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The reverse perturbation method [Phys. Rev. E 59, 4894 (1999)] for shearing simple liquids and measuring
their viscosity is extended to the Vicsek model (VM) of active particles [Phys. Rev. Lett. 75, 1226 (1995)]
and its metric-free version. The sheared systems exhibit a phenomenon that is similar to the skin effect of an
alternating electric current: Momentum that is fed into the boundaries of a layer decays mostly exponentially
toward the center of the layer. It is shown how two transport coefficients, i.e., the shear viscosity ν and the
momentum amplification coefficient λ, can be obtained by fitting this decay with an analytical solution of the
hydrodynamic equations for the VM. The viscosity of the VM consists of two parts, a kinetic and a collisional
contribution. While analytical predictions already exist for the former, a novel expression for the collisional part
is derived by an Enskog-like kinetic theory. To verify the predictions for the transport coefficients, Green-Kubo
relations were evaluated and transverse current correlations were measured in independent simulations. Not too
far to the transition to collective motion, we find excellent agreement between the different measurements of
the transport coefficients. However, the measured values of ν and 1 − λ are always slightly higher than the
mean-field predictions, even at large mean free paths and at state points quite far from the threshold to collective
motion, that is, far in the disordered phase. These findings seem to indicate that the mean-field assumption of
molecular chaos is much less reliable in systems with velocity-alignment rules such as the VM, compared to
models obeying detailed balance such as multiparticle collision dynamics.
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I. INTRODUCTION

During the past two decades, there has been much interest
in active matter systems, such as bird flocks [1], swarming
bacteria [2,3], active colloids [4,5], microtubule mixtures [6],
and actin networks [7] driven by molecular motors. These sys-
tems display interesting behaviors such as pattern formation,
collective motion, and nonequilibrium phase transitions [8,9].
Some of these features already occur in one of the simplest
models for active matter, the Vicsek model (VM) of self-
propelled particles [10–12] and its variants [13–20]. Because
of the simplicity of its interaction rules and the existence of a
nonstandard transition to a collective state of polar order, the
VM became an archetype of active matter.

Because of the many degrees of freedom, theoretical stud-
ies of active matter systems are often based on coarse-grained
macroscopic transport equations for the slow variables such
as density or momentum. Originally, the general forms of
these equations were postulated by symmetry and renormal-
ization group arguments, such as in the seminal Toner-Tu
theory [21–23] for polar active matter. However, this approach
leaves the coefficients of the terms in the transport equation
largely undetermined. Furthermore, memory and other nonlo-
cal terms are usually not considered, although for particular
models there is evidence on their relevance [24]. These short-
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comings motivated many researchers to derive macroscopic
transport equations directly from the microscopic interactions
and to obtain explicit expressions for the occurring coeffi-
cients [25–37]. Even though most of these coarse-graining
approaches are based on some type of mean-field assump-
tion, they can still be rather involved and, in addition, rely
on further approximations such as timescale separation, the
thermodynamic limit or the irrelevance of higher order spatial
gradients.

In principle, different kinetic theory approaches for the
same microscopic model can lead to different macroscopic
expressions, see, for example, Ref. [38]. Thus, the validity
of the derived transport coefficients and of the macroscopic
description in general is often questionable and has led to
debates [14,39–42]. To the best of our knowledge, so far
there has been no comprehensive work on the verification of
transport coefficients in polar active matter. In this article, we
start filling this void, at least for two transport coefficients
of the standard and the metric-free (or topological) VM. In
particular, we perform extensive agent-based simulations of
the VM, measure the kinematic viscosity, ν, and the mo-
mentum amplification coefficient, λ, by means of several
complementary methods, and compare them to predictions
from kinetic theory. To test our numerical tools, we per-
form additional measurements on a momentum-conserving,
particle-based model for computational fluid dynamics, called
multiparticle collision dynamics (MPCD) fluid [43–48].

First, we employ a nonequilibrium approach and mea-
sure the response to shear, generated through the reverse
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perturbation (RP) method [49]. When applying RP to the
VM, one observes a phenomenon that is similar to the skin
effect of an alternating electric current: momentum that is fed
into the boundaries of a channel decays mostly exponentially
toward the center of the channel. We show how ν and λ can
be obtained by fitting this decay with an analytical solution
of the hydrodynamic equations for the VM. In analogy to the
MPCD case, the viscosity of the VM consists of two parts,
the kinetic (νkin) and the collisional viscosity (νcoll). The latter
contribution was missing in previous theories of the VM, and
we derive here an analytical expression for νcoll by extending
the Enskog-like kinetic theory from Refs. [29,50].

Furthermore, we introduce and apply two other methods to
evaluate ν and λ—the transverse current correlation method
(TC) [51,52] and the Green-Kubo (GK) method [53–56],
which, in contrast to RP, operate without introducing velocity
gradients. We discuss colored noise and estimate memory
effects in the theory for TC, which explains limitations of
this method at very small mean free paths. We find excellent
agreement between the measurements of the RP and the TC
method. Reasonable quantitative agreement between agent-
based simulations (using the RP, GK, and TC method) and
predictions by kinetic theory is observed. This supports previ-
ous concerns on the validity of the mean-field assumption of
molecular chaos in systems without detailed balance and un-
derlines the need for a theory that includes correlation effects.

The rest of the paper is organized as follows. In Sec. II,
we present the standard and metric-free version of the VM,
and briefly discuss the RP method for applying shear flow.
In Sec. III, we develop analytic expressions for the transport
coefficients λ and ν, and discuss the theory of the TC method.
In Sec. IV, we shows our numerical results and compare
them to the theoretical predictions. Finally, in Sec. V, we
provide a final discussion of our results and briefly outline
open questions. The Appendixes contain additional theoretical
details related to the kinetic theory of the VM, as well as
results for an MPCD fluid under shear.

II. MODEL AND METHODS

A. The standard Vicsek model

The VM [10–12] consists of N point particles at global
number density ρ0, which move at constant speed v0 in two
dimensions. The positions and velocities of the particles at
time t are given by xi(t ) and vi(t ), respectively. In the VM, the
particles are propagated via sequential streaming and collision
steps with time step τ . (The term “collision” should not to
be taken literally, but instead denotes any action that changes
the momentum of a particle.) During the streaming step, the
particles move ballistically:

xi(t + τ ) = xi(t ) + τvi(t ). (1)

Because the speeds of the particles stay the same at all times,
the velocities are parameterized by the “flying” angles, θi, i.e.,
vi = v0(cos θi, sin θi ).

In the collision step, the directions θi are changed so that
the particles align with their neighbors within a fixed distance
R plus some external noise. In practice, a circle of radius R
is drawn around the focal particle i, and the average direction
�i of motion of the particles within the circle is determined

according to

�i = Arg

⎛
⎝∑

{ j}
eiθ j

⎞
⎠, (2)

where the sum goes over all particles within the interaction
range R (including particle i). Once all average directions �i

are known, the new directions follow as

θi(t + τ ) = �i + ξi, (3)

where ξi is the so-called angular noise. The random numbers
ξi are uniformly distributed in the interval [−η/2, η/2], with
noise strength η. The model uses parallel updating, and in this
paper we will also assume the so-called standard VM which
uses a forward-updating rule. Thus, the already updated posi-
tions xi(t + τ ) are used for determining the average directions
�i at time t .

Another relevant model parameter is the average particle
number M that can be found inside a circle of radius R, i.e.,
M = ρ0πR2. The dimensionless parameter M measures the
ratio of the interaction range R to the average particle distance
1/

√
ρ0. By increasing M and/or decreasing the noise η, the

VM can be driven from a disordered phase to a phase of
collective motion. The degree of alignment of the particle
velocities can be quantified through the polar order parameter

va = 1

Nv0

∣∣∣∣∣
N∑

i=1

vi

∣∣∣∣∣. (4)

Assuming a spatially homogeneous system, the threshold
condition for this nonequilibrium phase transition can be
calculated within mean-field kinetic theory (see Appendix A
for details). For sufficiently small M � 1, the threshold noise
ηc is predicted as

ηc =
√

48M

(
2

π
− 1

2

)
. (5)

For parameters where the molecular chaos assumption is
strongly violated, ηc can be much lower than this theoretical
prediction, sometimes by a factor between 2 and 3. For
more details on the calculations and for a discussion of this
transition, see Refs. [29,39,50,57,58].

B. The Vicsek model with topological interactions

Experiments by Ballerini et al. [59,60] on flocks of star-
lings indicated that a Vicsek-like interaction rule with a fixed
interaction range might not be appropriate for animal flocks.
Instead, a statistical analysis revealed that, on average, each
bird interacts with a fixed number of neighbors, typically
six to seven. This constitutes a topological or metric-free
interaction because the metric distance is not relevant; rather,
it is a question of who the closest neighbors are. Ballerini
et al. argued further that, due to evolutionary pressure, the
main goal of interaction among individuals is to maintain
cohesion. By comparing simulations with the regular VM and
a modified VM with metric-free interactions, they found that
flocks, when facing predators, kept cohesion much better in
the metric-free model. These observations inspired several
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FIG. 1. Schematic representation of the reverse perturbation
method.

other groups to study versions of the VM with topological
interactions.

In this paper, we will focus on a simple modification of the
VM, which was suggested by one of us [18], because it allows
an analytical description by an Enskog-like kinetic theory like
the one outlined in Appendix. A. In this model, the alignment
rule of the regular VM, given by Eqs. (2) and (3), is slightly
modified such that the number of particles in every collision
circle is kept constant and equal to M at all times by locally
adjusting the interaction radius. Thus, only the M − 1 closest
neighbors together with particle i itself are included in the
calculation of the average angle �i of a particular particle i.
This procedure leads to large interaction ranges in areas with
sparse populations, whereas the interaction radius becomes
small at locations with a high particle number density. We
introduce an effective interaction radius for this metric-free
model, Reff = √

M/(πρ0), which is always set to one by
appropriately choosing the particle number density ρ0.

In the regular VM, a larger local particle density leads to
more robust alignment and stronger local order. This behavior
can be seen in the phase diagram of the VM, for example,
Fig. 1 in Ref. [29]. This coupling between density and order is
the main reason behind the occurrence of soliton-like density
waves near the order-disorder threshold in the regular VM
[39]. In the topological VM, however, density and order are
decoupled because it is always the same number of particles
that participate in the alignment interaction. Therefore, the
long-wave-length instability of the regular VM as well as the
density waves are absent in the topological VM [18,61].

C. The reverse perturbation method

We performed nonequilibrium simulations to compute the
shear viscosity from the simulations. These approaches often
provide significantly better signal-to-noise ratios compared
to equilibrium methods, such as the GK relation [53–56].
To generate shear flow in our system, we employed the RP
method [49], where the shear stress on the system is imposed
externally, by generating a momentum flux through a slab

perpendicular to the flow direction. This flux is achieved by
swapping the particle velocities in the following way: First,
the periodic simulation box is subdivided into equally sized
slabs with thickness a along the gradient direction of the
flow (y). Then, particle i in the y = 0 slab with the largest
positive ex value and particle j in the y = Ly/2 slab with the
largest negative ex value are identified, and their velocities
are swapped. This swapping procedure artificially generates
a momentum flux, which gives rise to a physical flow.

If both particles have the same mass, as is the case in all our
models, swapping conserves both the linear momentum and
the global kinetic energy. In our implementation, momentum
swaps were applied to the system with equal probability either
before or after the collision step. Note that when using the RP
method for the VM, it is crucial to also swap ey of the particle
pair so that the particle speed v0 is conserved. We verified
that this additional swapping does not introduce an unwanted
momentum flux in the x direction.

The imposed shear stress can be controlled by the amount
of momentum swaps in one step and by the time between
swaps, �t . For the chosen geometry of our two-dimensional
systems, the average shear stress can be computed as

〈σ 〉 = 〈�px〉
2�t Lx

, (6)

where 〈�px〉 is the x component of the average total mo-
mentum exchanged during one time step. Figure 1 shows a
schematic view of the shear procedure and the emerging flow
profile.

III. THEORY

A. The collisional viscosity νcoll

It has been shown by several groups [62–66] that the
kinematic shear viscosity of particle-based models, which
consist of subsequent streaming and collision steps, is a sum
of two terms, namely the kinetic part, νkin, and the collisional
part, νcoll,

ν = νkin + νcoll. (7)

Thus, it is plausible that such a decomposition is also valid
for the VM. The kinetic part is due to the momentum that is
carried by a particle moving ballistically and can, for example,
be calculated by a Boltzmann-like kinetic equation. For the
standard VM, this calculation has been done in Refs. [29] and
[50], resulting in

νkin = v2
0τ

8

1 + p

1 − p
. (8)

The auxiliary quantity p involves an infinite sum,

p = 4

η
sin η

N∑
n=1

e−M

n!
n2Mn−1K11

2c (n), (9)

where the coefficients K11
2c are given in Table I of Ref. [50].

Expression (9) can be evaluated approximately at small and
large partner number M. For small normalized densities
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M � 1, a good approximation is

p ≈ sin η

η

1 + 0.327M2 + 0.072M3

1 + M + M2/2 + M3/6
. (10)

In the opposite limit, M � 1, one finds to leading order

p ≈ sin η

2η
. (11)

In Ref. [50], it was demonstrated that, like in regular fluids,
the same expression for νkin can be obtained by evaluating a
simple Green-Kubo relation by means of the molecular chaos
approximation.

The collisional contribution, νcoll in Eq. (7), stems from
collisional transfer of momentum across the finite interaction
range R, and is therefore outside the scope of Boltzmann-like
equations. In contrast, an Enskog-like theory should be able
to capture this contribution (see Appendix A). However, in
previous calculations [29,50], a large mean-free path  =
v0τ � R was assumed, where νcoll becomes negligible. In
this paper, we show how to calculate νcoll for the standard
VM within mean-field kinetic theory. (Note that Boltzmann
approaches such as those of Refs. [25] and [36] are unable
to obtain this important contribution to the viscosity.) The
details of this calculation have been moved to Appendix A
for conciseness, and we summarize here only the final result
for νcoll:

νcoll = R2

τ

sin (η/2)

2η

∞∑
n=1

e−M

(n − 1)!
Mn K1

C (n + 1). (12)

This term has been neglected in previous publications, and
it is clear by dimensional analysis that the collisional part
dominates the viscosity in the typical regime of the VM,
such as originally used by Vicsek et al. [10], because  � R.
This is because νkin scales with time step τ and the effective
temperature, kBT/m ∼ v2

0/2, whereas νcoll is proportional to
R2/τ ; thus νcoll/νkin ∝ (R/)2.

For M � 1, Eq. (12) can be approximated as

νcoll ≈ MR2

τ

sin (η/2)

8η

√
π

M + 2

[
1 + 3M

8(M + 2)2

]
, (13)

by means of a saddle-point expansion inside the infinite sum
of Eq. (12). In the opposite limit, M � 1, we keep only the
first terms in the sum and find

νcoll ≈ MR2

τ

sin (η/2)

2η

×
[

1/π + 0.2624M + 0.11245M2 + 0.03347M3

1 + M + M2/2 + M3/6

]
.

(14)

Figure 2 shows the predicted collisional viscosity, Eq. (12),
as a function of M in comparison to the two approximations,
Eqs. (13) and (14). Interestingly, it turns out that the asymp-
totic expansion, Eq. (13), is not only excellent for M � 1 but
remains a very good approximation for M < 1 with an error
of around 1 to 2% . In contrast, the approximative expression
Eq. (14) which was obtained by truncating an infinite series
becomes very accurate at small M but should not be used for
M > 1.

0 2 4 6 8 10
M

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ol

l. 
vi

sc
os

it
y 

 ν
co

ll

Theory
Small M approx.
Large M approx.

FIG. 2. Collisional part of the kinematic shear viscosity, νcoll,
given by Eq. (12) (solid black line) vs the normalized density, M.
The blue dashed line shows the low-density approximation, Eq. (14),
whereas the high-density expression, Eq. (13), is given by the dashed
red line. The parameters are η = 3.2, τ = 0.2, R = 1, and v0 = 1.

Figures 3 and 4 show both (kinetic and collisional) con-
tributions to the viscosity as a function of noise, η, and nor-
malized density, M. The kinetic contribution is largest at both
small η and small M, whereas the collisional contribution in-
creases with M and decreases with η. Figure 5 shows the total
viscosity ν = νkin + νcoll for two particular sets of parameters
in comparison with νkin and νcoll. Clearly, for these parame-
ters, neglecting the collisional part leads to a large error.
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FIG. 3. (a) Kinetic part of the kinematic shear viscosity, νkin,
given by Eq. (8) and divided by v2

0τ vs the noise, η, for various values
of the dimensionless density, M. Values of M increase from top to
bottom. (b) Collisional part of the viscosity, νcoll, from Eq. (12) and
divided by R2/τ vs η. Values of M decrease from top to bottom.
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FIG. 4. (a) Kinetic part of the kinematic shear viscosity, νkin,
given by Eq. (8) and divided by v2

0τ vs the dimensionless density, M,
for various values of the noise, η. (b) Collisional part of the viscosity,
νcoll, from Eq. (12) and divided by R2/τ vs M. Values of η increase
from top to bottom in both panels.

Finally, we consider the system used in Vicsek’s origi-
nal paper, Ref. [10]. Translating the parameters from their
Fig. 2(a) into our notation leads to M = 12.57, R = 1, and
 = v0τ = 0.03. Choosing η = 3.5, which is slightly above
ηc, and applying expressions (8) and (12), we predict νcoll =
1.7 and νkin = 5.4 × 10−5. This finding confirms the expec-
tation that the kinetic part of the viscosity is negligible here.
Of course, these are predictions within the mean-field approx-
imation, which are not expected to be valid at this small ratio
/R = 0.03. For improved results, precollisional correlations
as discussed in Ref. [67] need to be taken into account.

B. Hydrodynamic theory for Vicsek-like models

There is shared belief that on a macroscopic level polar
active systems are described by a minimal set of equations
for mass and momentum density—the well-known Toner-Tu
equations [21–23]. These equations were first postulated on
the basis of symmetry and renormalization group arguments.
Within the mean-field assumption of molecular chaos, they
have also been derived from first principles, for a VM-like
model with binary collisions by Bertin et al. [25,28] and by
Ihle [29,35] for the standard VM with discrete time evolution,
as considered here. In the latter approach, additional nonlinear
gradient terms which were not part of the original Toner-Tu
theory were found [50].
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FIG. 5. (a) Total shear viscosity, ν = νkin + νcoll (solid line)
given by Eqs. (8) and (12) vs noise, η, for (a) M = 0.2, τ = 0.1 and
(b) M = 5, τ = 0.5. The dashed blue and red lines show the kinetic
and collisional parts, νkin and νcoll, respectively, for comparison.
Other model parameters are R = 1 and v0 = 1.

We would like to apply the Toner-Tu theory to the shear
setup given in Fig. 1, in order to extract the values of several
transport coefficients from simulation data. Measurements are
taken in the stationary state and thus, all time derivatives in the
hydrodynamic equations are set to zero. The stationary state
is established by feeding a small amount of x momentum into
the top layer of the channel and by extracting x momentum
from the layer in the middle (see Sec. II C for details). This
procedure leads to a shear flow of small size at not too low
noise η. Therefore, we can neglect most nonlinear terms in the
flow velocity. Furthermore, there is no pressure gradient in the
x direction. Hence, we assume translational invariance for that
direction and neglect all spatial derivatives with respect to x.
Because of the particular way particle velocities are swapped,
no net y-momentum is transferred between the feeding layers.
Analyzing the continuity equation, ∂tρ + ∂α (ρuα ) = 0, under
the previous assumptions shows that the transversal derivative,
∂ywy, of the y component of the momentum density, w =
ρu = (wx,wy), should be zero. In shear flow of a regular
Newtonian fluid, the density is constant and the transversal
velocity vanishes, uy = 0. This is not quite the case for the
active fluid considered here. Instead, due to a lack of Galilean
invariance, there are additional convective terms which pre-
vent such a simple shear solution. Nevertheless, agent-based
simulations of the VM (see Sec. IV A) showed that the density
variations across the channel are less than 1%, at least outside
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the parameter range where the well-known density instability
of the regular VM occurs [25,29,39]. Therefore, density gra-
dients will be ignored in our theory.

Under these circumstances, the Toner-Tu equations for the
components of the macroscopic velocity u = (ux, uy) take a
simplified form:

μ1 uy∂yux + μ2 ux∂yuy ≈ (
ν∂2

y − κ − qu2
)
ux, (15)

(μ1 + μ2 + 2μ3) uy∂yux + 2μ3 ux∂yux

≈ (
ν∂2

y − κ − qu2
)
uy, with

κ ≡ 1 − λ

τ
. (16)

The kinematic viscosity ν, the coefficients of the con-
vective terms, μ1, μ2, μ3, and the strength of the cubic
nonlinearity q depend on the time step τ , density ρ0, noise η,
and the interaction radius R. The main difference to a regular
fluid is the linear term in u which results from the violation of
momentum conservation. The coefficient λ describes whether,
on average, momentum is lost or gained in a collision. The
cubic term, ∝ u2u, becomes relevant below the threshold
noise ηc, where λ > 1. The threshold noise is defined by the
condition λ(ηc) = 1.

1. Analysis for the disordered state, λ < 1

In the disordered state, η > ηc, the momentum amplifi-
cation factor λ is smaller than one, which means that, on
average, momentum is lost in collisions. If momentum is
“fed” into the boundary layer, it can only penetrate into the
bulk of the channel within a certain distance lS due to the
interplay of momentum diffusion and “evaporation.” Since
this behavior appears to be similar to the skin effect in
electrodynamics, lS will be called skin depth. In this scenario,
we can neglect the cubic term in Eq. (15). Since at η > ηc

there is no spontaneous symmetry breaking, we also neglect
the transversal component uy. Both assumptions have been
justified numerically, and they allow us to obtain an analytical
solution for the velocity profile across the channel:

ux = d0 sinh(d1y), (17)

where ux is the x component of the macroscopic velocity. This
profile is to be applied to the upper (or lower) half of the
channel with the y coordinate set to zero in the middle of the
considered half-channel. The coefficient d1 is given by

d1 =
√

1 − λ

ν τ
. (18)

As shown in Sec. IV A of this paper, velocity profiles from
agent-based simulations which were averaged in time and
over the length of the channel show excellent agreement
with this sinh profile. Fitting data to this profile enables the
determination of the constants d0 and d1.

To recover both transport coefficients λ and ν, an additional
quantity—the momentum flux—is needed. The momentum
flux σ is determined by measuring the amount of momentum
which is fed into the top layer per time and length in the

simulations. This flux is linked to the velocity gradient by

σ = ν ρm
∂ux

∂y

∣∣∣∣
y=Ly/4

, (19)

where ρm is the mass density, and the gradient is to be
evaluated at the top of the channel, at y = Ly/4 (y = 0 is
defined in the middle of the upper half-channel; see Fig. 1).
Inserting the solution, Eq. (17) into Eq. (19) gives an equation
for the viscosity ν:

ν = σ

ρmd0d1cosh(d1Ly/4)
. (20)

Note that using the coefficients d0 and d1 from a fit of
the velocity profile, instead of applying Eq. (19) directly,
circumvents the problem of numerically evaluating a velocity
gradient in the fluctuating top layer of the channel. Once ν

has been determined, it can be inserted in the relation for d1,
Eq. (18), yielding an expression for the coefficient 1 − λ:

1 − λ = τd2
1 ν. (21)

It is possible to formally integrate Eq. (15) with μ1 =
μ2 = 0, but with the cubic nonlinearity on the right-hand
side included. However, fitting this solution to numerically
obtained velocity profiles failed, in the sense that it did not
give reliable estimates for the coefficient q. The reason is
that the averaged velocities in our simulation data were too
small for the nonlinearity to be relevant. This was verified
independently by using the mean-field prediction for this
coefficient from Refs. [29,50], evaluating the cubic term by
hand and observing that it is negligible compared to the linear
terms.

2. Analysis for the ordered state, λ > 1

The situation in the ordered state is more complicated than
the one at λ < 1 because (i) at noise values slightly below
the threshold noise, soliton-like density waves occur in the
regular VM [25,39,68]. That means that density gradients are
large and derivatives with respect to x cannot be neglected.
(ii) Spontaneous symmetry breaking occurs, leading to large
macroscopic velocities that are not necessarily parallel to the
fictitious slabs of the channel.

The former issue will be ignored, because there are models
such as the metric-free VM [17,18,60] or the incompressible
active liquid [69], where such density waves do not occur.
Thus, for simplicity, in our analysis we still omit density
gradients. The latter issue means that nonlinear terms are
relevant and that, depending on the situation, the transversal
component of the velocity uy could be larger than ux. Here, as
a first step, we assume to be close to the threshold, λ − 1 � 1.
Furthermore, assuming small velocity gradients and small
momentum transfer rates, we still ignore the convective non-
linearities but keep the cubic nonlinear term with coefficient q
to stabilize the solution. With these considerations, Eqs. (15)
and (16) now become

νu′′
x − (κ + qu2)ux = 0, (22)

νu′′
y − (κ + qu2)uy = 0, (23)
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where the definition u′
α ≡ ∂uα

∂y was used. Multiplying Eq. (22)
by u′

x, Eq. (23) by u′
y, and adding both equations yields

0 = ∂

∂y

[
−κ

2
u2 − q

4
u4 + ν

2

(
∂u
∂y

)2
]
. (24)

We define the flow velocity of a homogeneous ordered
state, u0 = √|κ|/q, and the normal vector n̂ for its flow
direction. Near the threshold to collective motion, λ − 1 � 1,
and for a particular constant direction n̂, using Eq. (24), we
expand the solution around the homogeneous ordered state,
and obtain the approximate result

u ≈ u0n̂ + A t̂ sinh(d1y) with (25)

d1 =
√

2(λ − 1)

τν
, (26)

where the unit vector t̂ and the constant A are arbitrary. In
finite, not-too-large systems, both directions n̂ and t̂ fluctuate
over time. Because our simulation data are time averaged,
such an average is also performed over Eq. (25). For the x
component of the flow velocity, one obtains

〈ux〉 = d2 + d0 sinh(d1y). (27)

Apart from the constant d2, the solution has the same form
as the one in the disordered state. Note, however, that the
coefficients d0 and d2 originate from the time average of
the fluctuating unit vectors, d0 ≡ 〈A t̂x〉, d2 ≡ 〈u0 n̂x〉, and
therefore strongly depend on the system parameters and the
details of the time average. Thus, for example, it is possible to
observe an averaged flow profile with d2 ≈ 0 which deceiv-
ingly looks like the one found in the disordered phase, even
though particles have strong orientational order at any given
time. The procedures and formulas to obtain the viscosity,
Eq. (20), for both the ordered and the disordered phase are
identical. However, there is a difference between Eqs. (18) and
(26) for the fit parameter d1. Because of that, for η < ηc one
finds

λ − 1 = τd2
1 ν

2
. (28)

C. Transverse current fluctuations

The most common methods of calculating the shear viscos-
ity from simulations are the GK approach and nonequilibrium
molecular dynamics. A third, less popular, approach is the use
of transverse-current autocorrelation functions. This method
relies on the fact that in molecular liquids in thermal equilib-
rium, long-wavelength fluctuations in transverse momentum
fields decay exponentially with a decay constant νk2, where
k is the wave vector of the fluctuation and ν is the kinematic
shear viscosity. This approach was used, for example, to cal-
culate the shear viscosity for monoatomic liquids in Ref. [51]
and for liquid carbon dioxide, a molecular fluid, in Ref. [52].
In an “artificial” fluid without momentum conservation such
as the VM, the decay constant should contain an additional
term which does not depend on k, because even at zero wave
number, momentum fluctuations still decay. This additional
term should contain information about the momentum ampli-
fication factor λ.

To describe small fluctuations in a stationary state, we
start with the linearized Toner-Tu equations for the momen-
tum density w = (wx,wy) which, in the spirit of Landau-
Lifschitz’s theory on “fluctuating hydrodynamics” [70], are
augmented with a noise source � = (�x, �y),

∂twα = −∂αP − κ wα + ∂βσαβ + �α. (29)

Here, P is the pressure, κ ≡ (1 − λ)/τ , and σαβ is the viscous
stress tensor,

σαβ = ν

(
∂αwβ + ∂βwα − 2

d
δαβ∂γ wγ

)
, (30)

where d = 2 is the spatial dimension. The bulk viscosity is
not included in Eq. (29) because it is irrelevant for the TC
fluctuations. Higher order gradient terms and nonlinear terms
were neglected in this equation. We also assume that we are
in the disordered phase, that is, κ � 0. As usual, the average
of the noise can be chosen to vanish 〈�〉 = 0. However, not
much is known about its correlations; in general, we can
neither assume that the noise is white nor that its components
are uncorrelated.

Defining the Fourier transform of the momentum density,

ŵα (k, t ) = 1

V

∫
wα (x, t ) eik·x dx, (31)

Eq. (29) reads in Fourier space as

∂t ŵα = ikαP̂ − κ ŵα − νk2
β ŵα + �̂α, (32)

where P̂ and �̂α are the Fourier transforms of pressure and
noise, respectively. The simplest way to model a colored noise
is to assume an exponential form

〈�̂α (k, t )�̂∗
β (k, t̃ )〉 = γ

2
gαβ (k)C(k) exp(−γ |t − t̃ |), (33)

where C models the unknown (but irrelevant) strength of the
noise and γ is the decay rate of the noise correlations. This
leads to the definition of the memory time of the noise, τN ≡
1/γ . The tensor g, in particular its off-diagonal elements,
describe possible correlations between the different spatial
components of the noise. For simplicity and for symmetry
reasons, one has gxx = gyy = 1, and gxy = g∗

yx. Without those
correlations, i.e., with gxy = 0 and in the limit γ → ∞, the
white noise behavior of a regular fluid is recovered, where the
correlations become equal to δαβCδ(t − t̃ ). All three quanti-
ties γ , C, and g are likely to depend on the wave vector k.

A general result of the Mori-Zwanzig projector operator
formalism [71] is that the correlations of the (internal) noise
are equal to the memory kernel in the corresponding gener-
alized Langevin equation. However, our Langevin equation,
Eq. (32), contains only local terms. Therefore, even though
we did not apply this formalism explicitly, for consistency
[72] we assume a white noise, i.e., γ → ∞ in the following
calculations followed by an estimate of when this assumption
is likely to fail.

One way to extract the TC fluctuations is to focus on the
vorticity ω ≡ ∇ × w of the flow, whose z component is given
by

ωz = ∂xwy − ∂ywx. (34)
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In Fourier space, Eq. (34) becomes

� ≡ ω̂z = −ikxŵy + ikyŵx. (35)

Multiplying the x component of Eq. (29) by ky, multiplying
the y component by kx, and subtracting both equations from
each other leads to a closed equation for �,

∂t� = −μ� + φ̂, (36)

where

μ ≡ κ + νk2,

φ̂ ≡ iky�̂x − ikx�̂y. (37)

Thus, by using the vorticity, one has managed to effectively
“project out” the longitudinal modes which contain pressure
and bulk viscosity. The correlations of the noise φ̂ follow from
Eq. (33) in the limit γ → ∞ as

〈φ̂(k, t )φ̂∗(k, t̃ )〉 = G(k) δ(t − t̃ ), (38)

where

G(k) = C(k) (k2 − kxky[gxy + g∗
xy]). (39)

The stochastic differential equation, Eq. (36), is solved, and
in the stationary limit, t → ∞ and t̃ → ∞, we obtain the
vorticity correlations

〈�(k, t )�∗(k, t̃ )〉 = G

2μ
exp(−μ |t − t̃ |). (40)

Let us define the viscosity-related decay time τμ ≡ 1/μ

and the ratio of the two characteristic timesscales,

δ ≡ τN

τμ

= μ

γ
. (41)

Once the decay time τμ and the memory time of the noise τN

are approximately equal, memory effects should matter for the
decay of the vorticity correlations, and we expect deviations
from the white noise prediction, Eq. (40).

In the collision-dominated regime of the VM, where
v0τ � R, νcoll/νkin � 1, and ν ∝ 1/τ , the total viscosity, ν,
can become very large at small time steps τ . Thus, μ would
also become large. This trend to small τμ = 1/μ is intensified
if one is deep in the disordered phase, where κ is large too,
and also in systems with a small linear dimension L since the
smallest useful wave number is equal to 2π/L and thus can be
rather large. In the same limit of small time steps, a particle
needs more iterations to move out of the collision circle of
current collision partners. Hypothesizing, that, at least far in
the disordered phase, the memory time of the noise τN is
approximately given by the time two particles diffuse away
from each other by a distance R, we obtain a rough estimate
for τN,

τN ≈ R2

2v2
0τ

. (42)

For small time steps, we also have μ ∝ 1/τ , and therefore

δ = μτN ∼
(

R

v0τ

)2

. (43)

Hence, we predict that at sufficiently small mean free path
v0τ (compared to the radius of the interaction circle), the ratio

0 2 4 6 8 10 12 14 16
Height y

-0.02

-0.01

0.00

0.01

0.02

A
ve

ra
ge

 v
el

oc
it

y 
v x

η=3.5
η=3.7
fit for η=3.7
η=4.0
removed part for η=4.0

FIG. 6. Average velocity in the x direction as a function of height
y for the RP measurements of the metric-free VM for noise values
η = 3.5, 3.7, and 4.0. Only the lower half of the channel is shown.
The bottom and top parts of the profiles, i.e., the velocities inside the
“feeding” layers of thickness 1, were cut off for fitting purposes. This
region is shown for η = 4 by the dotted red line, demonstrating the
abrupt change of the profile inside the top layer of the half-channel.
The blue circles show the excellent fit by the function ∝ sinh(d1ỹ)
with the shifted height ỹ = y − Ly/4 + 0.5. Simulations have been
conducted at Lx = 128, Ly = 32, M = 5, τ = 2, and v0 = 1.

of the timescales, δ, will become larger than 1, meaning that
the memory time of the noise cannot be neglected. Therefore,
we apply the TC method only at sufficiently large mean free
paths where we can assume decent accuracy of Eq. (40). The
corresponding numerical results are presented in Sec. IV B.

IV. NUMERICAL RESULTS

A. Velocity profiles, polar order, and transverse
current fluctuations

We performed two-dimensional agent-based simulations of
the regular and the metric-free (topological) VM with system
sizes ranging from 16 × 16 to 128 × 32 and followed the RP
protocol with swap times between �t = 1 an �t = 4 (see
Sec. II C). The simulations usually ran for 5 × 106 to 3 × 107

iterations after the stationary state has been reached in order to
ensure sufficient accuracy in the time averages. Since momen-
tum is not conserved in the VM, the stationary velocity profile
across each of the half channels (see Fig. 1) is usually not
linear. Hence, unlike for momentum-conserving fluids such as
MPCD (see Appendix B), the shear viscosity cannot simply be
obtained as the proportionality factor between the measured
velocity gradient and the applied shear stress. Instead, the
theory outlined in Sec. III B is used to evaluate the simulation
data. In particular, the velocity profile was fitted with a sinh
profile, according to Eq. (27). The extracted fitting coefficients
d0 and d1 were inserted in Eq. (20) to obtain the viscosity
ν. If the polar order parameter was above about 0.15 and the
coefficient d2 significantly deviated from zero, expression (28)
for the ordered state was used to obtain the momentum gain
coefficient λ. Otherwise, Eq. (21) for the disordered state was
applied to extract λ.

Figure 6 shows the measured velocity profiles as a function
of height y for the metric-free VM for three different noise
values η in the disordered phase. Only the lower half of the
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FIG. 7. Polar order parameter, va, vs noise, η, for the regular VM
at rest (solid line) and under shear (symbols). Simulations have been
conducted in a 16 × 16 box with M = 5, τ = 2, R = 1, and v0 = 1.

channel is shown and the velocities inside the bottom and top
layers were discarded to obtain a better fit. At the border of
these “feeding” layers the profiles change abruptly, as shown
by the dotted red line for η = 4, which is included in the plot
for illustration but was not used in the fitting procedure. One
sees that the sinh function provides a perfect fit, at least for
this set of parameters.

We have also investigated whether shearing the system has
an effect on the (average) ordering of the particle velocities,
quantified by the polar order parameter va [see Eq. (4)].
Figure 7 shows typical results of va as a function of noise,
η, at rest and under shear for the regular VM in a 16 × 16
box with M = 5, τ = 2, R = 1, and v0 = 1. The data for these
three cases are virtually identical, indicating that shear has a
negligible impact on the overall ordering of the particles for
the applied shear stresses.

To study the transverse current (or vorticity) correlations,
we performed agent-based simulations of the regular and the
metric-free VM with periodic boundary conditions with sys-
tem sizes Lx × Ly ranging from 16 × 16 to 64 × 64. Neither
external forces nor the RP-swapping procedure were applied.
Once a system reached its stationary state, the momentum
density was measured in our simulations through

ŵ(k, t ) =
N∑

j=1

v j (t )eik·r j (t ), (44)

which is the Fourier transformation of the microscopic ex-
pression for the momentum density of a system of N point
particles at a particular position x, given by (see, for example,
Refs. [56])

w(x, t ) =
N∑

j=1

v j (t ) δ(x − r j (t )). (45)

Here, v j = (v j,x, v j,y ) and r j = (r j,x, r j,y ) are the velocity and
position of particle j, respectively. Inserting the components
of the transformed momentum density, ŵ = (ŵx, ŵy), into
Eq. (35), the z component of the vorticity, denoted by �,
can be recorded. Typically, the simulations ran for 105 to
106 iterations after the stationary state has been reached,
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FIG. 8. Vorticity correlations, 〈�(k, t )�∗(k, t̃ )〉, vs time differ-
ence, |t̃ − t |, for the metric-free VM at η = 3.7, M = 5, τ = 2,
Reff = 1, and v0 = 1 in a quadratic simulation box with Lx = Ly =
64. The solid lines show simulation data, while the dashed lines
correspond to exponential fits.

and �(k, t ) was recorded for a set of small wave vectors.
After completion of the simulations, the stored time series
was used to calculate the time-averaged vorticity correlations,
〈�(k, t )�∗(k, t̃ )〉. We found that in the disordered phase, for
small k and for not too small time steps, these fluctuations
decayed exponentially, ∝ exp(−μ|t − t̃ |), as shown in Fig. 8.

The decay rate μ was extracted from exponential fits with
different values for the wave vector k (see Fig. 8). We then
extracted the transport coefficients ν and λ from these data by
fitting the obtained μ by the theoretical expectation, μ = (1 −
λ)/τ + νk2 [see Eq. (37)]. Figure 9 shows exemplary data for
simulations of the metric-free VM at M = 5, τ = 2, Reff = 1,
and v0 = 1 in a quadratic simulation box with Lx = Ly = 64.

B. Transport coefficients

Figure 10 shows the total shear viscosity, ν, obtained by
the RP and TC methods as a function of noise, η. The trend
of a decreasing viscosity with increasing noise is the same as
in the theoretical prediction. However, the measured values
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FIG. 9. Plot of μ vs k2 for the metric-free VM at M = 5, τ = 2,
Reff = 1, and v0 = 1 in a quadratic simulation box with Lx = Ly =
64. Symbols show simulation data, and lines show fits according to
μ = κ + νk2.
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FIG. 10. Kinematic viscosity, ν, vs noise, η, for the regular VM
extracted by the RP method for time step τ = 2 at two system
sizes Lx = 128, Ly = 32 (blue squares), and Lx = Ly = 16 (green
triangles). The thick black line shows the theoretical prediction by
Eqs. (7), (8), and (12). Results from the TC method for Lx = Ly = 16
are shown by the orange triangles. All simulations conducted for
M = 5, R = 1, and v0 = 1.

lie consistently by about 15% to 18% above the mean-field
prediction, given by Eqs. (7), (8), and (12), even at parameter
ranges where one naively would expect mean-field theory to
hold. This discrepancy is confirmed by the viscosity mea-
surements through the TC method, which agree rather well
with the results from the RP simulations at noise values in the
disordered phase.

Figure 11 shows the difference 1 − λ (λ = 1 denotes
the threshold condition for the order-disorder transition) as
a function of noise η for different system sizes and time
steps. Apart from the values obtained by the RP method,
the figure also shows the mean-field prediction and values
obtained by the TC method. Although both the scaled density
M = ρ0πR2 = 5 and the ratio between mean free path and
interaction radius, v0τ/R = 1 and 2, are rather large, there
is a significant deviation between the numerical results and
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FIG. 11. The coefficient 1 − λ vs noise, η, for the regular VM
extracted by the RP method (purple circles, blue squares, and green
triangles) for several time steps τ and system sizes Lx × Ly, as indi-
cated. The black line shows the theoretical prediction by Eq. (A20).
Results from the TC method in a small system, Lx = Ly = 16, are
shown for τ = 2 (orange triangles) and τ = 1 (red diamonds). All
simulations conducted for M = 5, R = 1, and v0 = 1.
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FIG. 12. Density distribution along the normalized x axis, taken
relative to the system’s center of mass. Solid lines with filled symbols
show the results for the 128 × 32 systems, whereas dashed lines
with open symbols show the results for the 16 × 16 system. The
gray horizontal line indicates the average density in the system.
The symmetric double peak of the density distribution in the 128 ×
32 systems for η = 3.3 originates from averaging multiple density
waves, traveling in both the +x and −x directions over the course of
the simulation.

the theory. This discrepancy indicates that mean-field theory
gives an inaccurate prediction for the threshold condition at
these parameters. One notices that doubling the time step, τ ,
reduces the deviation to mean-field theory only slightly.

Furthermore, the parameter λ seems to jump from a pos-
itive value to a negative one around some critical value if
the noise is decreased. This behavior could be due to the
appearance of density waves right at the onset of collective
motion that render the order-disorder transition discontinuous.
A quantitative, mean-field theory of this mechanism in the
regular VM is presented in Ref. [39]. However, density waves
only occur in sufficiently large systems; Fig. 12 shows the
density distribution of particles along the x direction, taken
relative to the center of mass of the system for the large
128 × 32 systems as well as the small 16 × 16 systems at
τ = 2. Measurements have been taken for noise values in
the ordered (η = 3.3 < ηc) and disordered regime (η = 3.8 >

ηc). The large systems exhibit distinct density waves when
η < ηc, whereas the small systems did not develop any such
density waves. Note that applying shear did not have any
appreciable effect on the formation of density waves, but
the wave fronts appear to be less sharp due to the emerging
sinh-shaped velocity profile (see Fig. 6).

Nevertheless, even in small systems there might be strong
density fluctuations and/or transient clusters at the threshold
to collective motion that are precursors of the discontinuous
phase transition which is observed in larger systems. In order
to test the hypothesis that the jump in the measured values
of 1 − λ is caused by those density fluctuations and are not
artifacts of the RP method, we also performed measurements
for the VM with metric-free interactions. As shown in Fig. 13
and compared with Fig. 11, these jumps are about a factor of 3
smaller in the metric-free model and are hardly noticeable in
the plot. Further note, that mean-field theory underestimates
the coefficient 1 − λ also for the metric-free model. However,
increasing the time step from τ = 2 to τ = 5.66 leads to better
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FIG. 13. The coefficient 1 − λ vs noise, η, for the metric-free
VM, extracted by the RP and TC method for time steps τ = 2.0
and τ = 5.66, as indicated. The black line shows the theoretical
prediction from Ref. [18]. Simulations have been conducted at M =
5, Reff = 1, and v0 = 1 in a quadratic simulation box with Lx = Ly =
64 for the TC runs and in a box with Lx = 128, Ly = 32 for the
RP simulations. The error bars on the TC data are smaller than the
symbols.

agreement with mean-field theory, as expected. In general, it
appears that the agreement with mean-field theory is better for
the metric-free model than for the regular VM.

Still, we cannot completely rule out that the observed jump
in 1 − λ might be an artifact of the assumed hydrodynamic
theory which we used to evaluate the RP measurements. In
that case, the jump could be interpreted as an error bar in
the determination of the momentum gain coefficient λ or,
alternatively, could simply mean that the RP method is not
very reliable in the ordered phase. These interpretations are
consistent with an alternative measurement of λ by the TC
method. In particular, comparing the green triangles to the
orange triangles in Fig. 11, which correspond to the same set
of parameters but different methods, we see good agreement
in the disordered phase with a difference between the two
curves that is smaller than the jump in the green curve.

Similar agreement between the RP and TC method is seen
in Fig. 14, which shows measurements of the viscosity for
the metric-free model. Although near the threshold noise,
ηc, excellent agreement between the TC and the RP method
occurs, deviations are observed at larger noise. At these larger
noises, the TC method appears to be more accurate than the
RP method or at least seems to require less fine-tuning of
numerical parameters such as the appropriate thickness of the
feeding layers, swap times �t , and so on.

To quantify the errors of the RP method, we fitted three
different sections of the velocity profiles for the parameters of
Figs. 13 and 14 at η = 4.0 and for both τ = 2 and τ = 5.66.
This leads to different fitting coefficients d0 and d1, which
consequently lead to different predictions when plugged into
Eqs. (20), (21), or (28). For the runs with τ = 2, we found
rather small errors, about 5% for ν and 2% for λ. However,
for the larger time step τ = 5.66, the errors become huge if
sections of the profile are picked for fitting that either only
include profile parts from near the center of the sample or only
parts from the vicinity of the feeding layers. In this worst-case
scenario, one obtains a 100% error in both ν and λ. However,
by comparing the green with the red curve in Fig. 13, the error
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FIG. 14. Kinematic viscosity, ν, vs noise, η, for the metric-free
VM extracted by the RP and TC method for time steps τ = 2.0 and
τ = 5.66. The solid black line shows the theoretical result for τ =
2, whereas the dashed black curve is the theoretical prediction with
τ = 5.66 from Ref. [73]. Simulations have been conducted at M = 5,
Reff = 1, and v0 = 1 in a quadratic simulation box with Lx = Ly =
64 for the TC runs and in a box with Lx = 128, Ly = 32 for the RP
simulations. The error bars on the TC data are equal to or smaller
than the symbols.

for λ actually appears to be only around 15% to 18% at the
largest noises and even smaller for ν. Nevertheless, this serves
as a warning that the thickness of the feeding layer and the
channel height Ly must be chosen carefully and large enough
compared to the mean-free path.

Let us now focus on the effect of time step for other-
wise identical conditions (purple circles and blue squares in
Fig. 11). Here, we observe that the jump, which indicates
the order-disorder transition, occurs at a smaller noise value
in the system with the smaller time step τ = 1. This shift
is a well-known effect in the standard VM, which has been
reported for instance in Refs. [29,68]. It has been shown that
at large mean free paths, corresponding to large time steps,
the threshold noise converges to the mean-field prediction
[29], which follows from Eq. (A20) by setting λ equal to
one. This mean-field prediction for ηc does not depend on
particle velocity, time step, or interaction radius. However, as
observed in Ref. [68], the actual value of ηc becomes smaller
by a factor up to around 2.5 if the mean free path (or τ in
our case) is reduced. This deviation from mean-field theory
is attributed to correlation effects which grow at decreasing
mean free path. Although a ring-kinetic theory for correlation
effects in the standard VM was attempted in Ref. [67], it fell
short of explaining the dependence of ηc on the mean free
path.

A similar dependence of the threshold noise on the mean
free path can be seen in Fig. 13, which shows 1 − λ for the
metric-free model at two different mean free paths, v0τ = 2
and 5.66. Here, the threshold noises are ηc ≈ 3.24 and ηc ≈
3.63, respectively. Around these noise values, one observes a
tiny jump of 1 − λ in the figure. Additionally, one sees that
the RP method becomes less accurate deep in the ordered
phase but also further in the disordered phase, away from the
threshold; see also the orange curve in Fig. 14 for τ = 2 and
η � 3.9. This is partly because if λ differs significantly from
one, the velocity profile decays rapidly toward the middle of
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FIG. 15. Mean-field correlation length ξ in units of the mean free
path  = v0τ vs relative distance to the threshold noise, (η − ηc )/ηc,
for the metric-free VM. Instead of measuring the actual correlation
length directly, 1 − λ and the viscosity ν were obtained from mea-
sured TC and then inserted in the formula ξ = √

ντ/(1 − λ) (open
circles). The blue and red lines show the theoretical prediction for
time steps τ = 2 and 5.66, respectively. The dashed line represents
a power law decay with exponent −1/2. Simulations have been
conducted at M = 5, Reff = 1, and v0 = 1 in a quadratic simulation
box with Lx = Ly = 64.

each half-channel, making a fit by a sinh function less reliable.
Furthermore, at the larger mean free path, v0τ = 5.66 and
a “feeding layer” smaller than this length (as used in our
simulations), the discreteness of the dynamics impacts the
velocity profile which deviates from a sinh function. Fitting
it anyway by such a function creates a rather large error. This
is especially visible in Fig. 13 at noises η � 4.0 and large
τ = 5.66.

We noticed a significant k dependence of the viscosity near
the order-disorder threshold at certain parameter values. In
particular, fitting the decay constant μ by a function κ + ν̃kβ

with three free parameters sometimes led to an exponent β

smaller than 2, at least in the range of k values we investigated.
We checked that β approaches the value 2 at larger mean
free paths and further away from the threshold, i.e., at larger
noise. Since this effect seems to be more pronounced than in
regular fluids near criticality, we think that it is a result of
the velocity alignment interaction. A detailed numerical and
analytical investigation of this behavior is beyond the scope
of the paper but is subject of current research.

The quantity ξ ≡ √
ν/κ has units of length, and within

kinetic theory, it can be established [73] as a mean-field
approximation to the correlation length. At a continuous phase
transition, the correlation length should diverge with the criti-
cal exponent ν̄ as

ξ ∼ (η − ηc)−ν̄ (46)

with the usual mean-field exponent ν̄ = 1/2; see, for example,
Ref. [74]. Inserting our measured values of κ and ν into the
expression for ξ , and plotting this as a function of the relative
distance to the threshold noise, (η − ηc)/ηc, the divergence
with the mean-field exponent of 1/2 is reproduced rather well,
as shown in Fig. 15. Of course, this result does not rule out
that the actual correlation length diverges with an exponent
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FIG. 16. Kinetic part of the viscosity, νkin, vs noise, η, for the
regular VM. Red squares show measurements in the disordered state
by means of Eq. (47), while black circles correspond to the prediction
by mean-field kinetic theory, Eq. (8). The blue dashed line is the
measured polar order parameter (right axis). Simulations have been
conducted for M = 5, τ = 1, v0 = 1, and R = 1.

different from 1/2. Measuring of actual critical exponents
requires careful finite-size scaling and is beyond the scope of
this paper.

C. Evaluation of Green-Kubo relations

GK relations [53–56] provide a convenient way to measure
transport coefficients in equilibrium molecular dynamics or
other particle-based simulation methods of regular fluids.
Typically, these relations are used to obtain the self-diffusion
coefficient and the viscosity. The kinetic part of the viscosity
describes the convection of the transverse momentum by a
particle. More specifically, every particle that moves in the x
direction with some velocity vx carries its transverse momen-
tum py = mvy with it; when it eventually collides with another
particle, it has transferred y momentum in the x direction.
This mechanism leads to the appearance of the off-diagonal
element σ kin

xy (t ) = m
∑N

j=1 v j,x(t )v j,y(t ) of the kinetic stress
tensor in the derivation of the corresponding GK relation by
the projector-operator method for regular fluids. A similar
derivation for the MPCD-fluid can be found in Refs. [75,76].

It seems plausible that the same mechanism of momentum
transport acts also in generalized fluids, such as the VM, that
neither respect momentum conservation nor detailed balance.
Indeed, it was shown [50] that the analytical evaluation of the
usual GK relation for the kinetic part of the viscosity

νkin = τ

NkBT

[
1

2

〈
σ 2

kin(0)
〉 + ∞∑

n=1

〈σkin(nτ )σkin(0)〉
]

(47)

within the mean-field assumption of molecular chaos when
setting the temperature kBT equal to mv2

0/2 leads to an expres-
sion for νkin, which is identical to the one obtained from the
Chapman-Enskog theory of the VM, Eq. (8). Thus, at least at
the mean-field level, the validity of the GK relation, Eq. (47),
has been proven. Although a microscopic derivation of the GK
relation for the VM has not been performed yet, its correctness
beyond mean field seems likely, and we use it here anyway.

Figure 16 shows the kinetic viscosities measured in direct
simulations of the VM without shear gradient by means of
Eq. (47) as a function of noise, η, in comparison with the
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FIG. 17. Kinetic part of the viscosity, νkin, vs velocity, v0, for
the regular VM at very large η = 6. Red circles show measurements
in the disordered state by means of Eq. (47), while the solid black
line corresponds to the evaluation of this expression by mean-field
kinetic theory. Simulations have been conducted at M = 5, τ = 1,
and R = 1.

theoretical (mean-field) expression. For higher noise, where
the theory should become more accurate, we find excellent
agreement for a large range of particle velocities, v0, as shown
in Fig. 17. However, even at the threshold to ordered motion,
the deviation is only around 15%. These results support the
validity of the mean-field derivation of the analytical expres-
sion for νkin, Eq. (8), which was first reported in Ref. [29].
Understanding and reducing the deviations between kinetic
theory and agent-based simulations will be left for future
studies.

V. CONCLUSIONS

By now, one can find many derivations of hydrodynamic
equations from the microscopic interactions of active particle
systems in the literature. These derivations are often compli-
cated and involve several more or less severe approximations.
Therefore, the validity of the obtained expressions is not a
priori clear, and it would be useful to verify them. In this
paper, we developed a hydrodynamic theory for both the stan-
dard and the metric-free version of the Vicsek model (VM)
of self-propelled particles, when shear is applied through
Müller-Plathe’s reverse perturbation (RP) method. Feeding
momentum into the boundaries of a channel filled with self-
propelled particles led to an almost exponential decay of
the flow speed toward the center of the channel due to the
lack of momentum conservation. We demonstrated how fitting
this decay with an analytical solution of the hydrodynamic
equations for the VM allows extracting the two transport
coefficients, namely the shear viscosity, ν, and the momentum
amplification coefficient, λ. In order to compare with existing
kinetic theories, an improvement of a previous derivation of
the viscosity from an Enskog-like kinetic theory was required.
This calculation resulted in a new explicit formula for the
missing contribution—the collisional part of the viscosity. For
a typical choice of parameters from Vicsek’s original paper,
we showed that this collisional contribution is larger by a
factor of ≈104 than the previous prediction for the viscosity.

To verify our theory, we performed agent-based simula-
tions of both the standard and the metric-free version of the

VM. We measured the transport coefficients ν and λ using two
different methods, namely the RP method and the transverse
current fluctuation method (TC). In the disordered phase and
not too far from the threshold to collective motion, excellent
agreement between the measurements of ν was found. These
findings verify our extension of Müller-Plathe’s RP method to
active particle systems.

Further, we found reasonable agreement when comparing
our measurements of ν with the predictions from mean-field
kinetic theory. However, the measured viscosities were con-
sistently higher by 15% to 18% than the predicted ones. To
elucidate the origin of this systematic discrepancy, we also
measured the kinetic part of the shear viscosity, νkin, using
the Green-Kubo (GK) approach. In the GK calculations, we
observed very good agreement between theory and measure-
ments at large noise, close to the maximum noise of ηmax =
2π . However, close to the threshold to collective motion, we
found a similar difference of about 15% as in the RP and
TC measurements. Because most of our measurements were
done at rather large time step τ � 1, where the viscosity is
dominated by its kinetic part, we hypothesize that most of
the discrepancy in ν between theory and simulation is due to
the invalidity of the mean-field assumption in the analytical
calculation of νkin. Therefore, future theoretical efforts to
improve the expression for the viscosity should focus on this
contribution.

The agreement between the results for λ obtained by the
RP and TC method was also very good but still not as
good than for the viscosities. Moreover, we observed that
the mean-field prediction for λ only became accurate at very
large mean-free paths, where there is large mixing of particles
and where the assumption of molecular chaos should become
valid.

While our results support the correctness of the mean-
field calculation of the collisional part of the viscosity as
well as the validity of earlier results from an Enskog-like
kinetic theory, they, however, underline previous concerns
about mean-field assumptions and the relevance of correlation
effects in active matter systems. It appears that even at a large
average number of interaction partners, M = 5, and a mean
free path that is twice as large as the interaction range, precol-
lisional correlations still significantly influence the transport
coefficients.
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APPENDIX A: KINETIC THEORY FOR
THE VICSEK MODEL

1. Introduction to Enskog-like kinetic theory

In the VM, a given particle i is described by its location
xi and the angle θi of its velocity vector. Hence, the mi-
crostate of a system of N particles corresponds to a point in
3N-dimensional phase space. The time evolution of the VM
in this phase space is Markovian, since information about
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microstates from earlier times is irrelevant for further evolu-
tion. Hence, we can write down an exact evolution equation
for the N-particle probability density P of the corresponding
Markov chain,

P(B, t + τ ) =
∫

P(A, t ) WAB dA , (A1)

which describes the transition from microscopic state A
to state B during one time step with transition probability
WAB. The state of the system at time t + τ is given by
the vector, B ≡ (θ (N ), X(N ) ), where θ (N ) ≡ (θ1, θ2, . . . , θN )
contains the flying directions of all N particles, and X(N ) ≡
(x1, x2, . . . , xN ) describes all particle positions. The initial
microscopic state at time t is denoted as A ≡ (θ̃ (N ), X̃(N ) ).
The integral over the initial state translates to

∫
dA ≡∏N

i=1

∫ π

−π
d θ̃i

∫
d x̃i, where precollisional angles and po-

sitions are given by θ̃i and x̃i, respectively. The tran-
sition probability WAB encodes the microscopic collision
rules,

WAB =
N∏

i=1

δ(x̃i − xi + τvi )
∫ π

−π

wn(ξi ) δ̂(θi − ξi − �i ) dξi ,

(A2)
and consists of two parts: the first δ function describes the
streaming step which changes particle positions. The second
part contains the periodically continued δ function, δ̂(x) =∑∞

m=−∞ δ(x + 2πm), which accounts for the modification of
angles in the collision step. The particle velocities V(N ) ≡
(v1, v2, . . . , vN ), are given in terms of angular variables
θi,

vi = (ex, ey) = v0 (cos θi, sin θi ). (A3)

For the standard VM, the noise distribution wn is given by

wn(ξ ) =
{ 1

η
for − η

2 � ξ � η

2
0 elsewhere

(A4)

with noise strength η. Solving Eq. (A1) is intractable without
major simplification. The common way to proceed is to use
Boltzmann’s molecular chaos approximation by assuming that
the particles are uncorrelated just prior to every microscopic
interaction [77]. This approximation amounts to a factor-
ization of the N-particle probability into a product of one-
particle probabilities, i.e., P(θ (N ), X(N ) ) = ∏N

i=1 P1(θi, xi ) on
the right-hand side of Eq. (A1). Because molecular chaos
neglects precollisional correlations, the resulting theory has
a mean-field nature. By integrating out all particles ex-
cept one—the so-called focal particle—in Eq. (A1), an
Enskog-like equation for the distribution function f = NP1 is
obtained,

f (x + τv, θ, t + τ ) = C ◦ f (x, θ, t ), (A5)

where C is an Enskog collision operator for multiparticle
collisions. In the thermodynamic limit, N → ∞, L → ∞, and

ρ0 = N/L2 = const ., this operator is given by

C ◦ f (x, θ, t ) = 1

η

∫ η/2

−η/2
dξ

〈〈 ∞∑
n=1

e−M

n!
n f (x, θ̃1, t )

× δ̂(θ − ξ − �1)
n∏

i=2

f (xi, θ̃i, t )

〉
θ̃

〉
x
. (A6)

Here, 〈· · · 〉x = ∫
� . . . dx2 dx3 . . . dxn denotes the integration

over all positions of the particles 2, 3, . . . , n inside the colli-
sion circle, and 〈· · · 〉θ̃ = ∫ 2π

0 . . . d θ̃1 d θ̃2 . . . d θ̃n refers to the
integration over the precollisional angles of all n particles
inside the circle. The average angle of the focal particle i =
1, �1 is defined in Eq. (2) and is a function of both the
precollisional angles and the positions of all particles. For
more details on the derivation of Eq. (A5) and a discussion
of the molecular chaos assumption, see Refs. [35] and [50].

2. Calculation of the collisional viscosity νcoll

To calculate the collisional viscosity, we will heavily rely
on the notations and equations presented in Ref. [50], which
are too lengthy to be repeated here in full detail [73]. There,
a Chapman-Enskog expansion (CE) [78–80], which is basi-
cally an elaborated gradient expansion, was constructed to
obtain hydrodynamic equations of the VM. To systematically
account for gradients in the hydrodynamic fields, a dimension-
less ordering parameter ε had been introduced, which was set
to unity at the end of the calculation. As a “by-product” of the
CE, expressions for the transport coefficients and the equation
of state in terms of microscopic parameters were obtained.

The nonstandard CE procedure of Ref. [50] starts with
a Taylor expansion of the left-hand side of Eq. (A5), in
which spatial gradients are scaled as ∂α → ε∂α , and multiple
timescales ti, whose physical meaning is explained at the end
of this Appendix, are introduced in the temporal gradients,

∂t ≡ ∂t0 + ε∂t1 + ε2∂t2 + ε3∂t3 . (A7)

In addition, the distribution function f and the collision
integral, e.g., the right-hand side of Eq. (A5), are expanded
in powers of ε,

f = f0 + ε f1 + ε2 f2 + ε3 f3,

C ◦ f = C0 + εC1 + ε2C2 + ε3C3. (A8)

In Ref. [50], it was shown that the expansion of the distribu-
tion function f in Eq. (A8) can be identified as an angular
Fourier series,

f0(x, t ) = ρ(x, t )

2π
, (A9)

fn(x, θ, t ) = 1

πvn
0

[an(x, t ) cos (nθ )

+ bn(x, t ) sin (nθ )] for n > 0, (A10)

with Fourier coefficients ai and bi. Thus, the reference state
f0 of the CE, that is, the leading order contribution to f ,
coincides with the zero mode of the Fourier series.

To obtain Toner-Tu-like equations, the CE expansion has to
be performed up to third order in ε, given the chosen scaling
of Eqs. (A7) and (A8). Collecting terms in orders of ε leads
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to a hierarchy of coupled equations for the temporal evolution
of fi, which are given by Eqs. (22)–(25) in Ref. [50]. These
equations contain the microscopic velocity vector, given in
Eq. (A3).

The goal is to obtain macroscopic equations for the first
two moments of f , namely the particle density ρ and the mo-
mentum density vector w = (wx,wy), which are the “slow”
fields in this problem,

ρ =
∫ 2π

0
f dθ,

wx = ρux =
∫ 2π

0
ex f dθ =

∫ 2π

0
v0 cos θ f dθ,

wy = ρuy =
∫ 2π

0
ey f dθ =

∫ 2π

0
v0 sin θ f dθ. (A11)

where u = (ux, uy) = w/ρ denotes the macroscopic flow ve-
locity. To proceed, velocity moments of the hierarchy equa-
tions are taken; that is, they are multiplied by products of ex

and ey and integrated over the angle θ . This calculation leads
to evolution equations for density and momentum, however,
split up for the different timescales. For example, there are
separate equations for ∂t0ρ and for ∂t2ρ. Successively inserting
and partially solving the equations, and finally adding all
pieces together, for example, like ∂tρ = ∂t0ρ + ∂t1ρ + ∂t2ρ +
· · · (ε has been set to one at this stage) leads to the desired
hydrodynamic equations, Eqs. (94) and (130) in Ref. [50].

The microscopic collision rules enter this procedure
through the velocity moments of the collision integral C,
i.e., through quantities like 〈exC1〉 or 〈exeyC2〉 with 〈· · · 〉 ≡∫ 2π

0 . . . dθ . For example, the former quantity is the O(ε)
contribution of the following moment,

〈ex (C ◦ f )〉 = 〈v0 cos θ (C ◦ f )〉 = 2v0

η
sin

η

2

∞∑
n=1

e−M

(n − 1)!

∫
d θ̃1 . . . d θ̃n

×
∫

�
dx2 . . . dxn cos �1 [ f0 + ε f1(x, θ̃1) + ε2 f2(x, θ̃1)][ f0 + ε f1(x2, θ̃2) + ε2 f2(x2, θ̃2)] . . .

× [ f0 + ε f1(xn, θ̃n) + ε2 f2(xn, θ̃n)] + O(ε3) (A12)

and is defined as

〈exC1〉 = lim
ε→0

∂

∂ε
〈ex (C ◦ f )〉. (A13)

In these moments of C ◦ f , a crucial approximation was made in Refs. [29], [35], and [50] that led to the formal absence
of collisional contributions to the transport coefficients. This approximation consists of neglecting spatial variations of the
distribution f across the interaction circle. This issue comes up because the Enskog-like collision term C ◦ f involves integrals
with products of f over the collision circle. Here, we abandon this approximation which is not justified if the interaction radius
is of the same order or larger than the mean free path, i.e., R � .

Comparing Eqs. (A9) and (A10) with (A11) leads to the identification of the Fourier coefficients a1 and b1 with the
components of the momentum density, w = (a1, b1). Now, inserting f0 and f1 from Eqs. (A9) and (A10) into Eq. (A12) and
performing the integrations yield

〈ex (C ◦ f ) = ε
4

η
sin

η

2

∞∑
n=1

e−M

(n − 1)!
K1

C (n)

[
Mn−1wx(x) + (n − 1)Mn−2ρ(x)

∫
�

dx2 wx(x2)

]
+ O(ε2) (A14)

with

K1
C (n) = 1

(2π )n

∫
d θ̃1 . . . d θ̃n cos �1(θ̃1, . . . , θ̃n) cos θ̃1. (A15)

The n-dimensional angular integral, K1
C , has been evaluated before; see Table I in Ref. [50].

Expanding the density and the x component of the momentum density around x and decorating every spatial gradient with a
power of ε give

ρ(x2) = [1 + ε(x2,α − xα )∂α + ε2(x2,α − xα )(x2,β − xβ )∂α∂β + . . .] ρ(x), (A16)

wx(x2) = [1 + ε(x2,α − xα )∂α + ε2(x2,α − xα )(x2,β − xβ )∂α∂β + . . .] wx(x). (A17)

Only the first term from Eq. (A17) will contribute to 〈exC1〉
since the gradient terms are higher order in ε. Thus, we can
replace

∫
� dx2 wx(x2) by Awx(x), where A = πR2 is the area

of the collision circle. Inserting the expansion (A16) into the
defining equation for M,

M(x) =
∫

�
ρ(x2) dx2, (A18)

one finds M(x) = Aρ(x) + O(ε2). Thus, ρ(x) can be approx-
imated by M/A in Eq. (A14) if one only cares about the first-
order contribution 〈exC1〉. This result is identical to Eqs. (38)
and (39) in Ref. [50],

〈exC1〉 = λwx(x) (A19)
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with the factor λ

λ ≡ 4

η
sin

η

2
e−M

∞∑
n=1

Mn−1n

(n − 1)!
K1

C (n). (A20)

This factor was discussed in detail in Ref. [50] and it describes
the ensemble-averaged amplification of the momentum den-
sity. The threshold condition for the transition to collective
motion is given by λ = 1 (assuming molecular chaos and a
spatially homogeneous system). For M � 1, Eq. (A20) can
be approximated as

λ ≈ 1

η
sin

(η

2

)√
(M + 1)π, (A21)

whereas for M � 1 one finds

λ ≈ 2

η
sin

(η

2

)1 + 4M/π + 0.7872M2 + 0.3M3

1 + M + M2/2 + M3/6
. (A22)

Similar to the calculation above, we recalculated moments
of the collision operator in second order in ε such as 〈e2

xC2〉
and 〈exeyC2〉 without the approximation of large mean free
path and again did not see any difference to previous results.
Thus, we conclude that, at least at a mean-field level, previous
calculations of transport coefficients that depend solely on
moments of C ◦ f in linear and quadratic order in ε remain
correct at small mean free paths. However, in third order in
ε, additional terms arise that were neglected previously in the
large mean free path approximation. Consider the third-order
contribution to the moment from Eq. (A14),

〈exC3〉 = lim
ε→0

1

3!

∂3

∂ε3
〈ex (C ◦ f )〉, (A23)

which, according to Eq. (A14) contains an integration of the
momentum density over the collision circle,

∫
� dx2 wx(x2)

where the expansion (A17) is inserted, and the integration
over the collision circle can be performed explicitly in every
term of the series. This calculation gives∫

�
dx2 wx(x2) = Awx(x) + ε2

2

∫ R

0
r3dr

∫ 2π

0
dα n̂α n̂β

= A

[
1 + ε2R2

8
∇2 + O(ε4)

]
wx(x), (A24)

where n̂ = (n̂x, n̂y) = (cos α, sin α) is the radial unit vector.
Terms with odd powers of ε disappear because of the sym-
metric (circular) shape of the collision area.

Inserting Eq. (A24) into Eq. (A14) leads, together with
Eq. (A23), to

〈exC3〉 = �wxw
2 + S(wxa2 + wyb2) + H∇2wx, (A25)

where the coefficients � and S are given in Eqs. (61) and (62)
of Ref. [50], and a2 and b2 are Fourier coefficients defined in
Eq. (A10). The new result of the current paper is the third term
whose coefficient H is

H = R2 sin (η/2)

2η

∞∑
n=1

e−M

(n − 1)!
Mn K1

C (n + 1). (A26)

We checked that relaxing the previous restriction on the mean
free path only affects the moment 〈eβC3〉 and does not impact
other relevant moments, at least in a third-order CE expansion.

In order to obtain improved transport coefficients, it there-
fore suffices to formally replace all occurrences of �wβw2

by �wβw2 + H∇2wβ in the calculations of Ref. [50] after
Eq. (111) of that paper. As a result of this straightforward but
technical exercise, we observed that, at least up to third order
in ε, all transport coefficients except the viscosity remain
unchanged. In particular, we found the collisional contribution
to the kinematic viscosity, νcoll, as presented in Eq. (12) above.

The timescale t0, introduced in Eq. (A7), is the fast
convective time that is associated with the Euler equation
(hence nondissipative), and it measures the time momentum
is convected due to a pressure gradient. The multitime scale
expansion, Eq. (A7), permits that an approximation of a given
order can vary rapidly with respect to one timescale but more
slowly with respect to another. Here, the density ρ does
not vary on the timescale t0, i.e., ∂t0ρ = 0. It turns out that
the timescale t1 is spurious and physically irrelevant in the
chosen vicinity to the transition threshold, where we assumed
1 − λ = O(ε2). This is because both hydrodynamic variables,
density ρ and momentum density w, do not change at all on
this scale, so that ∂t1ρ = 0 and ∂t1 w = 0. The timescale t1
is only present in the current formalism due to a systematic
scaling ansatz in powers of ε, that is, for “historical” reasons.
Finally, the timescale t2 is a slower relaxation timescale,
which is associated with the viscous processes that bring
the system into its stationary state. For our chosen scal-
ing, 1 − λ = O(ε2), the local relaxation of momentum due
to transferring it to and from the environment (encoded in
the alignment interaction and the angular noise), as well as
the nonlinear processes that lead to the cubic term ∝ w2w in
the hydrodynamic equations, also occur on the same timescale
t2 as the momentum diffusion. This can be seen in Eq. (114)
of Ref. [50].

APPENDIX B: VERIFICATION OF THE RP METHOD FOR
AN MPCD FLUID

To validate our approach and the implementation of the
shear algorithm, we used the RP method to compute the shear
viscosity of an MPCD solvent in two dimensions [43–48].
MPCD is a particle-based mesoscale technique, often used for
simulating the dynamics of complex fluids such as polymeric
suspensions and blood flow. The general idea behind MPCD
is to adopt a computationally inexpensive, coarse-grained
solvent model that faithfully reproduces the solvent-mediated
hydrodynamic interactions. As in the VM, the motion of the
MPCD particles is governed by alternating streaming and
collision steps. During the streaming step, the velocities of
all fluid particles are updated according to Eq. (1). In the
collision step, the fluid particles undergo stochastic collisions
with particles in the same quadratic collision cell, where the
edge length of these cells, a, dictates the spatial resolution of
the hydrodynamic interactions [81]. Here, we employed both
the stochastic rotation dynamics (SRD) [43] and the Andersen
thermostat (AT) collision rule [82]. For both variants of the
MPCD algorithm, analytic expressions and previous numeric
calculations for the transport coefficients are readily available
in the literature [62–65].

We achieved isothermal conditions in the MPCD-SRD
simulation by employing a Monte Carlo style thermostat
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algorithm with ρ = 10a−2 and kBT/m = 1 at various time steps τ .
The symbols correspond to simulation data, while the lines are linear
fits.

[45,83], which correctly conserves the local momentum in
each collision cell and reproduces the desired Maxwell veloc-
ity distribution. In the MPCD-AT simulations, thermalization
was achieved directly through the collision step. Galilean
invariance was restored by applying a random shift of the
collision cells before every collision step [84]. In all MPCD
simulations, the particle mass m was set to unity, and a tem-
perature of kBT = 1 was used. Simulations were conducted in
a quadratic simulation box with Lx = Ly = 16a and periodic
boundary conditions in all directions. A particle number den-
sity of ρ0 = 10a−2 has been used throughout. For the SRD
rule, we set the collision angle to α = 110◦. We determined
the shear viscosity η of the MPCD fluids for time steps τ =
0.1, 0.2, 0.4, and 1.0, by conducting multiple simulations at
different average shear stress 〈σ 〉. Figure 18 shows 〈σ 〉 versus
the measured shear rate, γ̇ for the MPCD-AT simulations (the
MPCD-SRD results are qualitatively similar), demonstrating
that the MPCD fluid behaves like a Newtonian liquid, as
expected. From these data, the shear viscosity can then be
computed as ν = 〈σ 〉/γ̇ .

Figure 19 shows ν as a function of τ compared to the
theoretical prediction for the MPCD-AT and MPCD-SRD
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FIG. 19. Viscosity of an MPCD fluid at ρ = 10a−2 and kBT/m =
1 using the (a) AT collision scheme and the (b) SRD variant with
α = 110◦. The lines correspond to the theoretical prediction, while
symbols show the simulation results.

algorithms. In both cases, the shear viscosity of the fluid,
ν = νcoll + νkin, is dominated at small τ by the collisional con-
tribution, νcoll. However, as τ is increased (and thus the mean
free path of the particles, τ

√
kBT/m, becomes larger), particle

collisions become less important, and the shear viscosity of
the fluid is dominated by the kinetic contribution, νkin, instead.
The viscosity computed from the shear simulations follows
these trends perfectly, and we achieved quantitative agreement
with the theoretical expressions within 3 %. This small differ-
ence of a few percent between theory and simulation is in the
same range of errors which were observed previously by using
other methods such as GK relations [45,64,65].
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