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Irreversibility and emergent structure in active matter
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Active matter is rapidly becoming a key paradigm of out-of-equilibrium soft matter exhibiting complex
collective phenomena, yet the thermodynamics of such systems remain poorly understood. In this article we
study the dynamical irreversibility of large-scale active systems capable of motility-induced phase separation
and polar alignment. We use a model with momenta in both translational and rotational degrees of freedom,
revealing a hidden component not previously reported in the literature. Steady-state irreversibility is quantified
at each point in the phase diagram which exhibits sharp discontinuities at phase transitions. Identification of the
irreversibility in individual particles lays the groundwork for discussion of the thermodynamics of microfeatures,
such as defects in the emergent structure. The interpretation of the time reversal symmetry in the dynamics of
the particles is found to be crucial.
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I. INTRODUCTION

Active matter consists of particles that can utilize stored
free-energy reserves to generate directed motion, and as such
are characteristically out-of-equilibrium [1–4]. Examples en-
compass a wide range of systems of self-propelled particles,
including self-catalytic colloidal suspensions [5], swimming
bacteria [6,7], migrating cells [8], and animal groups [9–11].
Active matter can also refer to passive particles suspended in
an active bath, e.g., passive colloids in an aqueous solution
set into directed motion by collisions with active swimmers
also contained in the solution [12–14]. Such directed motion,
in combination with interactions among the particles, can
give rise to nontrivial collective dynamics not observed in
matter at thermal equilibrium, such as gathering, swarming,
and swirling [15].

Widely used models of active matter include active Brow-
nian particles (ABPs) [16] and active Ornstein-Uhlenbeck
particles (AOUPs) [17]. Collective motion and kinetic phase
transitions can be observed in such models, with the introduc-
tion of volume exclusion, e.g., between two-dimensional discs
[18]. Indeed, systems of both ABPs and AOUPs have been
shown to exhibit motility-induced phase separation (MIPS),
where the particles arrange themselves into regions of high
and low density [17–26]. In addition, it has been shown that
ABPs with alignment interactions can exhibit polar collective
motion (or “flocking”) [27,28].

Determining the phase diagrams for such behavior has
been an active area of research [19–29]; however, there has
been less focus on the thermodynamics, especially on the
nonequilibrium character of the different kinetic phases, de-
spite some progress in related field-theoretic models [30]. For
Brownian particles capable only of an order-disorder transi-
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tion in polar alignment, Shim et al. [31] demonstrated simi-
larly distinct regimes in the entropy production. Later, Fodor
et al. [17] investigated the entropy production in a system
of AOUPs with no alignment interactions, arguing that in a
harmonic trap the dynamics respect detailed balance such that
the system is in an effective equilibrium. Mandal et al. [32]
subsequently demonstrated that when a different definition
of entropy production is used the nonequilibrium character
can be recovered. Recently, Shankar et al. [33] investigated
the “hidden” components of the entropy production observed
free (noninteracting) particles using an under-damped [34] de-
scriptions of the particles’ translational dynamics, but only an
over-damped description of the rotational degrees of freedom.

In these studies, entropy production of the models is
equated with dynamical irreversibility. However, for real ac-
tive systems this relationship is less clear [35,36]. As such,
while one can consider the irreversibility to be the entropy
production of the model, in physical systems, strictly, one
should interpret the reported quantities, and those in this
article, as apparent entropy productions on the scale of ob-
served trajectories [37]. Nevertheless, this is precisely the
scale relevant to emergent structure considered here, as argued
in Ref. [38]. For instance, irreversibility of fluctuations in
these variables have been related to the formation of emergent
structure [39,40].

In contrast to the free particles studies in Refs. [17,32,33],
in this article we consider a large system of ABPs interacting
via volume exclusion as well as alignment, approximating ei-
ther a system of self-propelled particles or a system of passive
particles in an active bath, and focus on its emergent collective
behavior (i.e. polar alignment and MIPS). Further, we use an
under-damped description for both translational and rotational
degrees of freedom. This reveals an additional component of
the irreversibility that had previously remained hidden due to
coarse grained rotational dynamics even with under-damped
translational dynamics [33]. We show that this coarse graining

2470-0045/2019/100(4)/042613(12) 042613-1 ©2019 American Physical Society

https://orcid.org/0000-0002-7629-774X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.042613&domain=pdf&date_stamp=2019-10-22
https://doi.org/10.1103/PhysRevE.100.042613


CROSATO, PROKOPENKO, AND SPINNEY PHYSICAL REVIEW E 100, 042613 (2019)

can result in either under or over-estimating the dynamical
irreversibility, depending on dynamical interpretations of the
model which reflect either self-propelled particles or passive
particles in an active bath.

Simulation of the model allows us not only to con-
struct the phase diagram, but also quantify the steady-state
thermodynamics/irreversibility at each point in the space.
Further, we are able to examine the spatial distributions of
irreversibility/entropy production associated with the distinct
kinetic phases alongside microfeatures, such as defects, in
the emergent structures. We anticipate such methods to be
useful for studying the thermodynamic character of collective
phenomena that originate from large fluctuations, as in nucle-
ation phenomena, or are strongly spatially heterogeneous as
in spinodal decomposition.

II. IRREVERSIBILITY AND ENTROPY PRODUCTION

In the framework of stochastic thermodynamics, when
environmental variables can be treated as relaxing instanta-
neously such that the system dynamics are Markovian and
the medium can be treated as an ideal heat bath, the entropy
production (in units where kB = 1) along a single fluctuating
path �� = {�(t )|t∈[t0, τ ]} is given by the log Radon-Nikodym
derivative [41,42]

�Stot[ ��] = ln
dP[ ��]

dP†[ ��†]
. (1)

Here P is a probability measure assigning probability to sets of
paths realized by the system, P† is a time reversed probability
measure and ��† is the time reverse of trajectory �� defined as
��† = {�†(t )|t∈[t0, τ ]} with �†(t ) = ε�(τ+t0−t ). The time
reversal operator ε reflects variables determined to be odd
under time reversal through phase space, while leaving even
variables unchanged [43]. For instance, εz = −z for an odd
translational variable (e.g., velocity), while εz = z+π for an
odd rotational variable.

�Stot obeys an integral fluctuation theorem
〈exp[−�Stot[ ��]]〉 = 1. Thus the strict inequality
〈�Stot[ ��]〉�0 holds by Jensen’s inequality, characterizing
the second law. Moreover, assuming appropriate probability
densities, p, exist over �, this quantity can be decomposed
into a system entropy production and medium entropy
production contribution viz.

�Stot[ ��] = �Ssys[ ��] + �Smed[ ��]

= ln
p(�(t0), t0)

p†(�†(t0), t0)
+ ln

dP
[ ��\t0

∣∣�(t0)
]

dP†
[ ��†

\t0

∣∣�†(t0)
]

= ln
p(�(t0), t0)

p†(ε�(τ ), t0)
+ ln

dP
[ ��\t0

∣∣�(t0)
]

dP†
[ ��†

\t0

∣∣ε�(τ )
] . (2)

�Ssys captures changes in the configurational entropy of the
system, while �Smed quantifies the entropy exported to the
environment. Here ��\t0 = {�(t )|t∈(t0, τ ]} and p indicates
one-time probability densities such that

P[ �� ∈ �A] =
∫
At0

d�(t0) p(�(t0))P
[ ��\t0∈ �A\t0

∣∣�(t0)
]
, (3)

where �A is a set of paths on [t0, τ ]. P† represents a probability
measure on paths under time-reversal which in the general
case may differ from P. Typically this is arrived at by con-
sidering a time-reversal operation on protocol variables such
that any nonautonomous driving is reversed and odd protocols
(e.g., magnetic fields) have their signs reversed. In the model
considered subsequently, P†[·|·] = P[·|·] since all parameters
are even with respect to time-reversal and homogeneous in
time.

The one-time probability density p† appearing in the de-
nominator in the system entropy production is defined as
p†(�, t ) = p(ε�, τ+t0−t ). Together with the property that
time reversal is involutive (εε� = �), we have �Ssys[ ��] =
ln p(�(t0), t0)/p(�(τ ), τ ). Crucially the expectation of this
quantity vanishes in the steady state, where p(·, t0) =
p(·, τ ) = pst (·), i.e., 〈�Stot[ ��]〉st = 〈�Smed[ ��]〉st.

We consider a system � = {y1, . . . , yn}, described by a set
of n coupled stochastic differential equations of the form

dyi = Ayi [�(t ), t]dt + Byi dWi (4)

= Arev
yi

[�(t ), t]dt + Air
yi

[�(t ), t]dt + Byi dWi (5)

where Wi are Wiener processes satisfying dWidWj=δi jdt and
where

Arev
yi

[�(t ), t] = Ayi [�(t ), t] − εyi Ayi [ε�(t ), t]

2
(6)

= −εyi A
rev
yi

[ε�(t ), t] (7)

and

Air
yi

[�(t ), t] = Ayi [�(t ), t] + εyi Ayi [ε�(t ), t]

2
(8)

= εyi A
ir
yi

[ε�(t ), t], (9)

are the reversible and irreversible components of the deter-
ministic dynamics [44,45], where εyi∈{−1,+1} for yi odd
and even, respectively. In such a system, the medium entropy
production along a path is given by the path integral

�Smed[ ��] =
∫ τ

t0

d�Smed(t ). (10)

This differential form is given by [45]

d�Smed(t ) =
∑
yi∈�

Air
yi

(�(t ))

Dyi

◦ dyi(t ) − Air
yi

(�(t ))Arev
yi

(�(t ))

Dyi

dt

(11)
where the diffusion coefficients are defined as Dyi=B2

yi
/2

and where the ◦ notation indicates a Stratonovich integration
rule. We also note the convention 0/0=0 for deterministic
coordinates.

It is important to note that the identification of the ir-
reversibility of a stochastic dynamical system with entropy
production is valid when all dissipative degrees of freedom are
captured by the model. A failure to capture all degrees of free-
dom, through some coarse graining procedure, is well know
to underestimate the total entropy production leaving such a
quantity more aptly described as an apparent entropy produc-
tion or merely dynamical irreversibility denoted �tot[ ��] =
�sys[ ��] + �med[ ��]. Using such a quantity provides a lower
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bound on the physical entropy production,

〈�[ ��]tot〉 � 〈�Stot[ ��]〉. (12)

III. IRREVERSIBILITY OF INTERACTING ABPs

A. ABPs model and irreversibility expressions

We consider a system of N two-dimensional, disk-shaped
particles of radius R, mass m, and mobility mγ (such that
γ is a inverse timescale), undergoing Brownian motion due
to a heat bath with inverse temperature β, with, or subject
to, active propulsion speed v0. The translational dynamics
of such particles are then augmented by Brownian rotational
dynamics, also at inverse temperature β, which determine
the direction of the propulsion, designed to reflect (i) the
individual particles’ orientation (along which they self-propel)
and angular velocity, in the case of self-propulsion or (ii) the
propulsion direction local to the particle, and its rate of
change, of a background active medium/field, in the case of
passive particles in an active bath. These rotational dynamics
are characterised by an (effective) relaxation timescale γR and
moment of inertia I such that the rotational mobility is IγR.

The position and velocity of each particle a are denoted as
ra = {r1

a , r2
a} and va = {v1

a, v
2
a}, while the particles’ intrinsic

orientation, or the orientation of the local background propul-
sion at point ra, is denoted θa with corresponding angular
momenta/rate of change ωa. Variables without subscripts or
superscripts are to be understood as the total set of such
variables in the system, e.g., r = {r1, . . . , rN }. The propulsion
force is modeled as P (θa) = {P1(θa),P2(θa)} = mγ v0ê(θa),
where ê(θa) = {ê1(θa), ê2(θa)} = {cos(θa), sin(θa)}. Excluded
volume effects are modelled through a potential U (r), while
alignment interactions are modelled directly through a func-
tion Ta(r, θ ) representing either the torque incident on the par-
ticle a or the value of a torque field on the medium orientation
at point ra. These dynamics are described by the following
under-damped stochastic differential equations (SDEs):

dr j
a = v j

adt, (13)

dv j
a = −γ v j

adt + m−1F j
a (r, θ )dt +

√
2γ /βmdW

v
j
a
, (14)

dθa = ωadt, (15)

dωa = −γRωadt + I−1Ta(r, θ )dt +
√

2γR/βIdWωa , (16)

where F j
a (r, θ ) = P j (θa)−∂r j

a
Ua(r), j is the spatial dimen-

sion, β is the inverse temperature (with units kB = 1), and
W

v
j
a

and Wωa are uncorrelated Wiener processes, such that
〈dW

v
j
a
dWωa〉 = 0, 〈dWωa dWωb〉 = δabdt , and 〈dW

v
j
a
dWvk

b
〉 =

δ jkδabdt . Equivalently, the system is described by the Fokker-
Planck equation for the instantaneous probability density over
all dynamical variables � = {r, v, θ, ω}, p ≡ p(�, t ):

∂t p =
N∑

a=1

2∑
j=1

∂
v

j
a

(
γ v j

a − F j
a /m

)
p + (γ /βm)∂2

v
j
a
p

+ ∂ωa

(
γRωa − T j

a /I
)
p + (γR/βI )∂2

ωa
p

− v j
a∂x j

a
p − ωa∂θa p. (17)

We now consider the dynamical irreversibility, �tot[ ��]
of this system equal, in model, to the entropy production
[42] or, in a physical system, to an apparent entropy pro-
duction in the dynamical degrees of freedom. Critically, the
irreversibility/entropy production depends not only on the
equations of motion, but on the choice of this time reversal
operator ε. While there is no uncertainty in the nature of ε

for the translational degrees of freedom, there is disagreement
as to the best interpretation for degrees of freedom associated
with active forcing. Indeed, the distinct approaches of Fodor
[17] and Mandal [32] can be recast in terms of this choice.
Dabelow et al. [38] argued that when a particle is itself active
(e.g., Refs. [19,46,47]), the self-propulsion force should be
considered odd (i.e., εθa = θa+π ) under TRS, while an ex-
ternal force acting on a passive particle (e.g., a passive tracer
particle suspended in an active bath [12,14,48–51]) should be
considered even (i.e., εθa = θa). In contrast, Shankar et al.
[33] considered active self-propulsion to be even under TRS,
arguing that the direction of motility is the product of a
physical asymmetry of the particles.

When the system is intended to model self-propelling
ABPs with an intrinsic orientation (such that ωa are angu-
lar momenta, usually understood to have odd time reversal
symmetry), we suggest that an even interpretation for θa (i.e.,
εθa = θa, εωa = −ωa) is more natural. In contrast, when the
system is intended to model passive particles, θa represents
the direction of a local flow or velocity, which may more
naturally be treated as odd (i.e., εθa = θa+π , εωa = ωa). We
do, however, acknowledge that these interpretations are not
necessarily exhaustive or unique, particularly in the case of an
passive particle in an active medium for which it is debatable
as to whether nonequilibrium medium variables ought to be
time reversed at all, again forming the basis for the differences
between Fodor [17] and Mandal [32].

We may then compute the mean rate of
irreversibility/entropy production using Eq. (11). Importantly,
as the Wiener processes are assumed to be uncorrelated (also
known as a bipartite, or rather multipartite property [52]), we
may associate entropy productions with individual particles,
with the total being their sum. Under the odd interpretation of
θ the expected irreversibility/entropy production rate in the
medium for particle a is

〈
�̇med

a

∣∣�〉 = γR
(
βI
〈
ω2

a

〉−1
) +

2∑
j=1

γ
{
βm

〈[
v j

a−v0ê j (θa)
]2〉−1

}
.

(18)
For the even interpretation we have

〈
�̇med

a

∣∣�〉 = γR
(
βI
〈
ω2

a

〉−1
)+ 2∑

j=1

γ
(
βm

〈
v j

a
2〉−1

)
. (19)

The derivation of Eqs. (18) and (19) is provided in Ap-
pendix A. The distinction between the parity interpreta-
tions is striking: under the even parity interpretation, the
irreversibility/entropy production is manifestly a measure of
the deviation away from equipartition expected at thermo-
dynamic equilibrium in both the translational and rotational
degrees of freedom. In contrast, under the odd parity inter-
pretation the entropy production arising from the translational
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variables is modified such that it quantifies deviation from an
effective equipartition, relative to the instantaneous heading
and propulsion speed.

B. Free particle expressions and a hidden entropy production

The above expressions are quite general, however, in the
absence of alignment, external, and exclusion interactions,
such that Ta(r, θ ) = 0 and ∂r j

a
U (r) = 0, in the steady state

and with vanishing inertia in the relevant variables, we can
recover and generalize the results for free ABPs in [33]
(see Appendix B). In general, when there is under-damped
translational motion, as considered here, the individual free
particle irreversibility/entropy production takes the form

〈�̇tot〉 = mβγ v2
0 (1 − γ 2G) (20)

for the odd interpretation of θ and

〈�̇tot〉 = mβγ 3v2
0G (21)

for the even interpretations of θ [53], where

G = lim
t→∞ 2

∫ t

0
dt1

∫ t

0
dt2 e−γ (2t−t1−t2 )〈ê1(t1)ê1(t2)〉. (22)

Shankar et al. [33], while considering over-damped rotational
motion have 2〈ê1(t1)ê1(t2)〉 = e−(βIγR )−1|t1−t2| and thus Gover =
{γ [γ+(βIγR)−1]}−1. However, a fully under-damped descrip-
tion of the free-particle dynamics yields 2〈ê1(t1)ê1(t2)〉 =
e(βIγ 2

R )−1(1−γR|t1−t2|−exp[−γR|t1−t2|]). Except for specific choices of
parameters (e.g., all free parameters set to 1), the integral
has no closed form solution, but strictly satisfies Gunder�Gover

indicating an additional hidden component in the entropy
production—see details in Appendix B.

This is reminiscent of the well known property that coarse
graining procedures lead to underestimates of the entropy
production [54]. Such absent terms have been referred to
as “anomalous” [55] or “hidden” and have been previously
implicated in heat transfer where under-damped models are
crucial to observe physically plausible entropy productions
[45]. However, here we observe something more nuanced.
Depending on the choice of time reversal symmetry, the free
particle entropy can either decrease or increase when moving
from an under to over-damped description, usually associated
with a coarse-graining procedure. Explicitly, for odd θ we
have

〈�̇tot〉under � 〈�̇tot〉over (23)

and for even θ

〈�̇tot〉under � 〈�̇tot〉over (24)

for stationary free ABP dynamics with under-damped transla-
tional motion.

On first inspection this appears to be at odds with the
usual results and intuition that coarse-graining must reduce
entropy productions. However, there are two features which
make such a phenomenon possible and characterise it as a
fundamentally different category of hidden entropy produc-
tion as compared to, for example, Refs. [33,55]. First, we
recognize that such a result does not violate the usual second
law-like inequalities as found in [54,56] since the under and
over-damped dynamics are not equivalent, but have differing

timescales. Second, and most crucially, separating it from
hidden entropy phenomena such as Refs. [33,55] is the fact
that the degree of freedom which is integrated out is not
itself dissipative, but merely controls the timescale on which
the rotational degree of freedom θ relaxes as the dissipative
variable v evolves. This is analogous to how under-damped
translational models, while bounding over-damped models
from above in the stationary state, can produce less entropy
production transiently, under driving and relaxation [45]. In
this case, despite being in the steady state, the continuous
relaxation of the rotational degrees of freedom relative to the
translation degrees of freedom yields an equivalent result.

The quantitative discrepancies are nontrivial. For instance,
setting γ = γR = βI = 1 yields Gunder = (2e − 4)Gover 

1.44 Gover, with commensurate over and underestimates in the
entropy production for odd and even θ , respectively.

IV. NUMERICAL RESULTS

A. Three distinct kinetic phases

To investigate the relationship between irreversibility
and emergent structure, the system is simulated by in-
tegrating Eqs. (13)–(16), using a stochastic velocity Ver-
let algorithm (see Appendix D). Excluded volume interac-
tions are modeled using a truncated and shifted Lennard-
Jones potential by choosing U (r) = ∑

a Ua(r) with Ua(r) =∑
b�=a ε[(2R/rab)12−(4R/rab)6] + ε if |rab|�R and Ua(r) =

0 if |rab|>R, where ε is the depth of the potential well
and rab = ra−rb. In addition, informed by the Kuramoto
model [57], alignment interactions are modeled as Ta(r, θ ) =
−K

∑
b�=a g(rab) sin(θa−θb) where K is the coupling strength

and g(rab) = 1 if |rab|�2R and zero otherwise. This torque
function is integrable except for a single discontinuity at 2R
which allows for the significant simplification of being able to
ignore terms in γR in Eqs. (18-19), i.e those deriving from the
rotational degrees of freedom. Further details can be found in
the Appendix C.

We explore the model’s behavior over γR, K and the
particles density φ. These variables were chosen specifically
to investigate the thermodynamic character of the emergent
structures, rather than those which derive from the strength
of the self-propulsion force and external heat bath, which
would together entirely determine the entropy production of
a free particle without the rotational degree of freedom. For
instance, MIPS is typically controlled using the Péclet number
Pe∝v0β

√
mIγ γR [3] by varying the propulsion force, envi-

ronmental temperature and relative timescales. Instead, we re-
strict ourselves to varying only the relative timescales through
γR. Consequently, we hold all other variables constant, setting
N = 10 000, R = 0.5, v0 = 3, m = I = γ = 1, β = 50, and
ε = 1, and also utilize periodic boundary conditions.

To characterize the configurational change associated
with MIPS we utilize the local (per particle) sixfold bond-
orientational order: |q6(a)| = | 1

6

∑
b∈Na

ei6αab |, where αab is
the angle between rab and an arbitrary axis and Na are the
closest 6 neighboring particles of a. An order parameter
for the phase separation is therefore provided by the aver-
age bond-orientational order 〈|q6(a)|〉. This can be comple-
mented by statistics of the local density Xd (x), defined as
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FIG. 1. Summary of the kinetic phases. Panel (a) shows the phase
diagram of the system with respect to φ and γR, when K = 0. Panel
(b) shows the phase diagram with respect to γR and K , at φ = 0.4.
Panel (c) illustrates the two sections through the φ−K−γR space.
In both diagrams the error bars indicate the intervals within which
the phase transitions are observed to occur, based on the simulations.
The black lines are approximations of the critical lines, given the
error bars. The purple lines represent trajectories across the phase
diagrams over which the dynamical irreversibility is shown in Fig. 2.
Three representative points along these lines, corresponding to the
three phases, are labeled with numbers. For each of them, panels
(d–f) show the distribution of the local density Xd (with d = 4.5),
while panels (g–i) show a typical configuration observed during the
simulations (color represents the particles’ heading).

the empirical density within a radius d centered on x [58],
since we expect a bimodal distribution under MIPS. We con-
sider the bimodality coefficient ζ (Xd ) = [λ(Xd ) + 1]/κ (Xd ),
where λ(Xd ) and κ (Xd ) are, respectively, the third and and
the fourth standardized moments of Xd . The alignment within
the system is instead quantified as ρ(θ ) = 〈2 cos2(θa−θ̄ )−1〉,
where θ̄ is the mean heading across all particles. We also
introduce a measure of per particle alignment ρ̃a(r, θ ) =
〈2 cos2(θa−θ̄Na )−1〉, where θ̄Na is the mean heading
within Na.

When only excluded volume interactions are considered
(i.e., K = 0) as expected we observe two distinct phases: a
phase with MIPS and a phase without MIPS, separated by a
single critical value of γR for any given φ [see Fig. 1(a)]. Anal-
ogous behavior was observed in Refs. [25,26]. A third kinetic
phase is possible when alignment interactions are included,
characterized by both polar order and MIPS [see Fig. 1(b)]. At
density φ = 0.4, for example, this third phase is observed for
values of K �0.006. For lower values of K the system does
not exhibit polar order; however, the alignment interactions
affect MIPS, which occurs only at values of K �0.002. A
typical configuration of the system at three values of K cor-
responding to the three different phases [cf. purple points in
Figs. 1(a)–1(c)] is shown Figs. 1(g)–1(i), while Figs. 1(d)–1(f)
show the distribution of the local density Xd at such values
of K . Importantly, the two MIPS phases with and without

FIG. 2. Expected steady-state dynamical irreversibility over the
three kinetic phases. In panels (a) and (b) φ = 0.4 and K = 0,
while γR is varied [cf. purple line in Fig. 1(a)]. Panel (a) shows
the average bimodality coefficient ζ (Xd ) (with d = 4.5) at steady
state, while panel (b) shows the expected irreversibility for both
the odd and even interpretation of θ . In panels (c) and (d) φ = 0.4
and γR = 0.3, while K is varied [cf. purple line in Fig. 1(b)]. Panel
(c) shows the average ζ (Xd ) and the average alignment coefficient
ρ(θa) at steady state, while panel (d) shows the irreversibility for
the odd and even interpretation of θ . In all figures, the purple ticks
indicate the representative points (cf. Fig. 1).

polar order are emergent via two distinct and incompatible
mechanisms. Explicitly, phase separation without polar order
arises due to long rotational correlation times which induces
jamming-like behavior, while phase separation with polar
order arises due to flocking behavior. At intermediate K there
is enough alignment to reduce the correlation times of the
single particle rotational dynamics but not enough to cause
global rotational correlations necessary for flocking.

B. Steady-state irreversibility in the three phases

The steady-state irreversibility of the three kinetic phases
is illustrated by considering two representative trajectories
through the phase diagram. The first follows the onset of
MIPS in the absence of alignment interactions (i.e., K = 0) at
fixed density φ = 0.4 by varying γR indicated in Fig. 1(a). The
structural and thermodynamic character along the trajectory
is then illustrated in Figs. 2(a) and 2(b): Increasing γR up
to the critical value ∼0.26 has little effect before an abrupt
increase in the bimodality coefficient at the critical point
indicating the onset of MIPS. This is accompanied by a
decrease in mean particle velocity through jamming causing
an equally abrupt change in the expected steady-state entropy
production, calculated as the sum of all individual contribu-
tions [see Eqs. (18) and (19)]. Crucially, odd and even TRS
imply completely opposite variation in the entropy production
rates with an even interpretation implying lower dissipation
under MIPS and vice versa. If the parity interpretation in
Ref. [38] is considered (odd θ ), our results would suggest that
the work performed by active particles undergoing MIPS is
relatively high and vice versa under the interpretation favored
in Ref. [33] (even θ ).

The second trajectory is indicated in Fig. 1(b) for φ = 0.4
and γR = 0.3 as MIPS without polar order is first interrupted
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(b)

FIG. 3. Expected dynamical irreversibility associated with in-
dividual particles. Panel (a) shows the same three configurations
in Figs. 1(d)–1(f) with color representing each particles’ expected
irreversibility, distinguishing between odd [see Eq. (18)] and even
[see Eq. (19)] interpretations of θ under TRS. The left-hand side
of panel (b) magnifies the box in panel (a) corresponding to K = 0
and even θ , using a higher resolution for the irreversibility that can
capture small differences between low values. The right-hand side
of panel (b) shows the local sixfold bond-orientational order |q6|,
highlighting spatial defects across the emergent structure. The left-
hand side of panel (c) magnifies the box in panel (a) corresponding
to K = 0.1 and odd θ , again using a different resolution for the
irreversibility. The right-hand side of panel (c) shows the local
alignment ρ̃, highlighting orientational defects.

and then reintroduced with polar order by increasing the align-
ment interactions through K . The relevant structural and ther-
modynamic consequences are then illustrated in Figs. 2(c) and
2(d). Polar order, measured through ρ, emerges beyond a crit-
ical K ∼ 0.006. However, spatial order is more complicated
with a large and increasing bimodality coefficient abruptly
dropping when the jamming mechanism is interrupted, before
distinctly rising at the onset of polar order due to flocking.
The bimodality coefficient then slowly increases, although not
monotonically, as MIPS with polar order dominates. Below
the onset of polar order the dynamical irreversibility follows
the spatial order as in the K = 0 trajectory with mean velocity
controlled by jamming. However, beyond this point the irre-
versibility follows the polar order as the increased alignment
allows for higher velocities. Once again, odd and even TRS in-
terpretations of θ implicate opposite variation in the nonequi-
librium behavior. Relatively little work is performed on/by
the flocking particles under the odd interpretation [38], while
more work is performed under the even interpretation [33].

C. Per particle irreversibility and defects

The spatial distribution of the entropy production can be
investigated by considering the dissipation associated with in-
dividual particles [cf. Eqs. (18) and (19)]. This is exemplified
in Fig. 3, for the three configurations of the system previously
seen in Figs. 1(g)–1(i). In the absence of polar order the

dissipative contribution from each particle closely follows the
local density [Fig. 3(a), K = 0 and K = 0.0036]. When polar
order is high [Fig. 3(a), K = 0.1], this trend with density is
reversed, reflecting the distinct phase separation mechanism
since dense regions occur due to flocking. Under an opposite
odd/even interpretation, the trend is once again reversed
due to the equilibrium being characterized by equipartition
centered the laboratory frame (v j

a = 0) or the particle frame
[v j

a = v0ê j (θa)] [cf. Eqs. (18) and (19)].
The ability to quantify the thermodynamic effects of spe-

cific local spatial configurations allows consideration of de-
fects in the emergent structures. Specifically, we show that
defects allow for either increases or decreases in the entropy
production of individual particles depending on the phase and
TRS interpretation—reminiscent of how crystal defects are
associated with local maxima in local configurational entropy.
For example, Fig. 3(b) contrasts the expected entropy produc-
tion rates of individual particles with their local sixfold bond-
orientational order |q6| under MIPS without polar order. In
this phase, particles along the spatial defects are characterized
by higher (lower) entropy production rates compared to the
particles in highly ordered regions for even (odd) θ . Similarly,
Fig. 3(c) contrasts the expected entropy production rates with
the local alignment ρ̃ under MIPS with polar order. In this
phase, for suitably high K , polar defects (as measured by ρ̃)
are characterized by lower (higher) entropy production for
even (odd) θ .

Further work may investigate whether any collective be-
havior are dependent on the existence of such defects, or
fluctuations in general, and in turn their thermodynamic
character. For instance, it would be of interest to capture
the thermodynamics of the rare fluctuations responsible for
initiating nucleation phenomena or the spatial distribution of
dissipation under spinodal decomposition. Similar questions
are starting to be investigated, for example through the use of
large-deviation theory [39,40]. How do parity interpretations
influence this description? If a nonintegrable torque function
T is used, are the thermodynamic properties of rotational
defects substantially changed?

V. CONCLUSIONS

In recent years, nonequilibrium thermodynamics and ac-
tive matter have both received much attention. Lately, studies
concerning their connection suggest they may have much to
gain from each other [17,30–33,38–40,59]. In this study we
have explored the dynamical irreversibility associated with the
rich collective behavior exhibited by active matter. Our results
suggest that the richness, commonly associated with the phase
structure of active matter, is mirrored in its irreversibility,
opening up a new tool to study collective phenomena on both
a micro- and macroscopic scale. For example, the dynamical
irreversibility was shown to capture the diversity between the
two distinct mechanisms underlying MIPS with polar order
and MIPS without polar order. Additionally, the ability to
quantify dynamical irreversibility associated with specific lo-
cal spatial configurations has revealed nontrivial relationships
with the formation of defects in the emergent structures.

Our study has highlighted a hidden entropy produc-
tion where rotational timescales impact dissipation in the
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translational degrees of freedom. This is a fundamentally
different finding as compared to the well known phenomenon
that coarse graining procedures lead to underestimates of the
entropy production [54] and, therefore, it is distinct result
from hidden entropy phenomena such as [33,55]. In our
under-damped model the degree of freedom which is inte-
grated out is not itself dissipative, but merely controls the
timescale on which the rotational degree of freedom relaxes
as the dissipative translational degree of freedom evolves.
Crucially, we observe that depending on the choice of time
reversal symmetry (intimately, albeit complicatedly, related to
the use of such a model to describe self-propelled particles or
passive particles in an active bath) the entropy production and
irreversibility can increase or decrease when moving from an
under to over-damped description of the rotational dynamics.

We hope that the work will contribute to a deeper under-
standing of active systems and, more broadly, the dynamics
that can lead to emergent structures. Important questions
remain, including the delicate issue of TRS which we have
shown to dramatically influence any thermodynamic interpre-
tation. Future work will extend the analysis of the dynamical
irreversibility associated to defects in the emergent structure.
For example, we will aim to characterize the thermodynamics
of the rare fluctuations that trigger clusters formation and the
spatial distribution of irreversibility under spinodal decompo-
sition.
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APPENDIX A: DERIVATION OF EXPRESSIONS FOR THE
IRREVERSIBILITY

We consider the dynamics described the SDEs (13)–(16).
Regardless of the odd or even interpretation of θ under TRS,
we have Air

ωa
= −γRωa, Arev

ωa
= Ta(r, θ )/I , Air

θa
= 0, Arev

θa
= ωa,

Air
r j

a
= 0, Arev

r j
a

= v
j
a , Dωa = γR/βI , Dθa = 0, D

v
j
a
= γ /βm, and

Dr j
a
= 0.

1. Even propulsion

For the even interpretation of θ (i.e., εθa = θa, εωa = −ωa)
we have Air

v
j
a
= −γ v

j
a and Arev

v
j
a

= γ v0ê j (θa) − ∂r j
a
Ua(r)/m.

Applying Eq. (11) gives

d��med = −
N∑

a=1

βωa ◦ dωa + βωaTa(r, θ )dt

−
2∑

j=1

βmv j
a ◦ dv j

a − βv j
a

[
∂r j

a
Ua(r) − v0ê j (θa)

]
dt .

(A1)

Converting to Itō form, inserting the stochastic differentials
dv

j
a and dωa and taking expectations yields

d��med

dt
=

N∑
a=1

⎡
⎣γR

(
βI
〈
ω2

a

〉 − 1
) +

2∑
j=1

γ
(
βm

〈(
v j

a

)2〉 − 1
)⎤⎦,

(A2)

which may be straight forwardly decomposed into its per par-
ticle contributions. However, we may alternatively recognize
that

∑
a, j〈v j

a ◦ dv
j
a〉 = 〈dU (r)〉 = 0 in the steady state, thus

proceeding with the surviving terms to obtain

d��med

dt
=

N∑
a=1

⎡
⎣γR

(
βI
〈
ω2

a

〉 − 1
) +

2∑
j=1

mγ v0β
〈
ê j (θa)v j

a

〉⎤⎦,

(A3)

illustrating a useful equality, valid in the steady state,

∑
a, j

〈
ê j (θa)v j

a

〉 = ∑
a, j

mβ
〈(
v

j
a
)2〉 − 1

mβv0
. (A4)

2. Odd propulsion

For the odd interpretation of θ (i.e., εθa = θa+π ,
εωa = ωa) we have Air

v
j
a
= −γ v

j
a + γ v0ê j (θa) and Arev

v
j
a

=
−∂r j

a
Ua(r)/m. Applying Eq. (11) we obtain

d��med = −
N∑

a=1

βωa ◦ dωa + βωaTa(r, θ )dt

+
2∑

j=1

β
[ − mv j

a + mv0ê j (θa)
] ◦ dv j

a

+β
[ − v j

a + v0ê j (θa)
]
∂r j

a
Ua(r)dt . (A5)

Converting to Itō form, inserting the stochastic differentials
dv

j
a and dωa and taking expectations yields

d��med =
N∑

a=1

⎛
⎝γR

(
βI
〈
ω2

a

〉 − 1
)

+
2∑

j=1

γ
{
βm

〈[
v j

a − v0ê j (θa)
]2〉 − 1

}⎞⎠, (A6)

which again forms a basis for a per particle contribution.
Again, however, in the steady state we may assume

∑
a, j〈v j

a ◦
dv

j
a〉 = 〈dU (r)〉 = 0 such that we have

d〈��med〉 =
N∑

a=1

β〈ωTa(r, θ )〉dt + mβγ v2
0dt

−
2∑

j=1

mβγ v0
〈
ê j (θa)v j

a

〉
dt . (A7)
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Utilizing Eq. (A4) then gives

d〈��med〉
dt

=
N∑

a=1

[
γR
(
βI
〈
ω2

a

〉 − 1
)

+
2∑

j=1

γ

(
βmv2

0

2
− βm

〈(
v j

a

)2〉 + 1

)]
, (A8)

giving a starker contrast of the total contributions under odd
and even interpretations of TRS for θ .

APPENDIX B: HIDDEN ENTROPY PRODUCTION
BEYOND UNDER-DAMPED TRANSLATIONAL MOTION

For a single particle, i.e., setting ∂r j
a
Ua(r) = Ta(r, θ ) = 0,

for odd θ we have

d〈��med〉 = mβγ v2
0dt −

2∑
j=1

mβγ v0
〈
ê j (θ )v j

a

〉
dt, (B1)

and for even θ ,

d〈��med〉 =
2∑

j=1

mβγ v0
〈
ê j (θ )v j

a

〉
dt . (B2)

Thus explicit expressions depend on determining the
steady-state correlation 〈ê j (θ )v j〉. We can calculate this ex-
plicitly in the zero inertia limit for the dynamics of θ . Under
such conditions we may write

dθ =
√

2DRdWθ , (B3)

where DR = (γRIβ )−1. By Itō’s lemma we have

dê1 = −DRê1dt −
√

2DR(1 − (ê1)2)dWθ , (B4)

with analogous expression for dê2. This has integrating factor
solution

ê1(t ) = ê1(0)e−DRt

−
∫ t

0
e−DR(t−t ′ )

√
1 − [ê1(t ′)]2

√
2DRdWθ (t ′). (B5)

Similarly, we have an integrating factor solution for v1(t )

v1(t ) = v1(0)e−γ t +
∫ t

0
e−γ (t−t ′ )γ v0ê1(t ′)dt ′

+
∫ t

0
e−γ (t−t ′ )

√
2γ

mβ
dWv1 (t ′), (B6)

so

〈ê1(te)v1(tv )〉 =
〈(

ê1(0)e−DRte −
∫ te

0
e−DR(te−t ′

e )
√

2DR{1 − [ê1(t ′
e)]2}dWθ (t ′

e)

)

×
[
v1(0)e−γ tv +

∫ tv

0
e−γ (tv−t ′

v )γ v0ê1(t ′
v )dt ′

v +
∫ tv

0
e−γ (tv−t ′

v )

√
2γ

mβ
dWv1 (t ′

v )

]〉
, (B7)

or explicitly writing ê1(t ′
v )

〈ê1(t )v1(t )〉 =
〈{

ê1(0)e−DRt −
∫ t

0
e−DR(t−t ′ )

√
1 − [ê1(t ′)]2

√
2DRdWθ (t ′)

}

×
(

v1(0)e−γ tv +
∫ tv

0
e−γ (tv−t ′

v )γ v0

{
ê1(0)e−DRt ′

v −
∫ t ′

v

0
e−DR(t ′

v−t ′′
v )
√

2DR

√
1 − [ê1(t ′′

v )]2dWθ (t ′′)
}

dt ′
v

+
∫ tv

0
e−γ (tv−t ′

v )

√
2γ

mβ
dWv1 (t ′

v )

)〉
. (B8)

We compute this in the t → ∞ limit corresponding to the steady state. When we do this all terms will disappear, either through
the averaging, i.e., 〈dWi〉 = 0 or through vanishing exponentials, except the term that contains dWθdWθ which we write as

〈ê1(t )v1(t )〉 =
〈
γ v0

∫ te

0

∫ tv

0

∫ t ′
v

0
e−γ (tv−t ′

v )e−DR(te−t ′
e )e−DR(t ′

v−t ′′
v )2DR

√
1 − [ê1(t ′

e)]2
√

1 − [ê1(t ′′
v )]2dWθ (t ′

e)dWθ (t ′′
v )dt ′

v

〉
. (B9)

Sifting out with the delta correlated Wiener processes, i.e.,∫ t

0

∫ t ′

0
f (t ′′, t ′′′)dWθ (t ′′)dWθ (t ′′′) =

∫ t

0

∫ t ′

0
f (t ′′, t ′′′)δ(t ′′ − t ′′′)dt ′′dt ′′′ =

∫ t ′

0
f (t ′′, t ′′)dt ′′ (t > t ′) (B10)

and considering te = tv such that te > t ′
v we write

〈ê1(t )v1(t )〉 =
〈
γ v0

∫ tv

0

∫ t ′
v

0
e−γ (tv−t ′

v )e−DR(te−t ′′
v )e−DR(t ′

v−t ′′
v )2DR(1 − (ê1(t ′′

v ))2)dt ′′
v dt ′

v

〉
, (B11)

which becomes

〈ê1(t )v1(t )〉 = γ v0

∫ tv

0

∫ t ′
v

0
e−γ (tv−t ′

v )e−DR(te−t ′′
v )e−DR(t ′

v−t ′′
v )2DR(1 − 〈[ê1(t ′′

v )]2〉)dt ′′
v dt ′

v. (B12)
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In the te = tv → ∞ limit we may safely write 〈[ê1(t ′′
v )]2〉 = 1/2 and thus

〈ê1(t )v1(t )〉 = γ v0

∫ tv

0

∫ t ′
v

0
e−γ (tv−t ′

v )e−DR(te−t ′′
v )e−DR(t ′

v−t ′′
v )DRdt ′′

v dt ′
v. (B13)

Computing the integral and setting te = tv = t we find

〈ê1(t )v1(t )〉 = γ v0e−DRt DR cosh(DRt ) − γ sinh(DRt ) − DRe−γ t

(DR + γ )(DR − γ )
. (B14)

Considering the t → ∞ limit then gives

〈ê1(t )v1(t )〉 = γ v0

2(DR + γ )
, (B15)

and so by symmetry

2∑
j=1

〈ê j (t )v j (t )〉 = γ v0

(DR + γ )
, (B16)

and thus for odd θ gives

d〈��med〉 = mβγ v2
0dt −

2∑
j=1

〈v j (t )ê j (t )〉mβγ v0dt

= mβγ v2
0dt − mβγ 2v2

0

DR + γ
dt = mβγ DRv2

0

DR + γ
dt

= mγ βv2
0

1 + γ γRβI
dt, (B17)

and for even θ gives

d〈��med〉 =
2∑

j=1

〈v j (t )ê j (t )〉mβγ v0dt

= mβγ 2v2
0

DR + γ
dt

= mγ 2β2IγRv2
0

1 + γ γRβI
dt, (B18)

in agreement with Ref. [33].
The above, however, relies upon an over-damped descrip-

tion for the dynamics in θ , not consistent with the full
under-damped equation of motion. Direct computation of
〈e1(t )v1(t )〉 as above suffers from the nonlinearity of the
transform of the unit vector. However, we can utilize Eq. (A4)
to consider instead the long term variance 〈[v1(t )2]〉. We can
construct this quantity using the same integrating factor solu-
tion in Eq. (B6). Squaring the expression for v1(t ), expanding
into constituent terms and exchanging the order of integration
and expectation through Fubini’s theorem, we take the limit
t → ∞. Expectations of individual Wiener processes, e.g.,
〈dWv1〉, then vanish yielding

〈(v1(t )2)〉

= lim
t→∞

2γ

mβ

∫ t

0

∫ t

0
e−γ (2t−t1−t2 )〈dWv1 (t1)dWv1 (t2)〉

+ lim
t→∞ γ 2v2

0

∫ t

0
dt1

∫ t

0
dt2e−γ (2t−t1−t2 )〈e1(t1)e2(t2)〉

= 1

mβ
+ lim

t→∞ γ 2v2
0

∫ t

0
dt1

∫ t

0
dt2e−γ (2t−t1−t2 )〈e1(t1)e2(t2)〉

(B19)

= 1

mβ
+ γ 2v2

0G
2

, (B20)

defining G, with the step from the first to the second line due
to the sifting property of the expectation of the square of the
Wiener process. When paired with Eq. (A4) this gives, for
odd θ ,

〈��̇tot〉 = mβγ v2
0 (1 − γ 2G), (B21)

and for even θ,

〈��̇tot〉 = mβγ 3v2
0G. (B22)

When θ is described by over-damped equations of motion then
〈e1(t1)e2(t2)〉over = (1/2)e−(IβγR )−1|t1−t2| such that G = Gover =
(γ (γ + (βIγR)−1))−1 also in agreement with Eqs (B17)
and (B18).

However, 〈e1(t1)e2(t2)〉 differs under an under-damped de-
scription. To find such a form we first consider 〈(θ (t2) −
θ (t1))2〉. First we integrate to find θ (t )

θ (t ) = θ (0) + ω(0)
∫ t

0
dt ′ e−γRt ′

+
√

2γR

Iβ

∫ t

0
dt ′

∫ t ′

0
dW (t ′′) e−γR(t ′−t ′′ )

= θ (0) + ω(0)

γR
(1 − e−γRt )

+
√

2γR

Iβ

∫ t

0
dW (t ′′)

∫ t

t ′′
dt ′ e−γR(t ′−t ′′ )

= θ (0) + ω(0)

γR
(1 − e−γRt )

+
√

2

IβγR

∫ t

0
(1 − e−γR(t−t ′′ ) )dW (t ′′), (B23)

from which we obtain

〈(θ (t ) − θ (0))2〉

= 〈ω2(0)〉
γ 2

R

(1 − e−γRt )2 + 2

IβγR

∫ t

0
(1 − e−γR(t−t ′ ) )2dt ′

= 〈ω2(0)〉
γ 2

R

(1 − e−γRt )2 + 2

IβγR

2γRt − 3 − e−2γRt + 4e−γRt

2γR
.

(B24)
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With 〈ω2(0)〉 = (βI )−1 corresponding to the steady state we
have

〈(θ (t ) − θ (0))2〉 = 2

γ 2
RβI

(γRt − 1 + e−γRt ), t > 0. (B25)

Expecting time translation invariance and symmetry we then
have

〈(θ (t2) − θ (t1))2〉 = 2

γ 2
RβI

(γR|t2 − t1| − 1 + e−γR|t2−t1|).

(B26)

Crucially, a theorem of centered Gaussian variables states [60]

〈cos[θ (t2)] cos[θ (t1)]〉 = 1
2 e− 1

2 〈[θ (t2 )−θ (t1 )]2〉 (B27)

such that we finally have (introducing subscripts for the nature
of the rotational dynamics)

〈e1(t1)e2(t2)〉under

= 1
2 e−(γ 2

RβI )−1(γR|t2−t1|−1+exp[−γR|t2−t1|])

= 〈e1(t1)e2(t2)〉over exp
[(

γ 2
RβI

)−1
(1 − e−γR|t2−t1|]), (B28)

revealing that Gunder � Gover. That is, an over-damped descrip-
tion systematically underestimates the rotational correlation
times. Consequently, for odd and even θ , 〈��̇tot〉under �
〈��̇tot〉over and 〈��̇tot〉under � 〈��̇tot〉over, respectively, for
stationary free ABP dynamics with under-damped transla-
tional motion.

That in the steady state for a given TRS interpretation for
θ , coarse-graining in the rotational dynamics causes an over
or underestimation of the entropy production for any system
parameters leads to the claim of a hidden entropy production
associated with such coarse-graining.

The integral for Gunder generally has no closed form solu-
tion, but we can calculate it in the special case where γ =
γR = βI = 1. In this case, it reads

Gunder = lim
t→∞

∫ t

0
dt1

∫ t

0
dt2 e−(2t−t1−t2 )e−|t1−t2|+1−exp (−|t1−t2|)

= lim
t→∞ e−2t {−2e2t + e1+t−cosh(t )+sinh(t )(1 + et )

− eEi(−1) + eEi[− cosh(t ) + sinh(t )]}
= e − 2, (B29)

where Ei(·) is the exponential integral. For the same param-
eters Gover = 1/2 and so the ratio Gunder/Gover = 2e − 4 


1.44, leading to the the ratios 〈��̇tot〉under/〈��̇tot〉over = 2e −
4 
 1.44 for even θ and 〈��̇tot〉under/〈��̇tot〉over = 6 − 2e 

0.563 for odd θ .

APPENDIX C: INTEGRABLE TORQUE FUNCTIONS

In the main text we use the specific torque func-
tion Ta(r, θ ) = −K

∑
b�=a g(rab) sin(θa − θb), where g(rab) =

1 for rab < 2R and 0 otherwise. This can be seen to emerge
from a potential function

Uθ (r, θ ) = K
N∑

a=1

∑
b�=a

g(rab) cos(θa − θb). (C1)

Such a potential function would also lead to a singular trans-
lational force at rab = 2R [deriving from ∂ra g(rab)], which
can be neglected in expectation. Consequently, in the station-
ary state, we have both 〈ωa ◦ dωa〉 = 0 and 〈dUθ (r, θ )〉 =
〈Ta(r, θ )ωa〉dt = 0. This consequently allows for the specific
simplification of the steady-state entropy productions to

d��med =
N∑

a=1

2∑
j=1

γ
{
βm

〈[
v j

a − v0ê j (θa)
]2〉 − 1

}
, (C2)

for odd θ and

d��med

dt
=

N∑
a=1

2∑
j=1

γ
[
βm

〈(
v j

a

)2〉 − 1
]

(C3)

for even θ . We emphasize that this simplification holds for
integrable torque functions only.

APPENDIX D: NUMERICAL INTEGRATION

We utilize a stochastic velocity Verlet algorithm de-
scribed in detail in Ref. [61]. For each particle, indexed
by a, there are three momenta variables ωa, v1

a , and v2
2 .

Each such variable requires two zero mean, unit vari-
ance, Gaussian distributed pseudorandom numbers, writ-
ten φ1,1

a , φ1,2
a , φ2,1

a , φ2,2
a , φθ,1

a , φθ,2
a , which are all mutually

independent (i.e., 〈φx,y
a φm,n

b 〉 = δabδx,mδy,n). Recalling r =
{r1, . . . , rN } (with similarly defined v, θ, ω) and ra = {r1

a , r2
a},

va = {v1
a, v

2
a}, the algorithm then reads

C1
a (t ) = (�t )2

2

{
m−1F1

a [r(t ), θ (t )] − γ v1
a (t )

} +
√

γ

mβ

(�t )3/2

2

(
φ1,1

a + φ1,2
a√
3

)
,

C2
a (t ) = (�t )2

2

{
m−1F2

a [r(t ), θ (t )] − γ v2
a (t )

}+
√

γ

mβ

(�t )3/2

2

(
φ2,1

a + φ2,2
a√
3

)
,

Cθ
a (t ) = (�t )2

2

{
I−1Ta[r(t ), θ (t )] − γRωa(t )

}+
√

γR

Iβ

(�t )3/2

2

(
φθ,1

a + φθ,2
a√
3

)
,

r1
a (t + �t ) = r1

a (t ) + v1
a (t )�t + C1

a (t ),

r2
a (t + �t ) = r2

a (t ) + v2
a (t )�t + C2

a (t ),

θa(t + �t ) = θa(t ) + ωa(t )�t + Cθ
a (t ),
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v1
a (t + �t ) = v1

a (t ) − γ v1
a (t )�t + �t

2m

{
F1

a [r(t ), θ (t )] + F1
a [r(t + �t ), θ (t + �t )]

}− γC1
a (t ) +

√
γ�t

mβ
φ1,1

a ,

v2
a (t + �t ) = v2

a (t ) − γ v2
a (t )�t + �t

2m

{
F2

a [r(t ), θ (t )] + F2
a [r(t + �t ), θ (t + �t )]

} − γC2
a (t ) +

√
γ�t

mβ
φ2,1

a ,

ωa(t + �t ) = ωa(t ) − γωa(t )�t + �t

2I

{
T θ

a [r(t ), θ (t )] + T θ
a [r(t + �t ), θ (t + �t )]

} − γCθ
a (t ) +

√
γR�t

Iβ
φθ,1

a .

These equations were simulated using �t = 0.008.
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