isotropic phase. In order to better understand the underlying physics of these
phenomena, we also investigate the clustering of the particles at their attractive tips and the effective molecular
field experienced by the particles in the smectic-A phase. Based on these results, we argue that the clustering of
the tips only affects the phase stability if lamellar structures (“micelles”) are formed. We find that an increase
of the attraction strength increases the degree of order in the layered phases. Interestingly, we also find evidence
for the existence of an antiferroelectric smectic-A phase transition induced by the interaction between the tips. A

simple Maier-Saupe-McMillan model confirms our findings.
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I. INTRODUCTION

Elongated colloidal particles form additional phases under
conditions in between those where the well-known isotropic
(disordered) and crystalline (ordered) phases are found [1-3].
The particles are invariably aligned but have no or only
partial (short-range or quasi-long-range) positional order in
these phases and, for this reason, are called liquid-crystalline
phases. The phase transitions are driven primarily by en-
tropy, as theoretical, simulation, and experimental studies
have shown [4—11]. More recently, the use of selective surface
functionalization of elongated colloidal particles has opened
up an interesting novel path of investigation, allowing us to
modify the self-assembled liquid-crystalline phases and/or to
manipulate their stabilities. For example, such particles have
been explored in the synthesis of functional materials includ-
ing nanowires and batteries [12—15] and in the investigation
of specific structure formation such as multipods, tubes, and
bottle brushes [16—19]. Nevertheless, studies concerning how
arelatively weak and highly local surface modification affects
the phase sequences for a wide range of concentrations,
as well as particles characteristics such as aspect ratio and
bending flexibility, remain scarce.
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A good example of functionalized elongated colloids is the
recent work by Repula er al. using filamentous M13 virus
particles [20], which measure 1 pum in length and 7 nm in
width and which have persistence length of about 3 um. In
their experiments, the M 13 virus has its terminal (P3) protein
modified, allowing for the attachment of red dye molecules
to one of the tips of these polar particles. The procedure
results in a controllable, attractive, single-end local interac-
tion in what was previously a purely repulsive rod. From
previous work, we know that the complete phase sequence of
suspensions of such viruses comprises isotropic (/), nematic
(N), smectic-A (Sm-A), smectic-B (Sm-B), columnar (Col),
and crystalline (Cry) phases [10]. Interestingly, the surface
modification seems to affect only one of various phase tran-
sitions: The nematic-smectic-A phase transition is influenced
by the number of red-dye molecules grafted to the virus tip,
stabilizing the latter phase. For the purpose of understanding
the reason for this, we investigate how a weakly attractive tip
modifies the liquid crystalline behavior of repulsive, semiflex-
ible rodlike particles using computer simulations.

In this paper, we present the calculated phase diagram of
such particles as a function of both the concentration and the
attraction strength between tips, demarcating two regimes. In
the first regime, in which the strength of the tip-tip interaction
corresponds to energies lower than or comparable to the ther-
mal energy, our results are qualitatively consistent with the ex-
perimental findings [20]. In the second regime, corresponding
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to slightly stronger attractive energies, we find interesting ef-
fects including the complete suppression of the nematic phase
and the destabilization of the isotropic phase. Additionally,
we address in this paper several other topics regarding the
microstructure of the phases, such as: (1) qualitative and
quantitative aspects of the supramolecular aggregation due
to the presence of the attractive tips in the various phases,
(2) the response of the interlayer distance and the molecular
field for the various concentrations and attraction strengths
between the tips in the smectic and crystalline phases, and
(3) evidence for the existence of an antiferroelectric smectic-A
phase induced by the interaction between the ends.

Related to the antiferroelectric smectic-A phase, note that
the bilayer structure is antiferroelectric in one dimension.
In two dimensions or, in other words, within a smectic
layer, the structure is ferroelectric. We make an analogy
with ferroelectricity instead of ferromagnetism for historical
reasons. The term was previously employed in the litera-
ture of liquid crystals, referring to compounds that form
bilayer structures in the smectic-A phase [21]. The term
(anti)ferromagnetism is usually restricted to magnetic phe-
nomena, while (anti)ferroelectricity is more liberally used,
referring to various types of polar phenomena [22]. The
existence of an antiferroelectric phase of end-functionalized
hard rods with double periodicity was anticipated long ago by
Jackson and coworkers by means of density-functional theo-
retical calculations [23]. We also present a simple model based
on the Maier-Saupe-McMillan theory that describes the phase
transition within the smectic-A phase and that qualitatively
explains our simulation results.

The remainder of this paper is structured as follows. We
describe the methods and model particle employed in our
computer simulations as well as the data analysis procedure
in Sec. II. In Secs. III and IV, we present the results followed
by a discussion. These sections are devoted to the phase
behavior and the microstructure of the phases. In Section V,
we present our most important conclusions. Finally, in the
Appendix, we present our Maier-Saupe-McMillan theory for
end-functionalized, perfectly parallel rods.

II. METHODS AND ANALYSIS
A. Model particles

We model the semiflexible rodlike particles as the bead-
spring chains of n overlapping beads of diameter D and mass
m. Consecutive pairs of beads interact via a harmonic potential
U, = k,(r — D/2)*/2, which means that the beads overlap
by a half diameter. Here r is the bond length and «, is the
harmonic bond stretch constant that we fix to a reasonably
high value of 100 kgT /D?, where kgT denotes the thermal
energy with kg Boltzmann’s constant and 7 the absolute
temperature. Consecutive bonds between beads interact via a
harmonic bending potential, Uy = ky(8 — 7)?/2, where 6 is
the angle between two consecutive bonds and «y the harmonic
bend constant. Except for the first and second neighbors
within a chain, the interactions between the beads are given
by a steeply repulsive potential for which we use the Lennard-
Jones potential, truncated at its minimum and shifted to zero,
ie., Ug = 4€)[(R/D)""2 — (R/D) ] + ¢y if R < 2'°D and

Ugr = 0if R > 2'/°D, where R is the center-to-center distance
between the beads and €, the strength of the interaction, which
is kept constant and equal to 1 kgT'. The single-end attractive
interaction is modelled using a second type of bead at one of
the ends of every chain, represented in red in the snapshots of
our simulations (Fig. 3). These beads interact with each other
via the full Lennard-Jones potential, Uy = 4€[(R/D)™'? —
(R/D)~°], with various values of € > 0. Notice that because
only one end of every chain is sticky, the chains are polar and
lack inversion symmetry.

B. Particle characteristics

Due to the harmonic bond stretch, the contour length of
the particles, L, and, consequently, their mean aspect ratio,
L/D = (n—1)(r)/2, where (r) is the average bond length,
are slightly variable. We refer to the mean aspect ratio at very
low densities, Ly/D, to characterize our particles. The actual
contour length of the particles is somewhat smaller than this,
in particular in the more congested phases due to the high
ambient pressure that compresses the particles somewhat. See
Ref. [24] for a discussion. The persistence length Lp of the
particles depends on the harmonic bend constant. We have
Lp = ky(r)/kgT, at least for an infinitely large number of
beads and kg (r)2/kgT > 1 [25]. The value for the end-to-end
distance of particles of various persistence lengths obtained
in our previous simulations compares well with the value
of the end-to-end distance predicted by the wormlike chain
model in the isotropic phase, showing that the relation is
indeed appropriate to describe the persistence length of our
particles even though they are not infinitely long [24]. We
quantify the particles’ flexibility by the ratio of the dilute-
solution contour length and the persistence length, Lo/Lp.
Simulations are performed for chains of aspect ratio Ly/D =
10.77 and flexibility Ly/Lp = 0.3. The aspect ratio chosen
gives us a reasonable compromise between equilibration time
and particle number in simulations at high concentrations. The
flexibility matches the one of the experimental model particles
mentioned earlier [20]. More details are given in Sec. IIL.
We perform preliminary simulations on somewhat shorter and
stiffer chains of Ly/D = 6.46 and Lo/Lp = 0.1 (results not
shown). The only impact aspect ratio seems to have is that
the volume fractions at which the various phase transitions
take place decreases as the aspect ratio increases, as in fact
expected from previous studies [24]. The same is true for
the effect of bending flexibility, which increases the volume
fraction at which the various phase transitions occur. Hence,
we focus our presentation in this work on results for the longer
particles.

C. Molecular dynamics

We perform molecular-dynamics (MD) computer simula-
tions using the software package LAMMPS [26]. We simulate
4608 bead-spring chains in a box in order to obtain structural
properties of the tip attractive rodlike particles. Our simula-
tions run for 20000 time units that, in physical quantities,
correspond to /mD?/ey. We employ time steps of 1073 in
these units, in other words, a total of 2 x 107 time steps. We
save configurations every 2 x 10° time steps. The volume V

042702-2



SELF-ORGANIZATION OF TIP-FUNCTIONALIZED ...

PHYSICAL REVIEW E 100, 042702 (2019)

of the box is equilibrated for fixed temperature 7' and pressure
P, using the Nosé-Hoover thermo- and barostat, which allows
the box dimensions to adjust independently [26]. This choice
is important to accommodate layered phases and obtain their
undistorted interlayer distance. From the average equilibrated
volume V, we calculate the volume fraction ¢ with the expres-
sion ¢ = Nvy/V, where vy is the volume of the spherocylin-
der whose length is equivalent to the average length of the
chains at very low densities, vy = 7D3/6 4+ wD*L/4. That
means that the actual volume fraction is slightly lower than
the value we adopt to represent it. This choice is made in order
to keep most of the parameters of our simulation fixed. The
results we present in this paper are from expansion simulation
runs starting from a crystal-like configuration, which we
describe in more detail in the paragraph below. We also per-
form compression runs for the particles without attractive end
tips for all phase transitions identified. These results are not
shown. In these runs, the initial configuration is obtained from
an (expansion) equilibrium configuration at a lower pressure
P (or volume fraction ¢) near the phase transition. From the
compression runs, we note that the phase transitions take place
at the pressure we expected from the expansion simulations.
The largest disagreement in the calculated volume fraction of
the resulting more condensed phase is 0.5%. For this reason,
our simulations starting from the crystal-like configuration
seem to be robust.

D. Initial configurations

For the expansion simulation runs, we consider diverse
variations of the crystal-like initial configurations correspond-
ing to how our polar particles are oriented. In all configura-
tions, the particles are organized in 16 AAA stacked layers. In
each layer, particles are organized in a hexagonal lattice and
aligned parallel to the z direction. For this reason, if particles
in our simulations have a preferential direction, which is
described by the director n, then this is usually approximately
parallel to the z direction, n || Z. In the first type of initial
configuration, all attractive beads are in the upper tip of the
particle. Even though our simulation time is relatively long,
it is not sufficiently long to equilibrate the system at all con-
centrations. In other words, in the more condensed phases, we
do not reach 1:1 chains up and down relative to the director.
In the second type of initial configuration investigated, the
attractive beads alternate between the upper and the bottom tip
within the same layer. In the third type of initial configuration
tested, half of the layers have the attractive groups in the
upper tip and the other half have the particles’ attractive bead
in the bottom tip. These layers alternate in a way that this
third configuration has a bilayer type of structure. The latter
two initial configurations result in structures with fewer or no
defects at all. Hence, in the following sections, we present the
results from the simulations in which the third type of initial
configuration is used.

See in Fig. 1 the schematic representation of the three
initial configurations followed of a snapshot from the prelim-
inary simulations (in which our particles have an aspect ratio
Lo/D = 6.46 and a flexibility Ly/Lp = 0.1) after 20 000 000
time steps at approximately constant volume fraction
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FIG. 1. Schematic representation of the initial configurations and
snapshots of resulting configurations after 20 000 000 time steps of
simulations starting from each of them at approximately constant
volume fraction ¢ = 0.52 (at a fixed pressure 1.7 €/D?) for the
attraction strength of 0.6 kg7 . In the initial configuration in (a),
all particles have the same orientations, in (b), particles alternate
orientation within the same layer, and in (c), all particles have the
same orientation within the layer, but the orientation alternate from
consecutive layers.

¢ = 0.52 (at a fixed pressure 1.7 €/D?) for the attraction
strength of 0.6 kgT .

E. Phase classification

Our equilibrium configurations are classified using or-
der parameters (OPs) and correlation functions. The liquid-
crystalline phases we first distinguish from the isotropic phase
by quantifying the degree of alignment of the particles through
the usual nematic OP. A second OP quantifies the organization
of the particles in layers. If layers are not formed, then we have
either a nematic or a columnar phase. If layers are formed,
then we have either smectic or crystalline phases. A third OP
quantifies the hexagonal bond order. This procedure allows
us to distinguish between nematic and columnar and between
the smectic-A and the smectic-B and crystal phases. This
final classification is possible by studying the correlation of
the bond order (measuring two-dimensional hexagonal order)
and the pair correlation function (probing radial in-plane
positional order). Using this procedure, we are able to distin-
guish between all known phases of the fd virus suspensions,
mentioned in Sec. I. Our analysis procedure is similar to the
one employed in our previous work to which we refer for
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details [24]. We also identify two distinct smectic and crys-
talline phases due to the attraction between the functionalized
tips. The procedure to distinguish between them we describe
below in the paragraph dealing with the antiferroelectric phase
transition.

F. Aggregation statistics

Further analysis is required in order to study the structure
of supramolecular assemblies in all phases, in particular in the
layered phases where the spacing is expected to be influenced
by (i) the attraction strength between tip beads and (ii) the
concentration of the particles. We quantify the aggregation
of the particles by focusing on cluster sizes. By cluster we
refer to groups of attractive tip beads that are spatially close
or connected by a bead satisfying this criterion. We arbitrarily
choose a radius r.. The first choice for r. is 1.24D. This value
corresponds to the second root of a parabola, whose minimum
is at the minimum of the Lennard-Jones potential and the
first root coincides with the root of this potential. If pairs
of attractive tip bead are closer than this distance, then we
consider them as belonging to the same group. Note that not
all beads in a group need to be closer than r., as some can be
connected indirectly via other attractive beads, as represented
in the inset of Fig. 4, in Sec. I'V.

G. Antiferroelectric phases

Due to the polarity of our molecules, we identify two types
of organization in layered phases: one in which the attractive
tip beads are present in roughly equal numbers in every
interlayer spacing and another in which the attractive tip beads
are mostly present in every other interlayer spacing, creating a
bilayer structure with double periodicity of that of the layers.
In order to pinpoint the transition between these two states
within our phase diagram, we project the particle orientations
on a vector along the director. We define the orientation vector
of the particles connecting the repulsive end bead to the attrac-
tive end bead. The two extreme situations are as follows: (1)
the rods are in a bilayer type of configuration and, as a result,
all particles within a layer are either parallel or antiparallel to
a vector along the director; and (2) the ratio between parallel
and antiparallel particles to the same vector within a layer is
1:1. For these cases, if the fractions of particles in a particular
orientation in even and odd layers are respectively f = 0 and
0.5, then the antiferroelectric order parameter is defined as
8 =1—2f. We choose the value § = 0.5 as a criterion to
classify the phases as the usual smectic-A (§ < 0.5) or the
antiferroelectric smectic-A; (6 > 0.5). The same procedure
is applicable to the smectic-B and crystalline phases, whose
corresponding antiferroelectric phases are denoted smectic-B;
and crystalline, phases. From snapshots of our simulations,
we find that even at the lowest attraction strength investigated,
the smectic-B and crystalline phases are antiferroelectric.

H. Layer thickness

We utilize two different procedures to calculate the in-
terlayer distance in the layered phases. As a first procedure,
we take the value that maximizes the Fourier component of
the normalized distribution of center of masses along the

director [27]. This does not differentiate between the layers
regarding the fraction of particles pointing up. Because there
are two types of smectic-A phase, we expect that the interlayer
distance is different if in their interface there are mostly
attractive or repulsive tips. In order to measure this difference
in the bilayered phase, we plot the histogram of counts of
the center of mass for each (arbitrary) interval of positions
along the director. In the layered phases, the distribution of
the centers of mass of the particles along the director is
peaked around the centers of the layers. Hence, we fit a
Gaussian function to each counting of the center of mass
divided by the maximum count, g;(z) = e’bf(z’“f)z, where e
is the usual Euler constant. The parameter b; is related to the
standard deviation s of the Gaussian function by b; = 1/2s?
and describes how well ordered the layers are. The center
of the Gaussian distribution a; corresponds to the position
of the jth layer along the director. The distance between
two consecutive layers is then calculated as A; = a1 —a;.
Beyond the antiferroelectric transition, the values of A ; with
odd j correspond to the distance between layers in which
there are more attractive tips than tails facing each other.
For this reason, the average value A.qq is expected to be
lower than Acyen, beyond the antiferroelectric transition; Aeyen
is then the average over the values A; with even j and over the
equilibrium configurations for a given pressure.

I. Smectic ordering potential

The smectic ordering potential AU (z) describes the molec-
ular field experienced by each individual particle in the
smectic-A phase. It is obtained from the distribution of the
particles’ centers of mass along the z direction, which cor-
responds approximately to the director n, p(z). More specif-
ically, the relation p(z) ox e~ 2V@/kT holds by virtue of as-
suming a Boltzmann distribution. We fit this relation to the
simulation data to extract AU (z). From the smectic ordering
potential, we compare between various attraction strengths
and volume fractions how well defined the layers are and how
difficult it is for a particle to hop from layer to layer. We
quantify it by measuring the difference between the highest
and lowest values of the smectic ordering potential AU, which
defines the height of the smectic ordering potential say, for
several values of the attraction strength and volume fraction.
We also estimate the width of the smectic ordering potential
way by calculating the full width at half maximum of p(z),
using the standard deviation s of the Gaussian function de-
scribed in the previous paragraph, giving way = 2+/21n2s.

III. PHASE BEHAVIOR

We focus attention on the phase behavior of semiflex-
ible rodlike particles that have an aspect ratio of Ly/D =
10.77 and a flexibility of Ly/L, = 0.3. The flexibility of our
model particles matches that of the M13 virus investigated
in Ref. [20] albeit that the aspect ratio of our particles is
considerably shorter by a factor of 10. Actually, the effective
aspect ratio of the viruses, accounting for the electric double
layer of the M13 particles, is about 3 times our aspect ratio.
We choose to simulate shorter particles, because it enables
us to investigate them for a wide range of concentrations,
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FIG. 2. Calculated phase diagram of repulsive, rodlike particles that have a single attractive tip as a function of the attraction strength
between the end tips (in units of thermal energy kz7) and the volume fraction ¢. The particles have a base aspect ratio Ly/D = 10.77 and
flexibility of L/Lp = 0.3 (see the main text.) The following phases are identified: isotropic (orange circle), nematic (yellow square), smectic-A
(green up-triangle), smectic-A, (dark green down-triangle), smectic-B (blue diamond), smectic-B, (dark blue diamond), crystalline (purple
pentagon), and crystalline, (dark purple pentagon). Snapshots of the data points highlighted by red circles in the phase diagram are presented

in Fig. 3.

keeping the same number of particles in our simulation box
and the total simulation time. In general, as the aspect ratio
of the particles is reduced, the phase transitions of their
suspensions are shifted to larger volume fractions because
the excluded volume interaction is less anisotropic. Still,
both experimental and simulation particle models support
the same phases except for the columnar phase, which has
not yet been observed in particle-based simulations involving
monodisperse particles [24,28-30]. Therefore, we are able to
compare them in what is our main interest in this paper: the
increase of the stability of the smectic-A phase at the expense
of the nematic phase.

In the phase diagram presented in Fig. 2, the phase se-
quence at the zero attraction strength, € = 0 kgT, is taken
from our previous work [24]. In this case, the particles are
purely repulsive and have the same total number of beads
as the particles with an attractive tip. Note that, as they are
not equipped with the attractive bead, these rods are not
polar. For these purely repulsive particles, the phase sequence
consists of the following phases from lower to higher vol-
ume fractions: isotropic, nematic, smectic-A, smectic-B, and
crystalline phases. From these simulations, we find that the
isotropic-to-nematic and the smectic-A—to—smectic-B phase
transitions seem to be of the first order. The smectic B—to—
crystalline phase transition appears to be continuous, while
the nematic—to—smectic-A phase transition is either contin-
uous or weakly first order. In the recent work of Milchev
et al., in which very large-scale simulations of semiflexible
particles are performed, the latter transition is continuous
[31]. For the model particles described under Methods, we

vary the depth of the attraction well € of the Lennard-Jones
potential between the beads representing the functionalized
tips of the viruses, that is, the attraction strength, from 0.2 to
2 kpT. The calculated volume fraction is within the range of
approximately 0.1 to 0.7. In order to obtain more resolution
in volume fraction near the isotropic-nematic transition, we
perform additional simulations for the attraction strengths
1 and 1.6 kgT near the transition. We do likewise for the
nematic—smectic-A and isotropic—smectic-A phase transitions
for the attraction strengths 1.4 and 1.8 kzT. We separate our
discussion of the phase diagram in the next two paragraphs,
related to the low- and a medium-energy regime of the
single-end, attractive interaction on account of the qualitative
difference in behavior.

A. Lower attraction strengths

For values of the attraction strength up to about 1 kg7,
our simulations show that there is no significant change in
the isotropic-to-nematic phase transition. Comparing the se-
quences at 0 and 1 kT, which is the one with more resolution
in volume fraction in this regime of attraction strengths, we
find that the largest and lowest volume fractions in which
these phases are stable in our simulations (corresponding to
the coexistence concentrations) coincide. For this reason, the
isotropic-to-nematic phase transition remains first order. We
find that the nematic phase is destabilized in favor of the
smectic-A phase and that this phase transition becomes more
strongly first order as the strength of the attraction interaction
is increased. These findings are consistent with the recent
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experimental observations on aqueous suspensions of M13
virus [20]. Our most remarkable finding is an antiferroelectric
phase transition within the smectic-A phase. We identify the
new smectic-A, phase, characterized by a bilayer type struc-
ture, in our phase diagram at 0.4 kg7 and higher attraction
strengths, depending on the density. Section IV provides
more details about the antiferroelectric transition, which in
our simulations is continuous. There are also antiferroelectric
smectic-B and crystalline phases. In fact, even at the lowest
attraction strength investigated, we find only the antiferroelec-
tric smectic-B; and crystalline, phases, suggesting that only
tiny interaction energies are required to stabilize these. We did
not attempt to pinpoint at what low value of € the transition
happens for these phases. As for the other phase transitions,
we find that there is no significant change in the smectic-A—or
smectic-A,—to—smectic-B, phase transition. Furthermore, the
smectic-B, phase destabilizes with increasing value of € and
the crystalline, phase becomes more stable at lower volume
fractions. We understand that the suppression of the smectic-
B; phase is due to the increased ordering of particles due to the
sticky end groups, as we shall see below when discussing the
changes in the microstructure of the phases with increasing
attraction between the tips. Note that, despite the distinct
polarity caused by a single sticky end, this fundamentally does
not allow for macroscopically polar phases as the sticky ends
attract each other.

B. Higher attraction strengths

In order to investigate the effect of larger attraction ener-
gies between the end groups, we performed simulations for at-
traction strengths up to 2 kzT . The phase sequence at 1.2 kgT
follows the trends described in the previous paragraph. For
this reason, the coexistence concentrations (volume fractions)
of the nematic and smectic-A;, phases are even lower and the
difference between them (the phase gap) becomes larger. For
stronger attraction, the smectic-B, disappears, and as a result
the smectic-A,—to—smectic-B, phase transition is replaced by
a smectic-Ap—to—crystalline, transition. This transition seems
to be independent of the attraction strength and the phases
have similar coexistence volume fractions as the transition
at lower values of the attraction strength. Between attraction
strengths 1.6 and 1.8 kgT', we find that the nematic phase is
completely suppressed in favor of the smectic-A,, thus also
affecting the stability of the isotropic phase. Therefore, the
phase sequence at the highest attraction strengths 1.8 and
2 kgT consist of only three phases: isotropic, smectic-A;, and
crystalline,. From these results, we find that the isotropic
phase may also be further destabilized with increasing attrac-
tion strength between the tips. A similar transition between
an isotropic and a smectic-A phase with additional double
periodicity was found in simulations of hinged rods for a
model of gapped DNA complexes [32]. These authors dubbed
this phase the Sm-fA, where the f stands for folded because
the rods are folded at the hinge, creating this additional double
periodicity of the position of the hinges in the structure. From
the simulations at increased resolution, we are able to con-
clude that the isotropic-nematic phase gap in volume fraction
is about 0.02 for the attraction strength of 1 kg7 and only
slightly larger for 1.6 kgT, corresponding to approximately

0.03. Therefore, the order of this phase transition does not
seem to be strongly affected by the attractive end aggregation.
On the other hand, the nematic-smectic-A,, as previously
discussed, and isotropic—smectic-A phase transitions become
more strongly first order with an increase of the attraction
strength, as we find from the more detailed sequences at the
attraction strengths of 1.4 and 1.8 kgT.

The phase diagram presented here compares reasonably
well with the phase diagram obtained from the numerical
solving of our simple Maier-Saupe-McMillan model for end-
functionalized, perfectly parallel rods [Fig. 11(b)]. See the
Appendix for a discussion. Next, we discuss in more detail
the microscopic structure of the various phases.

IV. MICROSTRUCTURE OF THE PHASES

In this section, we present the most salient features of the
microstructure of the various phases, focusing in particular on
those of the smectic-A and smectic-A; phases in order to better
understand what drives the antiferroelectric phase transition.
First, we discuss the qualitative and quantitative changes in
the aggregation of the particles with attractive tips. For this
purpose, we investigate snapshots as well as the aggregation
statistics of the particles in the various phases. Second, we
discuss the behavior of the interlayer distance for the smectic
and crystalline phases, as well as their antiferroelectric version
based on results from the two different analysis procedures
described in Sec. II. Next, we provide more details about the
order of the antiferroelectric phase transition, presenting the
order parameter used for the classification of the smectic-A
and smectic-A, phases. Finally, we analyze the stability of the
smectic-A and smectic-A; at a constant volume fraction, using
the smectic ordering potential for various attraction strengths.
For the different phases, we identify the following features.

A. Clustering of particles

In the next paragraphs, we describe how the aggregation
of elongated particles is influenced by the strength of the
attractive tips in the various phases. The snapshots in Fig. 3
represent the aggregation patterns at approximately constant
volume fraction ¢ in the isotropic phase at ¢ ~ 0.30 (a), ne-
matic phase at ¢ ~ 0.38 (b), smectic-A and smectic-A; phases
at ¢ ~ 0.51 (c), and smectic-B and crystal phases at ¢ ~ 0.56
(d). Left to right, each pair of snapshots shows examples of
configurations of particles with attraction strengths of 0.4 and
1.6 kgT. The snapshots show that the aggregation pattern of
the tips is clearly distinct, depending on the attraction strength
for particles in the same phase and at the same volume
fraction, as we describe in detail in the paragraph below.

From our phase diagram in Fig. 2, we find that the
isotropic-to-nematic transition is only affected for € >
1.6 kgT. At this attraction strength, lamellar, disk-, or
inverted-micelle-like structures are formed. These two differ-
ent aggregation patterns are represented in the snapshots on
the right in Figs. 3(a) and 3(b). In Fig. 3(a), we find that,
overall, the particles have random orientations, as expected for
the isotropic phase. The particles aggregated in lamellar struc-
tures have similar orientation but the structures themselves
have diverse orientations. In Fig. 3(b), at attraction strenght
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FIG. 3. Snapshots of the simulations at approximately constant
volume fraction ¢ in the (a) isotropic phase at ¢ =~ 0.30, (b) nematic
phase at ¢ ~ 0.38, (c) smectic-A and smectic-A, phases at ¢ =~
0.51, and (d) smectic-B (left) and crystal phases (right) at ¢ ~ 0.56
obtained. From left to right, a pair of snapshots for each value of
the volume fraction is given for attraction strengths of 0.4 and 1.6 in
units of kgT. The corresponding data points are highlighted by red
circles in the phase diagram in Fig. 2.

1.6 kgT (right), we note that the alignment of the particles
in the nematic phase results in a structure that resembles a
highly disordered smectic phase. In view of that, we conclude
that the formation of such lamellar structures must be the
reason that there is a suppression of the nematic phase in
favor of the smectic phase. In the snapshots of Fig. 3(c), we
compare how particles are organized along the director in the
smectic-A (left) and the smectic-A; (right) phases at the same
volume fraction. We find that the layers become more well
defined with increasing attraction strength. This is confirmed
comparing the snapshots of Fig. 3(d) for the smectic-B, and
crystalline, phases. The attraction between the tips increases
the degree of order of the particles, reducing the stability range
of the smectic-B, phase in favor of the crystalline phase.

We compare these patterns with the corresponding ag-
gregation statistics as a function of the volume fraction in
Fig. 4, where we present [Fig. 4(a)] the average tip aggrega-
tion number for various attraction strengths and [Fig. 4(b)]
the fraction of particles in monomers, dimers, and trimers
or larger aggregates for an attraction strength of 0.2 kpT.
Figure 4(a) shows, as expected, that the average aggrega-
tion number increases with increasing attraction strength and
with increasing concentration due to mass action [33]. The
microstructure therefore changes even in the isotropic phase,
although, surprisingly, the isotropic-nematic phase transition
is not affected at all. As we infer from the inset in Fig. 4, the tip
clustering is weak at attraction strengths up to 1 kg7 in both
the isotropic and the nematic phases. For these phases and
attraction strengths, the aggregation numbers remain modest
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FIG. 4. (a) Average aggregate size for various attraction
strengths between the end groups as a function of the volume fraction
of particles. Attraction strengths 0.2, 0.6, 0.8, 1.2, 1.6, and 2.0 in
units of kg7 from right to left. The inset is an enlarged view of
the graph for lower volume fractions for attractive strength equally
spaced between O and 1 kzT. (b) Fraction of monomers, dimers,
trimers, or larger aggregates, which are connected via the attractive
ends for attraction strength 0.2 in units of kzT. The particles have
aspect ratio Ly/D = 10.77 and a flexibility of Ly/Lp = 0.3. The fol-
lowing phases are identified: isotropic (orange circle), nematic (yel-
low square), smectic-A (green up-triangle), smectic-A, (dark green
down-triangle), smectic-B, (dark blue diamond), and crystalline,
(dark purple pentagon).

even though growth is stronger than a linear increase with
the volume fraction. Actually, in these phases the average
aggregation number is not larger than 1.3, which means that
the tips are mostly monomers. Figure 4(b) confirms this: In
both the isotropic and the nematic phases, the fraction of
monomers and dimers predominate. The fraction of trimers
or larger aggregates surpasses the fraction of dimers only in
the smectic-A phase and then the fraction of monomers in
the smectic-B, phase. This indicates that larger aggregates
are formed due to the inherent structure of the phase rather
than due to the attraction strength alone. Indeed, part of the
clustering is due to the change in the contact value of the pair
distribution function with increasing pressure [34]. For this
reason, there is aggregation of tips even for € = 0 kg7 and
the aggregation becomes much more prominent in the smectic
and crystalline phases, and their antiferroelectric versions on
account of the strongly increased pressures. Note the abrupt
increase in size in going from the isotropic or nematic to the
smectic-A; phase for stronger attractions and from smectic-A
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FIG. 5. Average aggregation number for the attraction strengths
between O and 2 in units of k3T divided by pressure and presented
as a function of the volume fraction ¢ in the isotropic (orange circle)
and nematic (yellow square) phases. The particles have a base aspect
ratio Lo/D = 10.77 and flexibility of L/Lp = 0.3.

or smectic-A, to smectic-B, for weaker attractions in Fig. 4(a).
This in all likelihood is connected with the transition appear-
ing strongly first order.

Figure 5 corresponds to another version of the inset of
Fig. 4(a). In this figure, we present the average aggregation
number divided by the pressure P in the isotropic and nematic
phases for the attraction strengths between 0 and 2 kT, pre-
sented as a function of the volume fraction ¢. The overlapping
of the curves for the attraction strengths between O and 1
kgT indicates that, at this interval of attraction energies, the
aggregation of the attractive tips is mainly due to the mass
action [34].

B. Interlayer distance

The interlayer distance A corresponds to the average dis-
tance between the center of masses of consecutive layers.
This quantity comprises the average layer size added to the
average interlayer gap, as represented in the inset of Fig. 6 and
depends on the characteristics and interactions of the particles.
As described under Methods, we apply two different analysis
procedures to our data in order to investigate the interlayer
distance. We refer to the results relative to the standard pro-
cedure as the averaged interlayer distance and to the results
relative to the second procedure as the differentiated interlayer
distance. The main difference is that in the second procedure
we differentiate between odd and even layer numbers. In
Fig. 6, we present the averaged interlayer distance A relative to
the average particle length L + D as a function of the volume
fraction ¢ for attraction strengths between the end groups
ranging in strength from O to 2 kzT. In Fig. 7, we present
the values of the differentiated interlayer distance for even
Aeven and odd Aqq Over the particle length L 4+ D as a function
of the volume fraction ¢ for attraction strengths 0.2, 0.6, and
1.0 kgT . Note that the length L is not the bare length but the
actual, measured value, somewhat compressed by the ambient
pressure.

In Fig. 6, we find that the scaled interlayer distance
A/(L + D) exhibits a rich behavior depending on the attrac-
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FIG. 6. Scaled interlayer distance A/(L + D) of repulsive, rod-
like particles with a single attractive tip as a function of the volume
fraction ¢ for attraction strengths between the end groups ranging
from O to 2 in units of kzT from top to bottom in the smectic-A (green
up-triangle), smectic-A, (dark green down-triangle), smectic-B (blue
diamond), smectic-B, (dark blue diamond), crystalline (purple pen-
tagon), and crystalline, (dark purple pentagon) phases. Particles have
aspect ratio Ly/D = 10.77 and a flexibility of Ly/Lp = 0.3. The inset
is an illustration representing the interlayer distance A.

tion strength between the tips and on the state of aggregation.
In the smectic-A phase and at attraction strengths larger than
or equal to 1 kgT, the scaled interlayer distance increases
with the volume fraction. Note that these values are smaller
than unity, which means that the layers slightly interdigitate.
This interpenetration lowers the interaction energy because it
allows for a larger surface contact between the tips, which
consist of an exposed attractive hemispherical cap. Between
0.8 and 0.6 kT, the interlayer distance seems to decrease
with increasing volume fraction. Interestingly, it is for these
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FIG. 7. Average interlayer distance relative to the average rod
length Ao4q/(L + D) for odd and Aeven/(L + D) for even interlayer
distances of repulsive, rodlike particles that have an attractive tip
in the smectic-A (green up-triangle), smectic-A, (dark green down-
triangle), smectic-B, (dark blue diamond), and crystalline, (dark
purple pentagon) phases for attraction strengths of (a) 0.2, (b) 0.6,
and (c) 1.0 in units of k3T . Particles have aspect ratio Ly/D = 10.77
and flexibility of L/Lp = 0.3.
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strengths that we identify both the smectic-A and the smectic-
A, phase. For lower attraction strengths, the scaled interlayer
distance is slightly larger than unity, indicating that, in this
case, layers are nearly touching each other. Nevertheless, the
dependence on the volume fraction is not obvious. Overall, the
scaled interlayer distance seems to decrease with increasing
attraction strength between tips. This effect is unambigu-
ous if we consider volume fractions lower than 0.45. In
other words, at a fixed volume fraction, layers interpenetrate
more as the attraction strength between tips increases. As
a result, the inlayer density is expected to be smaller. In
fact, in a previous paper, where we investigate the semi-
flexible repulsive rods, we find similar behavior [24]. In the
smectic-B and the crystalline phases or the smectic-B, and the
crystalline, phases, we note that the scaled interlayer distance
decreases with volume fraction and that the value converges
to unity with increasing volume fraction for all attraction
strengths.

Figure 6 clarifies several features of our system but hides
the distinction between layers present in the antiferroelectric
phases. In Fig. 7, which presents results from the differ-
entiated analysis, there is the distinction between odd and
even interlayers at three values of the attraction strength. At
the first value of 0.2 kgT', represented in (a), we find that
the interlayer distance is approximately the same for even
and odd interlayers in the smectic-A phase. As expected,
their values are also approximately equivalent to the averaged
layer thickness, once the layers are nearly indistinct in this
phase. Nevertheless, in the smectic-B; and crystalline, phases,
the values for the even and odd interlayer distance, which
respectively contain the smaller and larger fraction of attrac-
tive tips, are distinct. The former is larger than unity and the
latter is approximately unity. These values slightly decrease
with the volume fraction. In Fig. 7(b), the results are for the
attraction strength of 0.6 kzT'. In the smectic-A phase, we find
that for that case the values of the odd and even interlayer
distances are approximately equal only at the lowest volume
fraction and that they become distinct as the volume fraction
increases. Notice that the even interlayer distances are larger
than the odd ones, because even though the antiferroelectric
order parameter § is different from zero, it is smaller than
1/2 and hence the phase is not classified as smectic-A;,. The
even interlayer distance is approximately constant and equal
to unity, while the odd interlayer distance becomes smaller,
meaning that the layers in these interfaces are also interpene-
trating. In the smectic-A, phase, the even interlayer distance
follows the same trend as in the smectic-A phase, while the
odd interlayer is slight smaller but the dependence on volume
fraction is not clear due to the lack of data points available in
this phase. In the smectic-B, and crystalline, phases, it seems
that even and odd interlayer distances do not depend on the
concentration. Their values are slightly above and below unity,
respectively. We find the same for an attraction strength of
1.6 kT, as we see in Fig. 7(c). For the smectic-A, phase, we
find that the values are rather different and that, while the trend
for even interlayer distance remains as described before, the
odd interlayer distance, which is smaller than unity, tends to
slightly increase with increasing volume fraction. This effect
is probably due to the lower in-layer density of particles
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FIG. 8. Antiferroelectric order parameter é of repulsive, rodlike
particles that have a single attractive tip as a function of volume
fraction ¢ for various values of the attraction strength between the
attractive tips. In the inset we compare the antiferroelectric 6 and
smectic o order parameters for the attraction strength of 0.7 in units
of kgT. Particles have aspect ratio Ly/D = 10.77 and flexibility of
Lo/Lp = 0.3. The following phases are identified: nematic (yellow
square), smectic-A (green up-triangle), and smectic-A, (dark green
down-triangle) phases.

at lower volume fractions, which offers more space for the
particles to interpenetrate.

C. Antiferroelectric phase transition

The antiferroelectric phase transition in the phase diagram
is linked with the polarity of our single-ended attractive
elongated particles. We identify this phase transition using
the antiferroelectric order parameter 8, defined in Sec. II, and
presented in Fig. 8 as a function of the volume fraction ¢ for
various values of the attraction strength. Its value continuously
increases with increasing volume fraction, which indicates a
second-order phase transition. As previously mentioned, we
are not able to pinpoint the antiferroelectric phase transition
in the smectic-B and crystalline phases: We find the smectic-
B, and crystalline, even at the lowest attraction strength
investigated (0.2 kgT'). In the inset, the antiferroelectric order
parameter § is represented together with the smectic o order
parameter as a function of concentration for attraction strength
0.7 kgT . The smectic order parameter itself does not provide
a clear indication of the presence of an antiferroelectric tran-
sition although it could be masked by our limited resolution
in the volume fraction ¢. For a comparison with our simple
Maier-Saupe-McMillan model, where we do see much more
enhanced smectic ordering beyond the transition [Fig. 11(a)],
we refer to the Appendix and to Fig. 9, which is another
version of the inset of Figure 8. In the figure, we compare
the smectic order parameter ¢ as a function of A¢/dy—_sm,
where A¢ is the difference between the volume fraction and
the volume fraction at the nematic—to—smectic-A (for € = 0
kgT) or—smectic-A, phase (for € = 0.7 kgT) transition, A¢ =
¢ — dn_sm- The volume fraction ¢y_gs, at the transition is
estimated by the average between the highest and lowest val-
ues of the volume fraction at which, respectively, the nematic
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FIG. 9. Smectic order parameter o of repulsive, rodlike particles
that have a single attractive tip as a function of A¢/¢py_sm, Where
A¢ is the difference between the volume fraction and the volume
fraction at the nematic—to—smectic-A (for € = 0) or smectic-A,
phase (for € = 0.7 kgT) transition, A¢ = ¢ — ¢y_sm, for attraction
strengths of 0 and 0.7 kgT . Particles have aspect ratio Ly/D = 10.77
and flexibility of Ly/Lp = 0.3. The following phases are identified:
nematic (yellow square), smectic-A (green up-triangle), smectic-
A, (dark green down-triangle), smectic-B (blue diamond), and
smectic-B, (dark blue diamond) phases.

and smectic-A or smectic-A, phases are stable. We find that
the smectic order parameter o is smaller at smaller attraction
strength from the comparison of the values of € between 0
and 0.7 kgT. Therefore, this result shows that the degree of
order increases due to the attraction between single tips in the
layered phases.

D. Smectic ordering potential

The smectic ordering potential AU(z) represents the
molecular field that a particle experiences from the other
particles within a smectic layer. We calculate it for our sim-
ulations in the smectic-A phase around the antiferroelectric
phase transition, as represented in the top inset of Fig. 10.
From the inset, we find that both the height and the width
changes as we increase the attraction strength at a constant
volume fraction of ¢ = 0.52: The potential barrier increases
and becomes narrower around the center of the layer z/L =
0.5. In other words, the smectic layers become increasingly
ordered, as we also see from the snapshots in Fig. 3(c).
The smectic ordering potential seems to show more noise at
higher attraction strengths, in particular in between the layers.
This, in all likelihood, is due to the poor statistics: Once the
particle centers of masses are concentrated around the center
of the layer fewer particles venture out between the layers.
From Fig. 10, we find that the height of the smectic ordering
potential linearly increases with the attraction strength at the
volume fraction of ¢ = 0.52, and the trend does not seem
to be changed crossing the antiferroelectric phase transition.
The same is true if the volume fraction is increased at con-
stant attraction strength, as it is shown in the top inset of
Fig. 10. Therefore, our particles are more strongly attached
to a layered structure and, on top of that, the layer itself
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FIG. 10. Smectic ordering potential of repulsive, rodlike parti-
cles with a single attractive tip. Particles have an aspect ratio of
Lo/D = 10.77 and a flexibility of Ly/Lp = 0.3. (a) Height of the
smectic ordering potential of repulsive as a function of the attrac-
tion strength between tips in the smectic-A (green up-triangle) or
smectic-A, (dark green down-triangle) phases at a volume fraction
of ¢ = 0.52. In the inset, there is the same height of the smectic
ordering potential of repulsive as a function of the volume fraction
for attraction strengths 0, 0.4, 0.8, and 1.2 in units k7. (b) Width
of the smectic ordering potential of repulsive as a function of
the attraction strength between tips in units of k7. In the inset,
the smectic ordering potential AU(z) is presented as a function
of the position along the director, normalized by the particle length
z/L. The increase of the attraction strength drives the stabilization of
the smectic-A and smectic-A; phases.

is more strongly confined due to the small amplitude in the
fluctuations of the particle positions around the average. This
molecular field of particles in the smectic phase as well as
the smectic and antiferroelectric order parameters, presented
in the previous paragraph, are also reasonably well described
by our simple Maier-Saupe-McMillan model (see Figs. 13 and
14 in the Appendix).

V. DISCUSSION AND CONCLUSION

The aim of the present work is to study by means of
molecular dynamics simulations the influence that attractive
interaction between one of the two ends of a collection of
otherwise mutually repulsive, elongated particles have on
their phase behavior, using computer simulations. Our work
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shows that their phase behavior, and the structure of the
various liquid-crystalline phases, are strongly affected even
by relatively weak interaction strengths on the order of the
thermal energy. The phase behavior has two striking features:
(1) the formation of bilayered antiferroelectric phases and (2)
the large increase of stability of smectic-A at the expense of
the nematic phase, and even at the expense of the isotropic
phase as we increase the attraction strength between the tips
beyond about 1.6 kgT . The key factor is the interplay between
the interaction energy, polarity of the particles, and the phase
microstructure. The analysis of the microstructure reveals that
the stability of the isotropic and nematic phases is affected
by the aggregation of the tips, only if the particles align in
response to the local increase in concentration. In the layered
phases, the organization of the particles with the attractive tips
results in more strongly ordered microstructures even at very
weak attraction energies.

Our results concerning the shift of the nematic—to—smectic-
A phase transition to lower volume fractions, which also
seems to become more strongly first order with an increase
of the attraction strength, are supported by experimental evi-
dence. Despite the fact that the difference in the aspect ratio
between simulated and experimental particles prevents us to
make a quantitative comparison, we are able to qualitatively
compare the smectic ordering potential of the experimental
and computational model particles. We find for both of them
larger values of the height and smaller values of the width
as the attraction strength between tips increases. As expected,
because the experimental model particles are larger in aspect
ratio, their smectic potential height is also larger, due to the
increase of stability of the smectic-A phase with increasing
aspect ratio [35]. In our theory (Appendix), the shift of the
nematic—to—smectic-A phase transition is independent of the
volume fraction. Nevertheless, the shift to lower volume frac-
tions is captured if the nematic-to-smectic-A, phase transition
is considered. The height and width of the effective smectic
ordering potential from our Maier-Saupe-McMillan theory
does not emulate the smectic ordering potential from our
simulations. This might be due to our choice of representing
it as a cosine function instead of a Gaussian function.

In spite of the obvious limitations, our study does con-
tribute to the understanding of how selective surface func-
tionalization of colloidal liquid crystals affects their self-
organization by providing a systematic study of the stability
and structure of these phases for a wide range of both volume
fractions and attraction strengths. We show that incorporating
a single (enthalpic) functionalized end in elongated colloidal
particles gives rise to an even more complex and rich phase
behavior than for the purely repulsive ones. In the light of
this, we suggest that agreement between purely repulsive
models and experiment cannot be expected because residual
attractive interactions, local or global, strongly influence the
phase behavior.
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APPENDIX: THE ANTIFERROELECTRIC PHASE
TRANSITION WITHIN A MAIER-SAUPE-MCMILLAN
TYPE THEORY

Here we describe a simplified model for the antiferroelec-
tric phase transition for N perfectly parallel, rodlike parti-
cles, equipped with a single tip attractive interaction. These
particles are aligned along the z axis, forming the nematic
phase if they are uniformly distributed or smectic phases if
their positions are periodically distributed along the z axis.
The periodicity in the smectic phases is d, corresponding
to the spacing between the layers. The single tip attraction
is the key element for the existence of the smectic-A, phase.
In this bilayered phase, the distribution of the attractive tip has
the periodicity 2d.

Our description is inspired by Maier-Saupe-McMillan the-
ory [36,37]. We write the Helmholtz free energy F in one layer
as the sum of the Gibbs entropy, proportional to the position
density distribution along the director of both the elongated
particles p(z) and the attractive tips f(z), and energy terms
proportional to the molecular field or smectic ordering poten-
tial, AUsma(z), and the interaction energy between attractive
tips, AUsma, (2),

BF +4 1
N = /_ dz|:p(z) In p(z) + EP(Z),BAUSmA(Z):|

d
2
+d

7 1
+ /d dz[f(Z)lnf(Z)+Ef(Z)ﬂﬁUSmAz(Z)}-

The factor 1/2 in the energy terms corrects for double count-
ing; the distribution functions f(z) and p(z) are properly
normalized.

The energy term 8 AUsma(z) drives the nematic—smectic-A
phase transition and it is expected to be proportional to the
volume fraction ¢ € [0, 1] and the smectic ordering parameter
o, S0

2z
BAUsma(z) = —¢yo cos (7) (Al

where y is an adjustable parameter and the cosine describes
the periodic molecular field (of periodicity d). The smectic
ordering parameter mentioned previously in this work is given

by
+% 2
o= / dz p(z) cos <£>
—4 d

Note that (Al) is temperature invariant: It represents
the hard-core nature of the interactions. The energy term
BAUsma,(z) drives the antiferroelectric transition and it
should arguably be also proportional to the volume fraction
¢ and some power of the smectic ordering parameter o, as
well as to the antiferroelectric order parameter 6 itself. We put
forward

(A2)

2
BAUsna,(2) = —¢ 67€ 8 sin <2idz>
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where € is a (dimensionless) measure for the strength of the
attraction between the tips and the sine function represents
the periodicity 2d of the antiferroelectric state. There is no
obvious mapping of the sticking energy of our simulations and
that of our model, although we would guess that € o< €. The
antiferroelectric ordering parameter is given by

+5 2z
§ = d in{ — ).
/—‘2’ Zf(z)51n<2d)

In equilibrium, the free energy must be functionally min-
imized, §(BF/N)/Sp = X and §(BF/N)/§f = u, accounting
for the normalization conditions

+4 +4
f dzp(z)z/ dz f(z) =1,

d d
2 2

(A3)

which require us to introduce the Lagrange multipliers A and

“w.
Making use of the normalization of p(z), we find that

exp [op(y +&5?)cos (22)]
fl% dzexp [op(y + €82)cos (£%)]

p(2) = (A4)

Note that € is an energy scaled to the thermal energy and
hence temperature dependent. From thermodynamics, we
have &(T) = &(Ty) — h(Ty)(T — Ty)/Ty, with i a dimension-
less enthalpy and Tj a reference temperature. For hydrophobic
interactions i < 0, implying that the molecular field increases
in strength with increasing temperature.

We employ the same procedure for f(z), and find

exp [8¢oe sin (Z£)]

f@)=— o
f_%z dzexp [8¢026 sin (ﬁ)]

(A5)

We linearize the equations for the smectic and the antifer-
roelectric order parameters, given by Eqs. (A2) and (A3), in
which we substitute the explicit expression for the density dis-
tribution of both the elongated particles p(z) and the attractive
tips f(z), from Eqs. (A4) and (AS5). From the linearization, we
obtain the following expressions for the order parameters:

ol
Loy +E) L2 oy +E82)

o (2 1 4
- (asaze%)(i B ¢026>'

From Eq. (A6), we find that, in order that the smectic order
parameter is positive, o > 0,

d(y +€8%) > 2, (A8)

and, from Eq. (A7), we find that 2 >0=> oy + g8%) > 2.
From these results, we have that the transitions to the smectic-
A or smectic-A, phases are continuous.

Alternetively, we recursively solve the coupled integral
equations numerically for the smectic and the antiferroelectric
order parameters, using the Mathematica software. We fix the
value for adjustable parameter y =5 in order to shift the
transitions volume fractions to values close to where we find
the transitions in our simulations. The initial values for the

and
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FIG. 11. Theoretical approach to describe the antiferroelectric
phase transition for perfectly parallel, hard rods that have a single
attractive end. Phases identified are as follows: nematic (yellow
square), smectic-A (green up-triangle), and smectic-A, (dark green
down-triangle). (a) Smectic and antiferroelectric order parameters
numerically calculated for the attraction strength € =6 and the
adjustable parameter y = 5, chosen to adjust the volume fraction
interval for convenient viewing. (b) Phase diagram obtained from
classification based on the order parameters for the same value of
the adjustable parameter y = 5. We find that the nematic phase is
destabilized in favor of the smectic-A, phase and that the smectic-A
phase is suppressed at high-enough attraction strength €.

smectic and the antiferroelectric order parameters is chosen
to be 1. From each iteration, we obtain new estimates for
o and § that will be the input values to the next one. The
volume fraction is fixed and increased from O to 1 in 30
steps. The sticking energy is also fixed at values between
€ = 0 and 24, which we increased at steps of 3 in each run
of our numerical calculations. The convergence criterion is
that consecutive integration results differ less than 0.001 for
at least 10 iterations.

From the results obtained using the procedure described
in the paragraph above, we calculate the values for the order
parameters o and §, with which we classify the corresponding
phase at the fixed set of sticking energy and volume fraction
parameters. From this procedure, we obtain the phase diagram
of perfectly parallel, hard rods that have a single attractive
end. In Fig. 11, we present in Fig. 11(a) the smectic o
and antiferroelectric § order parameters as a function of the
volume fraction ¢ at sticking energy € = 6 (and y = 5) and
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N

energy term BAUg,(2)
o

'
N

-4

FIG. 12. Energy term 8 AUsna,(z) or smectic ordering potential
as a function of the position normalized by the layer thickness
numerically calculated for the attraction strength € =6 and the
adjustable parameter y = 5 in the nematic (at volume fraction ¢ =
0.3), smectic-A (at ¢ = 0.5), and smectic-A, (at ¢ = 0.7) phases.
In the inset, the same energy term BAUsya,(z) calculated for the
volume fraction ¢ = 0.5 and the adjustable parameter y = 5 in the
smectic-A (at attraction strengths € = 0 and 6), and smectic-A, (at
€ = 12 and 18) phases.

in Fig. 11(b) the phase diagram obtained from classification
based on these order parameters. Notice that the numerical
phase diagram shows that the nematic—to—smectic-A transi-
tion is at ¢ = 0.4, which is the value given by Eq. (A8) for
8 = 0 and the adopted value of y =5, as expected.

From Fig. 11(a), we find that, unlike the corresponding
order parameters obtained from our simulations, there is a
shoulder in the smectic ordering parameter at the volume
fraction where the antiferroelectric phase transition occurs.
It indicates that the particles become more strongly ordered
along the director as the rods transition to the smectic-
A, phase. The effect is not captured by the smectic order
parameter in our simulations but this could be due to the
limited resolution in our simulations. For a comparison, see
the inset in Fig. 8(a). From Fig. 11(b), we find that our model
captures the destabilization of the nematic phase in favor of
the smectic-A, but the same is not true for the smectic-A. In
this case, the phase transition is independent of the sticking
energy. Nevertheless, the destabilization of the smectic-A in
favor of the smectic-A, phase seems to represent what is seen
in the simulations. From Fig. 12, we find that the height is
approximately the same in each phase, independently of the
attraction strengths between tips, unlike what we find in the
simulations. The same is true for the width of the smectic
ordering parameter. It is independent of both the attraction
strength and the volume fraction.

The height of the effective smectic ordering potential is
given by o¢(y + &8°). See Eq. (A4). This quantity is repre-
sented both as a function of the volume fraction for all the
attraction strengths investigated (Fig. 13) and as a function of
the attraction strength for the volume fraction 0.5, in which
only the smectic-A and smectic-A, phases are found (Fig. 14).
From the comparison between Fig. 13 and the inset in Fig. 10
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FIG. 13. Height of the effective smectic ordering potential is
given by o ¢(y + &5?) as a function of the volume fraction for the
attraction strengths € from O to 24 at the interval of 3. The following
phases are identified: nematic (yellow square), smectic-A (green
up-triangle), and smectic-A, (dark green down-triangle) phases. The
linear dependence of the amplitude of the smectic ordering potential
with the volume fraction is also what we find in our simulations. See
the inset in Fig. 10(a).

and between Fig. 14 and the Fig. 10 itself, we find that the
theory emulates the linear dependence of the height of the
smectic ordering potential as a function of the volume fraction
and of the attraction strength except for the angular coefficient
depending on the phase. The same is true for the width of
the smectic ordering potential, that does not decrease as the
attraction strength increases but is constant as can be seen in
Fig. 12.

14 T T T T

12 | 1

op(y+&d?)
<

0 ) ) ) )
0 5 10 15 20 25

interaction energy &

FIG. 14. Height of the effective smectic ordering potential is
given by o ¢(y + €8%) as a function of the attraction strength at the
volume fraction 0.5. The following phases are identified: smectic-
A (green up-triangle) and smectic-A, (dark green down-triangle)
phases. The linear dependence of the amplitude of the smectic
ordering potential with the attraction strength is also what we find
in our simulations. See Fig. 10(b).
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