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Linear and angular motion of self-diffusiophoretic Janus particles
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We theoretically study the active motion of self-diffusiophoretic Janus particles (JPs) using the Onsager-
Casimir reciprocal relations. The linear and angular velocity of a single JP are shown to respectively result from
a coupling of electrochemical forces to the fluid flow fields induced by a force and torque on the JP. A model
calculation is provided for half-capped JPs catalyzing a chemical reaction of solutes at their surface by reducing
the continuity equations of the reacting solutes to Poisson equations for the corresponding electrochemical fields.
We find that an anisotropic surface reactivity alone is enough to give rise to active linear motion of a JP, whereas
active rotation only occurs if the JP is not axisymmetric. In the absence of specific interactions with the solutes,
the active linear velocity of the JP is shown to be related to the stoichiometrically weighted sum of the friction
coefficients (or hydrodynamic radii) of the reacting solutes. Our reciprocal treatment further suggests that a
specific interaction with the solutes is required to observe far-field diffusiophoretic interactions between JPs,
which rely on an interfacial solute excess at the JP surface. Most notably, our approach applies beyond the
boundary-layer approximation and accounts for both the diffusio- and electrophoretic nature of active motion.
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I. INTRODUCTION

Active suspensions display an intricate collective behavior
that finds its practical use in a wide range of biophysical
applications, such as helical swimming [1], dynamic cluster-
ing [2,3], or self-assembled micromotors [4]. Recently, the
active motion of self-phoretic Janus particles (JPs) was repro-
duced successfully by a set of phenomenological Langevin
equations, and the observed phase behavior was verified by
a stability analysis using a generalized Keller-Segel model
[5–7]. This analysis necessarily raises the question as to what
extent the phenomenological coefficients in these equations
might be related to each other. For instance, a reduction to
only two dimensionless parameters was achieved for half-
capped particles in two dimensions [6], based on earlier
theoretical work on active motion within the boundary-layer
approximation [8,9]. In brief, these theoretical models use an
analogy to conventional phoretic motion to relate the velocity
of a particle to its phoretic surface mobility, which, for chemi-
cally passive particles, relies on a specific interaction with the
surrounding fluid medium [10]. However, it has been noted
that self-diffusiophoretic motion differs from diffusiophoresis
of passive particles in that there is no solvent back-flow in
the bulk of the system [11], thus making a direct analogy
questionable. This suggests that further work is required to
completely elucidate the physical nature of the transport coef-
ficients that govern active motion of self-diffusiophoretic JPs.

Here we use the Onsager-Casimir reciprocal relations
[12–14] to formulate a general description of the linear and
angular motion of self-diffusiophoretic JPs. Our descrip-
tion applies beyond the boundary-layer approximation and
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suggests that active self-diffusiophoretic motion can persist in
the absence of specific interactions with the fluid, provided
that the surface reactivity of the JPs is anisotropic. A far-
field model for diffusiophoretic interactions is then derived
by noting that the solvent maintains a hydrostatic equilibrium
relatively far away from the JP surface. Finally, the resulting
expressions are evaluated for half-capped JPs that catalyze a
chemical reaction at their surface.

II. DIFFUSIOPHORETIC MOTION INSIDE ACTIVE
SUSPENSIONS: GENERAL THEORY

A. Active motion of single self-diffusiophoretic Janus particles

We consider a self-diffusiophoretic JP with a hydrody-
namic radius R, immersed in a fluid within a volume ele-
ment V at local thermodynamic equilibrium (LTE). The fluid
mainly consists of an incompressible, viscous solvent, and
can additionally contain several charged or uncharged solutes,
which are assumed small compared to the JP. Here we will use
the index i for the fluid components, with i = 0 referring to
the solvent, and i �= 0 to the solutes. The solutes may undergo
a chemical reaction at the surface of the JP, thereby creating
nonuniform electrochemical fields μ̃i(r) in its vicinity. The
particles of fluid component i, situated at a position r from the
center of the JP, are therefore subjected to an electrochemical
force

Fi(r) = −∇μ̃i(r) = −∇μi(r) + qiE(r), (1)

where μi(r) is the chemical potential of fluid component i, qi

is the corresponding charge, and E(r) is the local electric field
induced by the surface reactivity. The forces Fi(r) are sup-
posed to be reasonably weak, as to allow for a description of
particle motion that is linear in the electrochemical gradients
∇μ̃i(r). The electrochemical force density exerted by the JP
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FIG. 1. A JP catalyzing a chemical reaction of solutes at its
surface. The solutes (light blue spheres) react with the chemically
active part of the JP surface (shaded area), yielding a product with
a different chemical composition (dark blue spheres). Moreover, the
specific interaction between the solutes and the JP surface gives rise
to an interfacial solute layer around the JP (blue radial gradient).

on fluid component i is given by

F i(r) = ni(r)Fi(r), (2)

where ni(r) is the number density of fluid component i.
Hence the net electrochemical force density acting on the
surrounding fluid can be expressed as

F (r) =
∑

i

F i(r). (3)

A specific interaction between fluid component i and the
JP surface may further lead to the buildup of an interfacial
layer around the JP, whose effective width λ is determined
by the steepness of the corresponding interaction potential. A
schematic representation of such a JP is shown in Fig. 1.

The condition of LTE has two important consequences
for self-diffusiophoretic motion [15]. First, it implies that the
forces acting within the interfacial layer do not induce motion
of the JP. Second, it requires that the densities ni(r) in Eq. (3)
be evaluated to zeroth order in the electrochemical gradients.
Hence we can write

ni(r) = nb
i + nφ

i (r), (4)

where nφ
i (r) is the interfacial excess density and nb

i is the
constant bulk density of fluid component i. Note that this bulk
density is only constant to zeroth order in the gradients. As
the solvent (i = 0) is incompressible, we simply have nφ

0 (r) =
0 and n0(r) = nb

0. For later considerations, it is convenient
to introduce the distribution function gi(r) of the interfacial
excess of solute component i as

nφ
i (r) = nb

i gi(r). (5)

Self-diffusiophoretic motion is an overall force-free trans-
port phenomenon, meaning that it does not lead to a net
transport of momentum. As the volume element containing
the JP and the fluid is subjected neither to an external force
nor to a net hydrodynamic force, the electrochemical forces
must obey an action-reaction law of the form [16]

F +
∫

F (r)dV = 0, (6)

where F is the net electrochemical force exerted by the fluid
on the JP. An analogous balance equation must hold for the
torques induced by the electrochemical gradients, such that

τ +
∫

r × F (r)dV = 0, (7)

where τ is the electrochemical torque exerted by the fluid on
the JP.

To obtain an Onsager formulation for the active motion of
the JP, we consider the average rate of entropy σs produced
by the particle fluxes of all components inside the volume
element [16,17]

σsTV =
∑

i

∫
Ji(r) · Fi(r)dV + v · F + ω · τ, (8)

where v is the linear and ω is the angular velocity of the JP,
T is the temperature of the volume element, and Ji(r) is the
local flux of fluid component i. Based on Eq. (8), Onsager’s
theory of nonequilibrium thermodynamics postulates a linear
coupling between the fluxes and electrochemical forces via
the phenomenological coefficients Lαβ [12,13], which may
have a scalar or tensorial character [16]. For the velocities of
the JP, one therefore has

v = F
ξt

+
∑

i

∫
Lvi(r) · Fi(r)dV (9)

and

ω = τ

ξr
+

∑
i

∫
Lωi(r) · Fi(r)dV, (10)

where

ξt = 6πηR and ξr = 8πηR3 (11)

are the translational and rotational friction coefficients of the
JP. Similarly, the particle flux of fluid component i must be of
the form

Ji(r) =
∑

k

Lik (r) · Fk (r) + Liv (r) · F + Liω(r) · τ, (12)

where the index k runs over all fluid components.
We base our approach on the Onsager-Casimir reciprocal

relations, which imply that the coupling coefficients Lαβ are
symmetric for linear motion and antisymmetric for angular
motion of the JP [14,18]

Liv (r) = Lvi(r) and Liω(r) = −Lωi(r). (13)

To determine Lvi(r) and Lωi(r) from these reciprocal
relations, we require a hydrodynamic form for the flux of fluid
component i caused by a force and torque on the JP. If u(r) is
the local fluid flow velocity induced by these forces, then the
corresponding fluid particle flux Ji,u(r) can be written as

Ji,u(r) = ni(r)u(r). (14)

Within low-Reynolds number hydrodynamics, the fluid flow
velocity u(r) is linear in the force F and torque τ, such that

u(r) = 1

ξt
S(r) · F + 1

ξr
R(r) · τ, (15)

042612-2



LINEAR AND ANGULAR MOTION OF … PHYSICAL REVIEW E 100, 042612 (2019)

where S(r) and R(r) are the corresponding fluid flow tensors.
Using Eq. (15) in Eq. (14), a comparison to Eq. (12) yields

Liv (r) = 1

ξt
ni(r)S(r) and Liω(r) = 1

ξr
ni(r)R(r), (16)

which also determines Lvi(r) and Liω(r) based on the recip-
rocal relations (13).

For a spherical JP with a nonslip hydrodynamic boundary,
the flow tensors have well-known analytical expressions, re-
spectively given by [19]

S(r) =
⎧⎨
⎩

3
4

R
r

[
1 + r̂r̂ − 1

3
R2

r2 (3r̂r̂ − 1)
]
, r � R,

1, r < R,

(17)

and

R(r) =
⎧⎨
⎩

−R3

r3 r×, r � R,

−r×, r < R,

(18)

where r = |r| and r̂ = r/r. Using Eqs. (6), (7), and (13) in
Eqs. (9) and (10), the linear and angular velocity of the JP can
now be expressed as linear functionals of F (r), giving

v[F (r)] = 1

ξt

∫ ∞

R
[S(r) − 1] · F (r)dV, (19)

ω[F (r)] = − 1

ξr

∫ ∞

R

(
1 − R3

r3

)
r × F (r)dV, (20)

where we directly substituted the expression for R(r) into the
second equation. The notation

∫ ∞
R indicates that the volume

integral is evaluated from the JP surface to a region in the
bulk of the system.

The solvent does not participate in a chemical reaction and
is therefore, in principle, capable of maintaining a hydrostatic
equilibrium around the JP. However, the solvent can only
maintain a hydrostatic equilibrium normal to the surface of
a spherical JP if the electrochemical forces on the solutes are
spherically symmetric (see Fig. 2). It is therefore instructive to
write the electrochemical force density as F (r) = F◦(r) +
[F (r) − F◦(r)], where the spherically symmetric compo-
nent F◦(r) = F◦(r)r̂ vanishes if a hydrostatic equilibrium
is maintained normal to the surface. The electrochemical
force density F0(r) = F◦

0(r) on the solvent is thus fixed
by the condition F◦(r) = ∑

i F◦
i (r) = 0, such that F◦

0(r) =
−∑

i �=0 F◦
i (r). Using this to eliminate F0(r) in Eq. (3), the

net electrochemical force density can be expressed as

F (r) =
∑
i �=0

[F i(r) − F◦
i (r)]. (21)

However, the functional forms given by Eqs. (19) and (20)
vanish under spherical symmetry. As a result, the spheri-
cally symmetric components in Eq. (21) do not contribute to
the active motion of the JP, which implies that v[F (r)] =∑

i �=0 v[F i(r)] and ω[F (r)] = ∑
i �=0 ω[F i(r)]. Using this

FIG. 2. (a) For a spherical JP with an isotropic surface reactivity,
the electrochemical field of a reacting solute is spherically symmet-
ric, as shown by the thin black lines. Due to the no-flux boundary
condition at the JP surface, the solvent can induce an opposing
radial gradient in its chemical potential, which guarantees a perfect
hydrostatic equilibrium around the JP. (b) However, this hydrostatic
equilibrium is broken if the surface reactivity of the JP is anisotropic,
as for half-capped JPs. In particular, a half-capped JP is axisymmetric
and can therefore be assigned a directional unit vector e, which is
chosen to point towards the chemically active hemisphere (shown in
black).

and Eq. (2) in Eqs. (19) and (20), the active linear and angular
velocity va and ωa of the JP take the final forms

va = 1

ξt

∑
i �=0

∫ ∞

R
ni(r)[S(r) − 1] · Fi(r)dV, (22)

ωa = − 1

ξr

∑
i �=0

∫ ∞

R
ni(r)

(
1 − R3

r3

)
r × Fi(r)dV, (23)

which only refer to the electrochemical forces Fi(r) acting on
the solutes (i �= 0). Equations (22) and (23) can now be used
to determine the active motion of single JPs when the local
solute densities and electrochemical forces are known.

It is instructive to compare Eqs. (22) and (23) to the
results obtained within the boundary-layer approximation.
This approximation relates the velocity of a particle to the
interfacial excess densities nφ

i (r) of the solutes, by assuming
that the range of the specific interaction between the JP and
the solutes is very short compared to the JP radius (λ � R).
This is indeed well justified for phoretic motion of a passive
particle subjected to uniform electrochemical bulk gradients,
which couple to the interfacial solute layer to break the local
hydrostatic equilibrium at the surface. However, as shown in
Fig. 2, an active JP may also break the hydrostatic equilibrium
without interfacial solute excess if its surface reactivity is
anisotropic.

To recover the boundary-layer treatment of active mo-
tion, the net solute densities ni(r) in Eqs. (22) and (23)
must therefore be replaced by the interfacial excess densi-
ties nφ

i (r). A first-order expansion in the small parameter
z/R = (r − R)/R � 1 is then performed, yielding S(r) − 1 ≈
− 3

2
z
R (1 − r̂r̂) and (1 − R3/r3)r ≈ 3zr̂, where z is the radial

distance from the JP surface. The volume integral can fur-
ther be written as

∫ ∞
R (. . .)dV ≈ 4πR2〈∫ ∞

0 (. . .)dz〉S , where
〈. . .〉S ≡ 1

4π

∮
S (. . .) sin θdθdϕ is the average over the surface

S of the JP. As electrochemical forces can be assumed in-
dependent of z inside thin interfacial layers, we further have
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Fi(r) ≈ Fi(r̂). With this and Eqs. (5) and (11), Eqs. (22) and
(23) finally reduce to

va = −
∑
i �=0

〈nb
i Mi(r̂)(1 − r̂r̂) · Fi(r̂)〉S, (24)

ωa = − 3

2R

∑
i �=0

〈nb
i Mi(r̂)r̂ × Fi(r̂)〉S, (25)

where

Mi(r̂) = 1

η

∫ ∞

0
gi(r)zdz (26)

can be defined as the local phoretic surface mobility of the JP
due to its specific interaction with solute component i.

The form on the right-hand side (RHS) of Eq. (24) co-
incides with the formal definition of the fluid slip velocity
uslip(r̂), which is commonly used for a description of phoretic
motion within the boundary-layer approximation [20,21]

uslip(r̂) =
∑
i �=0

nb
i Mi(r̂)(1 − r̂r̂) · Fi(r̂). (27)

Noting that for any vector field A(r) we have r̂ × A(r) = r̂ ×
[(1 − r̂r̂) · A(r)], we can use Eq. (27) to rewrite Eqs. (24) and
(25) as

va = −〈uslip(r̂)〉S, (28)

ωa = − 3

2R
〈r̂ × uslip(r̂)〉S. (29)

With Eqs. (28) and (29), we recovered the standard forms
of the linear and angular velocities as previously obtained
within the boundary-layer approximation [9,20].

B. Diffusiophoretic interactions between Janus particles

The phase behavior of an active suspension is determined
by the relative motion of the JPs, induced by diffusiophoretic
interactions between them. The reciprocal approach presented
in Sec. II A can directly be applied to this relative motion if hy-
drodynamic interactions and mutual boundary conditions are
ignored. The later condition implies that the electrochemical
fields created by one JP do not have to satisfy any boundary
conditions at the surface of another JP. Here we will therefore
provide a reciprocal description of diffusiophoretic interac-
tions that holds in the far-field regime of an active suspension,
when the separations between the JPs are reasonably large
compared to the effective diameter 2(R + λ). As a JP is well
approximated by a chemical monopole in the far-field, the
fluid can be assumed at hydrostatic equilibrium far away from
its surface. At large distances from a JP, where ni(r) = nb

i , the
electrochemical force F0(r) on the solvent is therefore fixed
by the condition

F0(r) = −
∑
i �=0

nb
i F◦

i (r), (30)

where F◦
i (r) are the spherically symmetric electrochemical

forces exerted by the JP on the solutes far away from its
surface.

FIG. 3. The net velocities v and ω of a “test” JP differ from its
active velocities va and ωa if it diffusiophoretically interacts with
another ( jth) JP.

Let us now consider an active suspension of N JPs indexed
by the letter j, at positions R j inside the system. Within the
far-field approximation, we denote the spherically symmetric
electrochemical force exerted by the jth JP on solute i at
a position R far away from its surface by F◦

i j (r j ), where
r j = |R − R j | 
 2(R + λ). The net electrochemical force
FN

i (R) exerted by all N JPs on solute i at position R is
therefore given by

FN
i (R) =

∑
j

F◦
i j (r j ). (31)

In view of Eq. (1), this net electrochemical force can also be
written as

FN
i (R) = −∇μi(R) + qiE(R), (32)

where E(R) and ∇μi(R) are to be interpreted as the net elec-
tric field and chemical potential gradient of solute i induced at
position R by the surface reactivity of the N JPs. Based on
Eq. (30), the electrochemical force on the solvent at position
R is hence fixed by

F0(R) = −
∑
i �=0

nb
i FN

i (R). (33)

If another “test” JP is now placed at position R (as shown
in Fig. 3), then the specific interaction between this JP and
solute component i changes the density of that solute from
nb

i to ni(r) at a position r from its center, thus inducing a
corresponding force density ni(r)FN

i (R). With Eq. (33), the
net electrochemical force density resulting from the coupling
of the forces FN

i (R) to the local solute densities ni(r) around
the test JP can therefore be expressed as

Fd (r) = F0(R) +
∑
i �=0

ni(r)FN
i (R)

=
∑
i �=0

nφ
i (r)FN

i (R), (34)

where nφ
i (r) = ni(r) − nb

i is the interfacial excess density of
solute i at the surface of the test JP.

As the test JP and the surrounding fluid at position R are
not subjected to a net external or hydrodynamic force, the
force density Fd (r) satisfies the same action-reaction laws as
given by Eqs. (6) and (7). Applying the reciprocal approach
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from Sec. II A, the linear and angular velocity vd and ωd of
the test JP induced by its diffusiophoretic interaction with the
other JPs take the forms

vd = 1

ξt

∑
i �=0

∫ ∞

R
nφ

i (r)[S(r) − 1]dV · FN
i (R), (35)

ωd = − 1

ξr

∑
i �=0

∫ ∞

R
nφ

i (r)

(
1 − R3

r3

)
rdV × FN

i (R). (36)

From a comparison of Eqs. (35) and (36) to Eqs. (22) and
(23), it becomes clear that motion induced by far-field dif-
fusiophoretic interactions distinguishes itself from the active
motion of single JPs in that it relies on an interfacial solute
excess at the JP surface, similar to the phoretic motion of
passive particles.

III. MODEL CALCULATION: HALF-CAPPED JANUS
PARTICLES

For our model calculations, we consider JPs that catalyze
a chemical reaction of solutes at their surface [18,22]. The
electrochemical fields created by a JP are determined by the
continuity equations of the solutes. The stationary forms of
these equations read

∇ · Ji(r) = σi(r), (37)

where σi(r) is the corresponding chemical source density
distribution located on the surface of the JP. To describe
the chemical reaction, each solute component is assigned a
stoichiometric coefficient νi, which is negative for reactants
and positive for products. If a product with a stoichiometric
coefficient νi = 1 is produced at a local rate σ (r) per unit
volume, then the reaction satisfies

σi(r) = νiσ (r). (38)

To solve Eq. (37), we assume that the motion of the solutes is
diffusion-dominated. This implies that the cross-coefficients
in Eq. (12) are negligible compared to the diagonal coefficient
Lii(r), which is described by the scalar relation

Lii(r) = Lii(r) = ni(r)

ξi
, (39)

where

ξi = 6πηRi (40)

is the translational friction coefficient of a particle of fluid
component i, with a hydrodynamic radius Ri. Using Ji(r) ≈
ni(r)Fi(r)/ξi and Eq. (38) in Eq. (37), we obtain

∇ · ni(r)

ξi
Fi(r) = νiσ (r). (41)

As the solute densities are evaluated to zeroth order in the
electrochemical gradients, a position dependence of ni(r)
exclusively stems from the specific interaction between the
solutes and the JP surface. Here we treat the electrochemical
forces Fi(r) as decoupled from the interfacial solute layers,
by requiring that the interfacial excess density of a solute is
weak compared to its bulk density: |nφ

i (r)| � nb
i . In this case,

the factor ni(r)/ξi in Eq. (41) can be assumed constant such
that ni(r)/ξi ≈ nb

i /ξi. Equation (41) then reduces to a Poisson
equation for the electrochemical fields μ̃i(r) introduced in
Eq. (1), which can be solved by a multipole expansion.

A. Active motion of a single half-capped Janus particle

A system commonly studied theoretically and experimen-
tally is that of half-capped JPs. As shown in Fig. 2(b), a
half-capped JP has an upper hemisphere (+) with a chemically
active cap, and a passive lower hemisphere (−). Due to its
axisymmetry, it can further be assigned a directional unit
vector e, which is chosen to point from the passive to the
active hemisphere. The reaction exclusively occurs on the
surface of the cap with a constant production rate σ per unit
area. Assuming that the solutes are much smaller than the JP
(Ri � R) and that the reaction rate is limited by the number
of catalytic sites on the cap [8], the chemical source density
distribution is simply given by

σi(r) =
⎧⎨
⎩

νiσδ(r − R), 0 � θ � π
2 ,

0, π
2 < θ � π,

(42)

where cos θ = e · r and σ > 0. Moreover, the hemispheres
may specifically interact with the solutes via different interac-
tion potentials. Here we assume that these potentials undergo
a sharp transition at the equatorial plane of the JP (θ = π/2).
The interfacial excess densities of the solutes can then approx-
imately be described by different radial distribution functions
g±

i (r) on each side, such that

nφ
i (r) =

⎧⎨
⎩

nb
i g+

i (r), 0 � θ � π
2 ,

nb
i g−

i (r), π
2 < θ � π.

(43)

To describe the motion of half-capped JPs, it also turns out
instructive to introduce the functions

ḡi(r) = 1
2 [g+

i (r) + g−
i (r)], (44)

and

δgi(r) = 1
2 [g+

i (r) − g−
i (r)], (45)

which respectively quantify the isotropy and anisotropy of the
interfacial solute layer.

As already mentioned, the electrochemical forces Fi(r)
are determined from Eq. (41) by requiring that |g±

i (r)| � 1.
The resulting Poisson equation has previously been solved for
self-thermophoretic JPs with a source distribution given by
Eq. (42) [23]. For self-diffusiophoretic JPs, the corresponding
electrochemical forces can be written as

Fi(r) = 1

2

ξi

nb
i

νiσ f (r), (46)

where the rescaled force f (r) is a polynomial expansion of
the form

f (r) =
∞∑

m=0

αm,i

(
R

r

)m+2

[(m + 1)Pm(cθ )r̂ + sθP′
m(cθ )θ̂].

(47)
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Here Pm(x) is the Legendre polynomial of degree m and
P′

m(x) = ∂Pm(x)/∂x. We further used the short-hand notation
cθ ≡ cos θ and sθ ≡ sin θ . Assuming that the solutes cannot
penetrate the JP surface, the coefficients αm,i are given by [23]

α2l,i = δ2l,0 (48)

if m = 2l is even (l ∈ N0) and

α2l+1,i = (−1)l (2l )!(4l + 3)

22l+2[(l + 1)!]2
(49)

if m = 2l + 1 is odd, where δ2l,0 is the Kronecker delta.
Due to their axisymmetry, it is clear that half-capped JPs

cannot undergo active rotation, hence

ωa = 0. (50)

As r̂ and θ̂ are eigenvectors of S(r) − 1, the evaluation of
Eq. (22) for the active linear velocity va involves surface
averages over the vectors Pm(cθ )r̂ and sθP′

m(cθ )θ̂. Based on
the orthogonality of the Legendre polynomials, these surface
averages are found to have a nonzero contribution from the
chemical dipole (m = 1) only. Evaluating Eq. (22) using
Eqs. (17), (43), (46), and (47) together with ni(r) = nb

i +
nφ

i (r), the active linear velocity of a half-capped JP can finally
be expressed as

va = (v0 + vφ )e, (51)

where

v0 = 1

2
πR2σ

∑
i �=0

νiRi, (52)

vφ = 3

4
πRσ

∑
i �=0

νiRi

∫ ∞

R

R2

r2

(
1 − R2

r2

)
ḡi(r)dr. (53)

Based on Eqs. (26) and (43), the phoretic surface mobility
on each hemisphere can be written as

M±
i = 1

η

∫ ∞

0
g±

i (z)zdz. (54)

As a result, a first-order expansion in z/R � 1 of Eq. (53)
yields

vφ = 3

4
πησ

∑
i �=0

νiRi(M
+
i + M−

i ), (55)

which is in agreement with the result obtained from a
previous boundary-layer treatment for half-capped JPs [8].
This becomes evident by noting that nb

i Fi(r) = −kBT ∇nb
i (r)

if a solute component i behaves like an ideal gas, where
kB is the Boltzmann constant. Using the substitutions D =
kBT/(6πηRi ), α+ = νiσ , α− = 0, and μ± = −M±

i kBT in
Eq. (9) of this work then allows the recovery of Eq. (55).

Two important conclusions can be drawn from Eqs. (52)
and (53). Unlike phoretic motion of chemically passive par-
ticles [10], Eq. (52) suggests that active motion can occur
in the absence of an interfacial solute layer around a JP if
the hydrostatic equilibrium at its surface is broken by an
anisotropic reactivity. For a chemical reaction described by
Eq. (42), the corresponding contribution v0 is proportional
to the stoichiometrically weighted sum of the hydrodynamic

solute radii (
∑

i �=0 νiRi). On the other hand, the contribution
vφ given by Eq. (53) relies on an interfacial solute layer and
vanishes if ḡi(r) = 0. For purely electrostatic interactions, the
second conclusion implies that no active motion is induced by
the coupling of electrochemical forces to an interfacial solute
layer if the hemispheres of the JP have an equal and opposite
charge distribution.

A direct comparison of Eqs. (51), (52), and (53) to experi-
ments is challenging as it requires knowledge of the reaction
rate and the radial distributions functions g±

i (r), which are
often not precisely known for all the solutes. However, a
particularly simple case occurs if a single solute component
A with a hydrodynamic radius RA undergoes a conformational
change at the JP surface, yielding a product B with a different
hydrodynamic radius RB. If the specific interactions of solutes
A and B with the JP surface are weak, then the interfacial
contribution can be neglected (vφ ≈ 0) and the active velocity
of the JP reduces to

va = v0e = 1
2πR2σ (RB − RA)e. (56)

The order of magnitude of the production rate per unit
area σ depends on the considered reaction and the catalytic
properties of the active cap. For a micron-sized JP (R ∼
1μm) whose cap changes the hydrodynamic solute radius
by |RB − RA| ∼ 0.1 Å, a production rate per unit area of
just σ ∼ 103 s−1μm−2 would yield active velocities in the
experimental range of several μm s−1.

B. Motion induced by diffusiophoretic interactions
between half-capped Janus particles

We now address the velocity of a half-capped JP induced
by diffusiophoretic interactions with other JPs. To this end,
we introduce the net rescaled force f N (R) exerted by N
surrounding JPs on the solutes in the vicinity of another JP
at position R via

FN
i (R) = 1

2

ξi

nb
i

νiσ f N (R). (57)

Within the far-field approximation upon which Eqs. (35) and
(36) are based, only the spherically symmetric contribution
f ◦(r) = (R/r)2r̂ from the chemical monopole (m = 0) should
be kept in Eq. (47), such that

f N (R) =
∑

j

f ◦(r j ) =
∑

j

(
R

r j

)2

r̂ j, (58)

where r j = |R − R j | and r̂ j = (R − R j )/r j . Diffusio-
phoretic interactions are thus expected to dominate over hy-
drodynamic interactions in the far-field regime, when fluid
flows induced by force-free motion decay with distance as
1/r3 [20,24]. Even in the presence of a hydrodynamic force-
dipole contribution, which decays as 1/r2, the authors of
Ref. [25] argued that in realistic systems diffusiophoretic
interactions should be more important.

Evaluating Eqs. (35) and (36) with Eq. (57) yields

vd = vd f N (R) and ωd = ωd e × f N (R), (59)
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where

vd = − 2πσ
∑
i �=0

νiRi

∫ ∞

R

(
r2

R
− r

)
ḡi(r)dr, (60)

ωd = −3

4
πσ

∑
i �=0

νiRi

∫ ∞

R

(
r3

R3
− 1

)
δgi(r)dr. (61)

Although it can be seen from Eqs. (52), (53), (60), and (61)
that the coefficients v0, vφ , vd , and ωd depend on similar
chemical, interfacial, and hydrodynamic properties, it is, in
general, not possible to obtain a direct relation between them.
The coefficients vφ and vd are both related to the radial
function ḡi(r), but the velocities va and vd can nonetheless be
tuned independently due to the additional coefficient v0 in va.
Moreover, a free tuning of the angular velocity ωd is possible
due to its dependence on δgi(r) rather than ḡi(r).

As previously shown [6], however, the coefficients vd and
ωd can be brought into direct relation with the interfacial con-
tribution vφ to the active linear velocity within the boundary-
layer approximation. Performing a first-order expansion in
z/R � 1 and using Eq. (54), Eqs. (60) and (61) simplify to

vd = −πησ
∑
i �=0

νiRi(M
+
i + M−

i ) (62)

and

ωd = −πησ
9

8R

∑
i �=0

νiRi(M
+
i − M−

i ). (63)

Provided that only one of the hemispheres specifically inter-
acts with the solutes (M+

i = 0 or M−
i = 0), we obtain

vd = −4

3
vφ and ωd = ∓3

2

vφ

R
, (64)

where the interfacial contribution vφ is given by Eq. (55).
Here, the minus sign in ∓ for ωd applies if M−

i = 0 and
the plus sign applies if M+

i = 0. The net linear and angular
velocity v = va + vd and ω = ωd take particularly simple
forms if we further require that vφ 
 v0. Using Eq. (64) and
va = vφe, we then obtain

v = vφ

(
e − 4

3
f N (R)

)
and ω = ∓3vφ

2R
e × f N (R). (65)

In the far-field, one has | f N (R)| � 1, meaning that the net
linear velocity v nearly coincides with the active velocity va =
vφe. Under this assumption, Eq. (65) can be expressed as

v = vφe and ω = ± 3

2R

∑
j

(
R

r j

)2

r̂ j × v, (66)

where we also substituted Eq. (58) into the expression for ω.
The rotational behavior described by Eq. (66) agrees with

previous observations [6]. If ± is positive, then the test JP
has an interfacial solute excess on the capped hemisphere
(M−

i = 0) and tends to rotate its linear velocity v towards
another ( jth) JP. In this case, the diffusiophoretic interaction
between two JPs is termed “chemoattractive.” If ± is negative,
then the test JP has an interfacial solute excess on the passive

hemisphere (M+
i = 0) and tends to rotate away from another

( jth) JP. The diffusiophoretic interaction is then said to be
“chemorepulsive.”

IV. AN EXAMPLE OF ACTIVE ROTATION: CHARGED
JANUS PARTICLE WITH A NONUNIFORM ZETA

POTENTIAL

To evidence the possibility of active rotation, we consider
a weakly charged JP with an anisotropic surface charge dis-
tribution. For an axisymmetric chemical source density σi(r),
a first-order multipole expansion of the electrochemical fields
in Eq. (41) yields the following form for the corresponding
forces:

Fi(r) = ξi

4πnb
i

[
kir̂
r2

+ 1

r3
(3r̂r̂ − 1) · pi

]
. (67)

The chemical dipole moment pi quantifies a weak anisotropy
in the reactivity of the JP surface, which consumes or pro-
duces particles of solute i at an average rate ki. In view of
Eq. (38), the reaction satisfies ki = νik and pi = νip, where
k and p are the corresponding chemical monopole and dipole
moments of a product with a stoichiometric coefficient νi = 1.

The solutes are treated within the Poisson-Boltmann-
Debye-Hückel (PBDH) approximation [26], meaning that the
local solute densities are described by the Poisson-Boltzmann
distribution

ni(r) = nb
i exp

[
−φi(r)

kBT

]
, (68)

with |φi(r)/(kBT )| � 1, where φi(r) is the specific interaction
potential of solute i with the JP surface. Here we assume
this interaction to be purely electrostatic, in which case the
interaction potential is given by φi(r) = qiφE (r),where φE (r)
is the local electric potential within the interfacial layer. The
gradient of −φE (r) is not to be confounded with the electric
field E(r), which exclusively stems from the surface reactivity
of the JP. We further introduce the valency zi of a solute, such
that qi = zie, where e is the elementary charge. Within the
PBDH approximation, the linearized Poisson equation yields
the well-known Yukawa form of the local electric potential if
the surface charge distribution is isotropic. Here we assume
that this form remains valid for weak departures from this
isotropy, such that

φE (r) = ζ (r̂)
R

r
exp −κ (r − R), (69)

where κ = [(
∑

i nb
i q2

i )/(εkBT )]
1/2

is the inverse of the Debye
screening length λD. The electric surface potential ζ (r̂) is
related to the surface charge density of the colloid and may
therefore be anisotropic.

By expanding Eq. (68) to first order in |φi(r)/(kBT )| � 1
and using Eq. (67), the electrochemical force density on solute
component i can be expressed as

ni(r)Fi(r) = 3

2
ηνiRi

(
1−zi

eφE (r)

kBT

)[
kr̂
r2

+ 1

r3
(3r̂r̂ − 1) · p

]
,

(70)

where we also substituted ξi = 6πηRi. Using Eqs. (69) and
(70) to evaluate Eq. (23), the active angular velocity ωa finally
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takes the form

ωa = −g(κR)

8R2

⎧⎨
⎩

∑
i �=0

ziνiRi

⎫⎬
⎭〈ζ ′(r̂)r̂〉S × p, (71)

where ζ ′(r̂) = eζ (r̂)/(kBT ). The vector 〈ζ ′(r̂)r̂〉S can thus be
interpreted as the “interfacial” dipole moment of the rescaled
electric surface potential ζ ′(r̂). The dimensionless function
g(x) is always positive and given by

g(x) = −2 + x(1 − x) + (6 + x3)exE1(x),

where E1(x) = ∫ ∞
x t−1e−t dt .

Equation (71) only gives a nonzero angular velocity ωa if
the chemical and interfacial dipole moments p and 〈ζ ′(r̂)r̂〉S
point in different directions. More generally, this shows that
active rotation can only occur if the JP is not overall axisym-
metric. Hence if the surface reactivity of the JP is axisym-
metric, then active rotation requires an anisotropic interfacial
solute layer that breaks this axisymmetry. This is the reason
why active rotation is not observed for half-capped JPs.

V. CONCLUSION

We use the Onsager-Casimir reciprocal relations to de-
scribe the motion of self-diffusiophoretic JPs. Our approach

is consistent with previous results and provides an extension
of these results beyond the boundary-layer approximation.
Moreover, identifying the electrochemical forces as thermo-
dynamic forces within Onsager’s theory has allowed us to
naturally combine the effects of diffusio- and electrophoresis,
showing that the active motion of a JP is completely deter-
mined by its surface reactivity and specific interaction with
the surrounding fluid.

Although we also made progress in the description of
diffusiophoretic interactions, it must be noted that these re-
sults are only expected to apply to the far-field regime where
the solvent maintains a hydrostatic equilibrium around the
JPs. The description of such interactions remains a challenge
in the near-field regime, where specific and hydrodynamic
interactions between JPs become important and where mutual
boundary conditions can no longer be ignored. An accurate
reciprocal description of near-field diffusiophoretic interac-
tions will therefore have to resort to more advanced ideas that
remain to be explored.
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