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Glass transition and reversible gelation in asymmetric binary mixtures:
A study by mode coupling theory and molecular dynamics
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The glass transition and the binodals of asymmetric binary mixtures are investigated from the effective fluid
approach in the mode coupling theory and by molecular dynamics. Motivated by previous theoretical predictions,
the hard-sphere mixture and the Asakura-Oosawa models are used to analyze experimental results from the
literature, relative to polystyrene spheres mixed either with linear polymers or with dense microgel particles.
In agreement with the experimental observations, the specificity of the depletant particles is shown to favor
lower density gels. It further favors equilibrium gelation by reducing also the tendency of the system to phase
separate. These results are confirmed by a phenomenological modification of the mode coupling theory in which
the vertex functions are computed at an effective density lower than the actual one. A model effective potential
in asymmetric mixtures of hard particles is used to further check this phenomenological modification against
molecular dynamics simulation.
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I. INTRODUCTION

Colloidal suspensions show a wide variety of dynamic
properties and non-Newtonian behaviors. In particular, they
exhibit certain nonergodic or glassy states, which do not exist
in ordinary molecular or atomic fluids. In addition to the usual
high-density glass associated to the steric repulsion (“caging”
mechanism) one observes in certain colloidal suspensions
dynamically arrested states at lower density. As they are gen-
erally associated with the existence of a short range attraction
beyond the core repulsion, they are called « attractive glasses
», or physical gels at low density (see, e.g., Refs. [1–8] (and
[9,10] for a review). Defined in a broad way, such attractive
interactions exist for example in protein suspensions [11,12],
silica particles [13], polymers/colloids mixtures [3,14,15] or
colloids mixed with microgel particles [8]. In such asymmet-
ric mixtures, the effective attraction between the colloidal par-
ticles is induced by the depletion mechanism. These arrested
states can have practical consequences on the thermodynamic
behavior like, e.g., for protein crystallization [16], or for
potential applications of their mechanical properties.

The first theoretical studies performed in the mode cou-
pling theory (MCT [17]) adapted to colloids [18] predicted
low-density gelation in hard-particles fluids with very short-
range attractions [1]. Then, the question of the different
scenarios for gelation stimulated vivid debates, in particular
the relation between gelation and phase separation: indeed,
while inducing gelation, attractive interactions also favor the
fluid-fluid (F-F) transition (the crystallization can be pre-
vented by polydispersity). Their interplay—in particular the
possibility to form gels along a reversible thermodynamic
path without encountering the spinodal decomposition—was
therefore questioned [19] (see also [20] and refs. therein for
a recent discussion). Generalizing to the glass transition the

law of corresponding states [21], several authors supported the
idea of a universal scenario according to which gelation would
systematically occur through the spinodal decomposition, ir-
respective of the specificity of the attractive part of the in-
teraction potential beyond the core [10,22,23]. This so-called
“B(2) scenario” was based on numerical simulation results,
which contradicted the pioneering work based on the MCT:
the oversimplified treatment of the many-body correlations by
the MCT was then invoked for explaining these discrepancies.
From the experimental side, however, different behaviors
were observed: while some of them seemed to corroborate the
“B(2) scenario” [12,23–25], glass transition was also observed
with no evidence of the fluid-fluid transition [15,26,27]. In
Ref. [8], the role of the specificity was illustrated on two
asymmetric mixtures in which hard-sphere-like polystyrene
spheres are the big particles. In the first one, they were mixed
with pNIPAM microgel particles and, in the second one,
with linear polymers, the size ratio being kept the same in
both mixtures. As a result, the use of the microgel particles
as depletants tended to favor gelation in comparison with
the polymer coils. In addition, microscopic phase separation
was observed in the gelled samples only for the polystyrene-
polymer mixtures. This confirms that specificity plays an
important role for physical gelation in colloids.

Owing to a refined description of the effective potential
between the colloids, we have shown in previous work [28,29]
that different scenarios of colloidal gelation are possible in
asymmetric binary mixtures, treated in the one-component
representation. Indeed, the “B(2) behavior” is restricted to
simple generic potentials consisting in a hard-sphere potential
plus a standard short-range attraction, like in the Yukawa or
the square-well potentials. This restriction, which was already
pointed out by Noro and Frenkel for the binodals, is important
in practice since the effective potential in real suspensions can
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depart markedly from the “hard sphere + short range attrac-
tion” scheme: in mixtures of hard colloids, for example, it is
oscillatory, with repulsive barriers due to the granularity of
the depletant particles [30,31]. These barriers in the potential
of mean force at infinite dilution, which affect also the static
properties, should not be confused with the finite barriers in
a free-energy landscape which are invoked to describe the
dynamics beyond MCT [32]. It should indeed be recalled
that the ideal MCT incorporates the interaction potential only
through the static structure and ignores some dynamics pro-
cesses such as activated hoping in the free energy landscape
or the nonGaussian ones (see, e.g., Refs. [7,32,33] for recent
work).

However, as it was shown from MCT in Refs. [28,29],
these barriers in the potential of mean force at infinite dilution
increase the extent of the domain in which the fluid is arrested,
compared to the situation in which they are absent (see, e.g.,
in Ref. [29] Fig. 6 for the HS depletion potential and Fig.
8 for the square and shoulder one). In contrast, they have
little influence on the equilibrium F-F binodal. Their influence
on the slowing down of the dynamics was next confirmed at
the level of the diffusion coefficient determined by molecular
dynamics simulations [34]. Since such barriers seem to favor
gelation without influencing the fluid condensation, asym-
metric mixtures should generate original ways to form gels,
like equilibrium gelation. its predictions about the influence
of these barriers will be paralleled with those expected on
physical grounds.

The first goal of this paper is to emphasize the role of the
depletant in mixtures by comparing the theoretical binodals
and the MCT glass transition lines to experimental data on
binary mixtures [8]. Two models will be considered: the HS
and the Asakura-Oosawa [35] (AO) mixtures. In the latter, a
big particle interacts with another big particle or with a small
one through the HS potential, but the small particles have no
interaction. These models can be used as a first approximation
for the two experimental situations considered PS+ microgel
particles and PS+polymer, respectively, so as to analyze the
role of the granularity of the depletant particles on gelation.
The second goal of this work is more technical: molecu-
lar dynamics simulations are used to check the predictions
from the phenomenological modification of MCT recently
proposed [36,37] and aimed at improving its predictions at

a quantitative level. A model closer to the physical systems
analyzed here than those on which it has already been tested
[36] will be used. We will compare the modified MCT glass
transition line to the arrest line estimated from the behavior of
the diffusion coefficient obtained from numerical simulations.

The paper is organized as follows: the theoretical frame-
work is presented in Sec. II; Sec. III is devoted to the results
and the discussion; Sec. IV is the conclusion.

II. THEORETICAL FRAMEWORK

A. EOCF representation

The results presented here are relative to asymmetric bi-
nary mixtures treated at the effective one-component fluid
(EOCF) level. This well-known representation is based on the
pair interaction approximation for the potential of mean force
of the big particles (details are given for instance in [38–41]).
The actual mixture has number densities ρi = Ni

V (with Ni the
number of particles of the species i and V the volume) and
diameters σi (the corresponding volume fractions are ηi =
π
6 ρiσ

3
i and the big to small particles diameter ratio is q = σ2

σ1
).

The reduction to the EOCF level is made in the semigrand
ensemble (N2,V, T, μ1), where T the temperature and μ1 the
chemical potential of the small particles. A more convenient
variable is the density ρ∗

1 in the reservoir of small particles (in
units of σ 3

1 ) as ρ∗
1 is fully determined by μ1 at fixed T. The

binodals and the glass transition lines of the EOCF are then
computed in the (ρ∗

1 , η2) plane from the effective potential
φeff = V22 + φind, where V22 is the direct interaction potential
between the big particles and φind the indirect one mediated
by the small particles. The latter is obtained from the pair
distribution function (pdf) of the big particles g22 [42,43] at
infinite dilution:

φind(ri j ) = −kBT {ln(g22(r, ρ2 → 0) − V22(r)}. (1)

For computing φind from Eq. (1), the Ornstein Zernike
equations (OZE) for the binary mixture with the big particles
at infinite dilution are solved numerically with the reference
hypernetted chain (RHNC) closure [44] using the bridge
function computed from Rosenfeld’s density functional theory
[45]. The accuracy of this method for highly asymmetric
mixtures has been established by comparison to simulation
data [46,47]. For the Asakura-Oosawa model, the effective
potential (“AO potential”) has an analytical expression [36]:

φAO(r) =

⎧⎪⎨
⎪⎩
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σ

< 1

−π
4 q3ρ∗

1

[
2
3

(
1 + 1

q

)3 − r
σ

(
1 + 1

q

)2 + 1
3

(
r
σ

)3]
, 1 � r

σ
< 1 + 1

q

0, r
σ

� 1 + 1
q

. (2)

The validity of the EOCF approximation in asymmetric
mixtures of hard particles has been discussed in several stud-
ies. As far as the static properties are concerned, it is quantita-
tively correct at large size asymmetry provided the particles do
not interact through long-range interactions (more precisely,
the interaction range ξi j between the particles i and j has to
be comparable to σi j = (σi + σ j )/2). This was established in
Ref. [47] by comparison with simulations for the pdf of the

big particles down to size ratios which are smaller than those
investigated in this paper (q ≈ 3.33). Furthermore, the EOCF
binodals computed in several studies (e.g., refs. [38–41]) are
consistent with the existing simulation data for the mixture
(see Ref. [39]) and with the RHNC integral equation results
for the true mixture [48]. This is naturally restricted to small
particle densities ρ∗

1 < 0.8 in the reservoir at which the small
particles are in the fluid state. For the AO model, the validity
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of the pair approximation is enhanced by the absence of
interactions between the small particles (it is exact for q >
2
3

√
3 − 1 ≈ 6.46 [38,49]).
The question of the EOCF is more complex for the dy-

namics due the presence of multiple time and length scales.
A general discussion of this question is beyond the scope of
this paper. Some of its aspects have been addressed in the
literature from different formulations of MCT and beyond
(see Refs. [7,50,51] and references therein) or the generalized
self-consistent Langevin theory (GSCL; see, e.g., Ref. [52]).

We will focus here on asymmetric HS-like mixtures. For
size ratios in the range q = 5 − 10 we consider here, some
studies that treat explicitly the small and the big particles
have been performed, with MCT [ [36,53–55] or the GSCL
approach [52]. One observes different nonergodic states in
the (ρ1, ρ2) plane, according to the species involved in the
arrest. The nonergodicity transition line shows two branches
(still in the (ρ1, ρ2) plane): that located at low ρ1 and large ρ2
separates the fluid state from the so-called “depletion glass”,
in which only the big particle fluid is arrested (the small
particle one is ergodic in the free volume let by the big ones).
It is the main one at large q(q > 5). The associated “depletion
glass” is precisely that described in the EOCF representation.
Using an accurate correspondence relation (ρ1,η2) → (ρ∗

1,
η2)

[56], the associated density region in the semigrand ensemble
is, as expected, ρ∗

1 � 0.8 for which the small particles are in
the fluid state.

The glass transition lines computed in Refs. [36,54,55],
for the mixture are in qualitative agreement with those ob-
tained here in the EOCF approximation. It was also shown in
Ref. [50] for the AO model that only the EOCF representation
correctly predicts the reentrant glass observed in the simula-
tions, when the short-time mobility of the big spheres is much
smaller than that of the depletant. Thus, our discussion at the
EOCF level should be valid as long as the small particle fluid
remains ergodic.

B. Liquid structure, binodals, and MCT arrest line

As detailed in Refs. [40,41,57] the fluid-fluid and fluid-
solid binodals of the EOCF were computed from the
RHNC free energy [42] using for numerical convenience the
parametrized HS bridge function of Ref. [58] and a perturba-
tion treatment for the solid [59].

For the arrest lines, the standard MCT has been used. The
main steps required to determine its behavior in the long-time
limit are briefly recalled here (for reviews on this well-known
method see for example [17,60]). The (ideal) glassy state is
characterized by the onset of a nonvanishing long-time den-
sity autocorrelation function 〈ρq(t = ∞)ρ−q(t = 0)〉. More
specifically, one computes the nonergodicity parameter fq =
〈ρq(∞)ρ−q(0)〉/〈ρq(0)ρ−q(0)〉 from the following set of
equations:

fq = mq

1 + mq
, (3)

mq = 1

2ρ

∫
dk

(2π )3 V (q, k)SqSkSq−k fk f|q−k|, (4)

V (q, k) = − 1

q4

(
q · k ρc(2)

k + q · (q − k)ρc(2)
q−k

)2
. (5)

In these equations, c(2)
k is the direct correlation function

in reciprocal space and Sk = 1
1−ρc(2)

k

the structure factor. In

Eqs. (4) and (5), mq is the memory function and V (q, k)
the vertex connecting the two-point autocorrelation functions,
following the factorization ansatz for the four-point correla-
tions. The solution of Eq. (4) is then the limit of the iterative

process defined by f (0)
q = 1, f (n+1)

q = mq ( f (n)
q )

1+mq ( f (n)
q )

. In the MCT,

the static correlation functions are the only input for studying
the dynamics. This theory is known to provide a qualitatively
correct description of several aspects of the glass transition.
However, it oversimplifies the description of the dynamic
correlations, especially close to the fluid-fluid critical point
and at low density, where the dynamic heterogeneities are
important [15]. It thus overestimates the extent of the glassy
domain in the space of thermodynamic variables - the (ρ1, ρ2)
plane, for example—with respect to that obtained from nu-
merical simulations [10]. To improve the situation, different
developments beyond the standard MCT have been proposed,
starting from the exact time evolution equation [60–63]. They
attempt to better treat the many-body correlations either by
nonperturbative approaches (see Ref. [59] for a review) or
beyond the factorization ansatz [61–63]. Other lines of attack
developped by Schweizer and coworker incorporate the hop-
ping processes [7,32], and extend the local cage approach in
the nonlinear Langevin equation to include collective effects
(see references in Ref. [33]). For a review of alternative
approaches see, for example, Ref. [64].

Besides these theoretical developments, phenomenological
approaches consist in using effective parameters in the frame-
work of the traditional MCT (see, for example, Refs. [65–67]).
In Refs. [35,36] a simple means was proposed to reduce
the too-strong memory effect resulting from the factorization
ansatz and thus offset the tendency of MCT to systematically
overestimate the magnitude of the dynamic correlations: The
static input in the vertex should be computed for an effective
density lower than the actual one (and hence the designation
of density-retarded vertex in Ref. [36]), thus at a state point
corresponding to a less correlated fluid. This modification was
calibrated from the one component HS fluid: ηeff = η − �η

with �η = ηex
g − ηMCT

g . Thus, �η is the difference between
the « exact » critical glass packing fraction (more precisely,
the experimental one for HS-like colloids) and the MCT one.
With ηex

g = 0.58 and ηMCT
g = 0.525, one gets �η = 0.055

(the modification appropriate for model potential which de-
part much from HS ones will be discussed in Sec. III). In spite
of its purely phenomenological character, this ansatz improves
significantly the accuracy of MCT with respect to the numer-
ical simulation data for hard particle fluids and some with
soft interactions [35]: This was shown for the glass transition
lines, but also the α-relaxation close to the arrest transition
and for several rheological properties [36]. Thus, in parallel to
the theoretical improvements of MCT based on a microscopic
analysis, this “modified” version (hereafter referred to as
MMCT) proves useful from a practical point of view.

C. Molecular dynamics

For the purpose of checking the MCT predictions in the
particular situations investigated here, we used molecular
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dynamics for estimating the arrest line from the behavior of
the diffusion coefficient D:

D = lim
t→∞

〈r(t )2〉
6t

, (6)

where the numerator is the average mean square displacement
computed by integrating the contributions of all the particles
for different initial times. A simulation box with N = 83 or
103 particles was used. The equation of motion was integrated
with the standard Verlet algorithm using a reduced time step
�t = 2.10−4 (corresponding to a displacement �r ∼ 10−4 ×
σ ). Distances were measured in units of the diameter σ , the
simulation time in units of t0 = σ × (m/kBT)1/2 and diffusion
coefficients in units of D0 = σ 2/t0 =, where m is the particle
mass and T the temperature. The Andersen thermostat was
used for reaching equilibrium after about 1.5106 time steps;
then D was determined in the micro-canonical ensemble, still
over 1.5106 time steps. This method was validated by com-
parison with results from the literature obtained for standard
potentials and the pdf was compared with the RHNC one
to check for the possibility of being in a two-phase domain
not seen in the finite size simulation (details are given in
Ref. [34]).

III. RESULTS AND DISCUSSION

A. Binodals and glass transition lines of asymmetric mixtures:
Effect of the specificity

In a previous paper, we investigated the equilibrium and the
glass transition lines of the HS mixture and of the Asakura-
Oosawa one in the EOCF representation [57]. The results
underlined the influence of the size ratio but also that of the
granularity of the small particles, which is incorporated in
the HS mixture model but not in the AO one as mentioned
above. Comparing these theoretical predictions with experi-
mental results should be made with care. However, the two
mixtures investigated in Ref. [8]—the microgel—polystyrene
colloid mixture and the polymer/polystyrene one—provide an
interesting experimental reference: Indeed, while in both of
them, the big polystyrene spheres can be considered as hard
spherelike ones, the small-small interactions strongly differ
in the two models. Due to their dense brushlike outer layers,
the pNIPAM microgel particles in the first mixture also have
a hard-sphere-like behavior. On the contrary, the polymer-
polymer interactions in the second one are often neglected
in the literature due to the dispersed nature of the polymer
coils (the AO mixture model should thus be appropriate).
Though the correspondence between the models and the real
suspension is certainly not strict, comparing the experimental
behavior of these two mixtures with those predicted for the
AO and the HS mixture models should be instructive.

Experimentally, gelation is observed in both mixtures in-
side a large F-S coexistence domain that widens for similar
packing fractions: η1 � 0.2. However, gels are observed at
lower packing fraction in the microgel–polystyrene mixture
than in the polymer/polystyrene one: they indeed exist down
to η2 = 0.04 in the former (Fig. 2) and only for η2 > 0.25
in the latter. Furthermore, microscopic heterogeneities are
observed in the gelled samples for the polymer/polystyrene
mixture (such observations are not reported for the micro-
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FIG. 1. Crystallization and glass transition line for the HS and
AO (inset) mixtures for q = 5.

gel—polystyrene one although the question of the vicinity of
the F-F transition is discussed on theoretical grounds).

For analyzing these results, we computed the binodals and
the glass transition line of the AO and the HS mixture models
in the (ρ1, η2) plane. They were first computed for the EOCF
in the (ρ∗

1 , η2) plane. Next, ρ1 was deduced from ρ∗
1 and

η2 by the accurate expression derived in Ref. [56] for the
HS mixture and from the relation ρ1 = ρ∗

1 (1 − ρ2
π (σ1+σ2 )3

6 )
for the AO one [57]. The latter, in which the factor 1 −
ρ2

π (σ1+σ2 )3

6 = 1 − η2(1 + 1
q )3 is the free volume fraction let

by the big particles in the mixture, is also accurate for large
q. The results are shown in Figs. 1–3 for q = 5 ,8, and 10.
First, the glass transition line is systematically located within
the F-S coexistence (Figs. 1 and 2). However, the arrested
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FIG. 2. Binodals and glass transition lines for the HS mixture
with q = 10.
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FIG. 3. MCT glass transition lines of the HS mixture (solid line)
and for the AO mixture (dashed line) for q = 5, 8, and 10, from right
to left.

state domain widens with q and is more extended for the HS
mixture model than for the AO one (Fig. 3). Furthermore, the
F-F transition line exists systematically in the AO mixture,
while it is observed only for q = 10 in the HS mixture (the
critical ratio qc for which the F-F line disappears for this
model lies in the range 8 < qc < 9). Therefore, a correlation
exists between the experimental results and the theoretical
predictions. This concerns especially the extent of the domain
on the nonergodic states and, in a more hypothetic way, the
F-F condensation. The fact that low-density gels are more
likely in the HS mixture than in the AO one is due to two
factors:

(i) The specific behavior of the HS depletion potential: It
is oscillatory and presents repulsive barriers whose height and
width increase with the density of small particle. The main
barrier located just beyond the depletion well contributes to
stabilizing the “bonds” induced by this depletion attraction be-
tween particles close to contact (see Ref. [34] for a discussion
from MD simulation). This favors the dynamical arrest.

(ii) The F-F transition systematically competes gelation in
the AO mixture model, while for the HS one, it does not exist
for q = 5, 8. For q = 10, the F-F line exists but it is preempted
by the glass transition line over a wide domain of density.
Thus, in the AO mixture, the ergodic-nonergodic transition is
found at larger packing fractions of the big particles than in
the HS one.

In Fig. 2 the theoretical binodals and the glass transition
line of the HS mixture with q = 10 are compared with that
of the microgel—polystyrene mixture. The agreement already
underlined in Ref. [8] for the F-S transition line is also good
for the nonergodic states. This is confirmed by MMCT, shown
to be accurate for the HS model [36].

Concerning the F-F transition, the possible existence of a
metastable « hidden » F-F transition was discussed in Ref. [8],
although no clear signs of phase separation were reported.
One should note that the experimental size ratio q 
 9.1 is

close to the theoretical limiting size ratio for the appearance
of the F-F transition in the HS mixture. As discussed by the
authors, the precise determination of the particle diameters is
a difficult task, especially for the microgel ones. Furthermore,
previous studies have shown that the presence of « residual »
interactions in HS mixtures (like those probably existing
between the brush-like outer layers) can suppress the F-F
binodal [68].

Solid curve: MCT glass transition line; Long-dash short-
dashed curve: same for MMCT. Squares: experimental points
from [8] (microgel/polystyrene mixture for q = 0.11); empty
squares: homogeneous fluid; half-filled squares: fluid-solid
coexistence; filled squares: gel. The computed fluid-solid and
fluid-fluid binodals are shown by the dashed line. The filled
circle on the abscissa axis shows the critical value for HS
colloids

The experimental results are thus consistent with the the-
oretical predictions. Both confirm the role of the specificity
in the behavior of colloidal suspensions, in particular the
scenario for gelation, which is not universal. This contrasts
with the view resulting from “simple,” generic interaction
potentials consisting in a hard core + short-range attraction.
It is observed here for asymmetric mixtures with different
depletant particles.

B. Assessing MCT for the effective potential in asymmetric
mixtures of hard-sphere-like colloids

In this section molecular dynamics simulations are used to
check the predictions from MCT and the modified version, for
asymmetric mixtures. A “toy potential” is used in which the
indirect part is that of the HS mixture with q = 5. This value is
motivated by the fact that equilibrium gelation is more likely
at this size ratio since the F-F binodal is either absent or moved
to higher depletant packing fractions. Since we did not use a
simulation code specialized for the HS potential, a power-law
form was used for the direct potential V22:

V22(r) = ε
(σ

r

)32
. (7)

Figure 4 shows the effect of ρ∗
1 on the depth of the

depletion well and on the height of the repulsive barrier.
Accordingly, increasing ρ∗

1 is expected to favor gelation.
We have then compared the MCT glass transition line

obtained for this potential to an arrest line estimated from
the behavior of the diffusion coefficient determined by molec-
ular dynamics. The results were computed for the reduced
temperature T ∗ = kBT

ε
. Concerning the simulation dynamics,

the system was homogenous in all the situations considered.
However, when approaching the arrested state D(t ) = 〈r(t )2〉

6t
hardly stabilizes during the simulation time (this is why a large
simulation time was used). For high ρ∗

1 , the temperature was
difficult to stabilize up to the end of the 1.5 × 106 time steps.
This can be understood as the consequence of the structuration
of the effective potential, especially the large potential barrier
which traps the particles pairs close to contact (see, e.g.,
Fig. 6).

This effect was analyzed in Ref. [34] where different
lifetimes of the pair bonds were computed for similar po-
tentials. The typical value of the bond lifetime is τ ∼ 105�t

042614-5



PH. GERMAIN AND S. AMOKRANE PHYSICAL REVIEW E 100, 042614 (2019)

-4

0

4

8

12

0.8 1 1.2 1.4 1.6 1.8 2

ef
f

r/D
2

FIG. 4. Effective potential for a HS mixture with q = 5 and ρ∗
1 =

0, 0.2, 0.4, 0.6, 0.65, 0.7, 0.8 (from top to bottom).

in this density region. As τ is not so small with respect
to the simulation time, the kinetic energy hardly stabilized
during the simulation. On account of these difficulties we
could determine (D(ρ2)) down to 10−4D0, in the range ρ∗

1 �
0.7. The iso − D(ρ∗

1 , ρ2) = 10−4D0 line was thus chosen for
correlating the MD to the MCT ideal glass transition line. An
example of its construction is shown in Fig. 5 for ρ∗

1σ 3
1 = 0.6,

D = 10−4D0 is found for 1.30 � ρ2 σ 3
2 � 1.31. This shows

that the line D(ρ∗
1 , ρ2) = 10−4D0 could be determined with

sufficient resolution in the corresponding value of ρ2.
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FIG. 5. D(t∗) computed for the effective potential in a HS mix-
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FIG. 6. MCT nonergodicity lines and MD isodiffusivity line for
the binary mixture with pure HS potential V12. Triangles: original
MCT; squares: modified MCT. The three points on the dotted line
have been obtained with the (�ηHS, ρ

∗eff
1 ) correction, as explained

in the text. Circles: iso-diffusivity line from the MD simulation (an
error bar is shown for ρ1

∗ = 0.65).

The comparison with the original and modified MCT is
shown in Fig. 6. Both lines actually signal an important
slowing down in the dynamics but it is stressed that it is
characterized differently in these methods: the MCT line cor-
responds to the onset of a nonvanishing value of the long time
of the density autocorrelation function, while the simulation
one is actually a line of very low diffusivity (see, for example,
Refs. [60,64,69] and references therein for the nonexistence
of the sharp transition predicted by MCT). In practice, the
correlation between both lines can be judged here in Fig. 6,
from the rapid variation of the diffusion coefficient in a narrow
density range around the “zero” diffusivity line. This question,
as well as the lowest diffusion coefficient that can be achieved
in simulation (see also Ref. [70] for a similar procedure) or in
real experiments will thus not be discussed further here as this
would require very extensive simulations and experiments.

One first observation is that the re-entrance of the glassy
state predicted by the original MCT is confirmed by the
MD simulation. It is, however, exaggerated quantitatively.
This is likely related to the fact that with φeff (r) the ar-
rest is now not exclusively related to the repulsion. One
important feature of φeff (r) is indeed its dependence on
ρ∗

1 which plays a role similar to an inverse temperature,
as discussed in Ref. [36] for the Lennard-Jones or the
square-well models. This dependence becomes crucial at
low density when one enters the regime of the attractive
glass or the gel. For determining this line with the modified
version, the two regimes cannot be thus treated with the
pure HS correction. In the regime of the repulsive glass,
the simplest extension of the correction for hard spheres is
�η = ( 0.58

d3
HS

− η
g
MCT) as for the Lennard-Jones potential [36].
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One needs then to specify an effective HS diameter d HS.
This is however not immediate for the oscillatory effective
potentials φ(r). Here, d HS was taken as the HS diameter that
gives the same second virial coefficient as the WCA part [43]
of φeff (r).

The arrest line computed in this way is slightly shifted with
respect to the isodiffusivity line but the trend is the same up
to ρ∗

1 ≈ 0.6. In the regime of the attractive glass and in the
gel, the above correction should not be used actually. Indeed,
due to the attractions, the uncorrected value η

g
MCT decreases

significantly when ρ1
∗ increases. �η becomes eventually

comparable to the uncorrected value, a sign that the HS-like
recipe for the “correction” is incorrect, understandably. There
is however no simple way to incorporate this role of attrac-
tions, but a heuristic one is to compute φeff (r) at an effective
value ρ∗,eff

1 that takes into account the modified density of
the big spheres. The expected value ρ∗,eff

1 < ρ∗
1 would result

in a decrease of the strength of φeff (r). We thus tentatively
combined—in the region of the reentrance—a pure HS cor-
rection �ηHS = 0.55/d3

HS with φeff (r) computed at an effec-
tive packing fraction ρ∗,eff

1 estimated from the scaled-particle
theory [43]. The overall effect of this combined (�ηHS, ρ

∗,eff
1 )

correction is to bring the MCT line closer to that estimated
by simulation. Furthermore, a smooth transition between the
two regimes—HS-like and combined correction—needs to be
established. The surprising agreement observed in Fig. 6 asks,
however, for further investigation. It might well be that these
ad hoc shifts of the densities invoked to reduce the memory
effect account empirically for the physical mechanisms such
as the hopping processes that lack in MCT.

IV. CONCLUSIONS

In this paper, we first investigated the effect of the depletant
particles on the glass transition lines and the binodals in asym-
metric mixtures of hard-sphere-like colloids. Two theoretical

models, the AO and the HS mixture ones, were considered for
describing hard colloidal particles mixed on the one hand with
weakly interacting polymers coils, and with hard particles
on the other hand. Using the EOCF representation of the
mixture, the binodals were computed from accurate liquid
state methods and the line of dynamical arrest from the mode
coupling theory.

The comparison with experiments on two mixtures of hard
polystyrene spheres mixed either with dense microgel parti-
cles or with polymer coils, with the same size ratio, showed a
fair agreement for the binodals but also for the glass transition
lines. The different behaviors with the two depletant particles
can be understood from the specificities of the potential of
mean-force at infinite dilution. Indeed, contrarily to the AO
model in which it is purely attractive beyond the core, the so-
called HS depletion potential has an oscillatory behavior, with
attractive parts and repulsive barriers. We showed that this
favors lower density gelation consistently with experiment.
On the other hand, that this difference at the level of the
transition lines can be accounted for in the framework of
MCT is rather unexpected since the interactions are involved
in MCT only through the input static structure.

Last, besides the comparison with experiment, the simple,
phenomenological modification of MCT recently proposed,
was checked versus simulation on a model potential appropri-
ate to this situation. While confirming the qualitative trends
deduced from the original MCT, the modification improves
significantly the quantitative agreement with simulation, al-
though this requires and ad hoc extension with respect to
the one-component fluid so as to cope for the presence of
the depletants. Its generalization for incorporating the depen-
dence of the effective interaction potential in hard-sphere-like
colloids on the physical parameters such as the depletant
density or the temperature should stimulate further work for a
quantitative use of MCT for the study of mixtures of practical
interest.
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