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We contrast the generic features of structural relaxation close to the idealized glass transition that are predicted
by the self-consistent generalized Langevin equation theory (SCGLE) against those that are predicted by the
mode-coupling theory of the glass transition (MCT). We present an asymptotic solution close to conditions of
kinetic arrest that is valid for both theories, despite the different starting points that are adopted in deriving them.
This in particular provides the same level of understanding of the asymptotic dynamics in the SCGLE as was
previously done only for MCT. We discuss similarities and different predictions of the two theories for kinetic
arrest in standard glass-forming models, as exemplified through the hard-sphere system. Qualitative differences
are found for models where a decoupling of relaxation modes is predicted, such as the generalized Gaussian
core model, or binary hard-sphere mixtures of particles with very disparate sizes. These differences, which arise
in the distinct treatment of the memory kernels associated to self- and collective motion of particles, lead to
distinct scenarios that are predicted by each theory for partially arrested states and in the vicinity of higher-order
glass-transition singularities.
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I. INTRODUCTION

The amorphous solidification of an undercooled or com-
pressed liquid into a glassy state is an ubiquitous process in
nature and materials physics. The same qualitative features
are observed in the slow structural relaxation and in the
approach to kinetic arrest in a wide range of microscopically
very different materials, be it polymeric and colloidal glasses
[1,2], gels [3,4], various metallic alloys [5,6], or bio-inspired
models and biological tissue [7–10]. It is a challenging and
ferociously debated question, how such generic dynamical
features arise from quite different underlying microscopic
mechanisms.

Two “first-principles” theories of kinetic arrest—in the
sense that they start from the equations of motion of the
individual particles in the many-body system—are the mode-
coupling theory of the glass transition (MCT) [11–14] and
the self-consistent generalized Langevin equation formalism
(SCGLE) [15–18]. Both emphasize the role of temporal mem-
ory effects in the structural relaxation as described in terms of
dynamical density correlation functions, for which both arrive
at superficially similar evolution equations. Indeed, both the-
ories give a similarly convincing and often also quantitatively
correct account of the slow dynamics as one approaches
kinetic arrest. Both take as input parameters information on
the microscopic structure of the system (in the form of static
structure factors). Yet, the foundations and arguments used
to derive MCT and SCGLE differ substantially, and thus it
remains unclear whether the numerical similarities between
these two approaches are coincidence or specific to certain
model systems, or whether they express slightly differing
descriptions of the same physical laws. Such questions can
only be addressed by a more rigorous mathematical analysis
of the respective theories [19].

A qualitative understanding of why kinetic-arrest features
are generic requires to explain in which sense the structural-
relaxation dynamics (that according to MCT and SCGLE
a priori depends on the details of the microscopic system)
can be understood in terms of “universal” relaxation laws
decorated with system-specific prefactors. For MCT, this is
achieved by an asymptotic analysis [20,21] that identifies
the closeness of structural relaxation to the frozen-in glassy
structure as a small parameter σ , and two timescales that
diverge as |σ | becomes small and thus allow to abstract from
the system-specific details of short-time motion. Out of this
asymptotic analysis, a number of remarkable statements of
MCT follow: for example, that structural relaxation is inde-
pendent on whether the system’s short-time motion is ballistic
or diffusive (as verified in computer simulation [22,23]), or
that equilibrium structural relaxation is at most diffusive but
never superdiffusive or ballistic, i.e., follows stretched but
never compressed exponentials [24,25] (as checked against
experiment [26]). Such statements depend on the mathemat-
ical structure of the MCT equations and on MCT-specific
features of the coupling coefficients that are a priori different
in the SCGLE theory. Importantly, both theories treat the
interplay between self- and collective density fluctuations
very differently. This becomes relevant in glass formers where
these two quantities show a strong decoupling in their long-
time relaxation close the glass transition, such as in partially
arrested binary mixtures of size-disparate colloids [27,28] or
in fast-ion conducting sodium-silicate melts [29,30]. Thus it is
an open question in how far SCGLE predicts the same generic
features as MCT for the glass transition and where the theories
will qualitatively differ.

In this contribution, we address this question by perform-
ing an asymptotic analysis of both MCT and SCGLE on an
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equal footing. The calculation is based on the recognition that
the evolution equations of both theories can be recast in a more
general common form, so that the similarities and differences
between the two theories can be clearly pinpointed. The
technique used in the expansion then is a straightforward
generalization of that performed earlier for MCT [20]. This
fills a gap in the development of SCGLE, by providing the
first asymptotic expansion of this theory close to the glass
transition, and by allowing to identify the power laws that
describe the divergence of relaxation times within SCGLE in
a fashion similar to what is known from MCT.

We show that for “typical” models of glass formers, such
as the hard-sphere fluid, the predictions of both MCT and
SCGLE are essentially “the same” (in a sense that can be de-
fined by the asymptotic analysis) and point out the significant
differences that arise regarding the hydrodynamic limit. We
also show that much more interesting (and quite intriguing)
differences arise in other models where a decoupling of relax-
ation modes is found, such as the generalized Gaussian model
or, most notably, binary mixtures of large and small particles
with a sufficiently large size disparity. In the latter case, both
theories agree in predicting both fully arrested glassy states
(called the “double glass”) as well as partially arrested “single
glass” states [27,28]. In the latter, the long-range motion of the
large species is suppressed while the small-particle dynamics
still shows long-time diffusion. However, the details of the
transitions and the structural features of the partially arrested
glasses differ qualitatively, and this may in principle be tested
in experiments or simulations.

Our work is organized as follows: in Sec. II we briefly
review and summarize both SCGLE and MCT, and in Sec. III
an asymptotic expansion applicable to both theoretical ap-
proaches is carried out. Section IV exhibits specific results
for one-component model systems, including the hard-sphere
fluid and the generalized Gaussian core model. In Sec. V we
turn to a description of the asymptotic kinetic arrest in highly
asymmetric binary mixtures of hard spheres as predicted by
the two theories. In Sec. VI our concluding remarks are
presented.

II. THEORY

We focus here on colloidal glass formers, i.e., systems
where the dynamics is posited to follow from the overdamped
Langevin equation of motion. This allows a more stringent
comparison between MCT and SCGLE, as the latter was orig-
inally formulated under this assumption. Within both theories
and from simulation, it is well understood that Newtonian
systems follow the same long-time behavior [31,32].

Consider a M-component N-particle system of spherical
particles in a volume V that are fully characterized by their
positions in space, �r j , j = 1, . . . , N . We denote by Nα the
number of particles of a given species;

∑
α Nα = N . The

number density n = N/V , and the partial number densities are
given by nα = Nα/V . The quantities xα = Nα/N = nα/n are
the number concentrations of the individual species, satisfying∑

α xα = 1.
The fundamental quantity in both SCGLE and MCT is

the number-density fluctuation to wave vector �q of particle
species α, δnα ( �q) = ∑Nα

j=1 exp[i �q · �r (α)
j ]/

√
Nα , where the sum

is restricted to particles of that species. [A more conventional
definition of δnα ( �q) is to normalize by

√
N , which differs

from ours by a factor
√

xα .] The time evolution of δnα ( �q)
is governed by the underlying dynamics of the particles and
shall be denoted by δnα ( �q, t ). Statistical information on the
collective dynamics of these density fluctuations is provided
by the dynamical density-correlation functions, also called
the matrix of partial intermediate scattering functions (ISFs),
�αβ (q, t ) = 〈δn∗

α ( �q, t )δnβ ( �q)〉, where angular brackets indi-
cate the equilibrium ensemble average. We assume that the
system remains homogeneous and isotropic throughout, so
that �αβ (q, t ) depends on the wave vector only through its
modulus q = | �q|. The initial value �αβ (q, 0) = Sαβ (q) is the
matrix of partial static structure factors that characterizes the
equilibrium structure of the fluid. Note that Sαβ (q) → δαβ for
q → ∞ in our convention. In both SCGLE and MCT, the
static structure functions are assumed to be known quanti-
ties from liquid-state theory, and usually one also assumes
that they change only regularly over the interesting range
of control parameters; by this assumption, thermodynamic
phase transitions and critical points are disregarded in order to
focus on the kinetic slowing down of the fluidlike amorphous
structure.

Structural relaxation in a fluid causes the �αβ (q, t ) to relax
from their initial value to zero in a finite time interval. If,
however, �αβ (q, t ) does not decay fully over a given time
interval, the system reacts as a nonergodic solid with respect
to density fluctuations of that species and wave number within
the corresponding time window: some finite overlap between
initial and final particle configurations remains on average,
indicative of solidlike behavior. Thus, a quantity of central
interest is the long-time limit

Fαβ (q) = lim
t→∞ �αβ (q, t ). (1)

States where Fαβ (q) 	= 0 are identified as idealized glasses,
and the points where the long-time limit Fαβ (q) changes from
zero to a nonzero value are identified as ideal fluid-glass
transitions. The quantities Fαβ (q) are commonly referred to as
the nonergodicity parameters (NEP) of the system, the glass
form factors, or sometimes the Debye-Waller factors.

The tagged-particle density correlation functions or self-
intermediate scattering functions (sISFs) are given by
�s

α (q, t ) = 〈δns∗
α ( �q, t )δns

α ( �q)〉, where δns
α ( �q) = exp[i �q · �r (α)

s ]
is the tagged-particle density fluctuation for a particle labeled
s of species α. One has �s

α (q, 0) = 1 for the initial value. The
sISFs quantify the statistics of the individual movements of
particles in the system. They are often denoted as �s

α (q, t ) =
〈exp[i �q · ��r (α)(t )]〉, where ��r (α)(t ) is the time-dependent dis-
placement of any of the particles of species α. The sISF is re-
lated to the mean-squared displacement δr2

α (t ) = 〈��r (α)(t )2〉
through its q → 0 limit.

If long-range particle motion ceases, δr2
α (t ) remains

bounded, and �s
α (q, t ) does not relax to zero for long times.

Hence, the long-time limit F s
α (q) = limt→∞ �s

α (q, t ) allows
us to distinguish states where particles of species α are
delocalized [F s

α (q) = 0] from those where they are localized
[F s

α (q) > 0]. The points where F s
α (q) first becomes nonzero

can thus be identified as idealized single-particle arrest
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transitions. The quantity F s
α (q) is referred to as the tagged-

particle NEP or Lamb-Mößbauer factor.
For notational convenience, we will denote matrices in the

species indices by bold symbols and introduce a label ς ∈ {, s}
to distinguish collective from tagged-particle quantities. Writ-
ing �s

αβ (q, t ) = δαβ�s
α (q, t ), we will thus denote by �ς (q, t )

the collection of both ISFs and sISFs of the system. Its initial
values are denoted by S(q) and Ss(q) = 1, respectively. The
�ς (q, t ) form a matrix algebra if matrix multiplication with
respect to the species indices is understood in the usual sense
for any fixed q and fixed ς . A scalar product on this matrix
algebra shall be defined by (A, B) := ∑

ς

∑
q Aς (q):Bς (q),

where: denotes the double contraction over the species in-
dices. For mathematical caution, we will assume all wave-
number indices q to come from a countable range (as is
initially the case before performing the thermodynamic limit);
however, the usual replacement (1/V )

∑
�q �→ 1/(2π )d

∫
dd q

shall be made in writing the SCGLE and MCT equations.
We exclusively deal with three-dimensional, d = 3, systems
for simplicity. Neither from MCT nor from SCGLE does one
expect a crucial qualitative change in asymptotic behavior
with (finite) dimensionality.

For certain purposes, it is convenient to introduce
the propagators �(q, t )=�(q, t ) · S−1(q) and �s(q, t ) =
�s(q, t ) [18,28]. They obey �ς (q, 0) = 1. However, care
has to be taken: the features of the equilibrium overdamped
Langevin dynamics ensure that �ς (q, t ) are symmetric posi-
tive definite matrices at all times [25]; this property is lost for
�ς (q, t ).

Evolution equations for �ς (q, t ) can be obtained in various
ways. The central notion is that, although the statistical-
mechanics evolution of the system is a Markov process, the
evolution of the restricted set of dynamical variables δnς

α ( �q) is
non-Markovian. Either starting from a generalized Langevin
equation [15,17] in the first place or by a formal manipulation
of the initial Markov dynamics using Mori-Zwanzig projec-
tion operators [11,33], one obtains

Lς (q) · �̇
ς

(q, t ) + (Sς )−1 · �ς (q, t )

+
∫ t

0
mς (q, t − t ′) · �̇

ς
(q, t ′) dt ′ = 0, (2)

where the overdot indicates differentiation with respect to
time and Lς

αβ (q) = δαβ/q2D0
α sets the short-time relaxation

through the particles’ short-time diffusivities D0
α . (Hydrody-

namic interactions in a suspending fluid are ignored here.) The
memory kernel mς (q, t ) represents retarded friction effects
and is essential to capture the non-Markovian relaxation of
density fluctuations. It is, in the context of Brownian dynam-
ics, referred to as the irreducible memory kernel and is the
central object to be approximated in both SCGLE or MCT.

In the remainder of this section, we summarize the approx-
imations of both SCGLE and MCT; we refer to the original
literature for details of the derivation [11,16]. In essence,
SCGLE starts from the point of view of single-particle arrest
causing a decrease in mobility that in turn mediates the
collective relaxation; MCT on the other hand emphasizes the
collective effects of particle motion and treats the single-
particle mobility as a mere consequence of such collective

effects. Hence, the role played by �s
α (q, t ) is quite different

in the two theories.

A. SCGLE

The SCGLE is based on the generalized Langevin equation
formalism [34] and the concept of a contraction of the descrip-
tion from many variables to few [35]. We summarize here
the version obtained for a multicomponent colloidal system
[17,18].

One starts from the assumption that the glass transition is
governed by local fluctuations and that in the relevant range of
finite q, the collective friction can be expressed in some form
of superposition of single-particle friction contributions. Thus
the memory functions m(q, t ) and ms(q, t ) should be closely
related at finite q. It has been found [15,17] that the simplest
of these relations, referred to as the zero-order Vineyard-like
approximation, is sufficient to obtain a good description of the
long-time dynamics, even if this ignores the consequence of
translational invariance (momentum conservation in the statis-
tical average) for the collective dynamics. The approximation
consists in setting mς (q, t ) = Lς (q) · Cς (q, t ) and equating

C(q, t ) ≈ Cs(q, t ). (3)

In the hydrodynamic limit, q → 0, the memory function
Cs

α (q, t ) should reduce to a time-dependent friction coefficient
�ζ ∗

α (t ) that describes the non-Markovian contribution of the
direct interactions to the friction coefficient of a tagged par-
ticle of species α [36]. For q → ∞, on the other hand, one
expects the contributions from Cs

α (q, t ) to vanish. One thus
further approximates

Cs
α (q, t ) ≈ λα (q)�ζ ∗

α (t ), (4a)

where

λα (q) =
[
1 + (

q/kc
α

)2
]−1

(4b)

is an empirical interpolation function characterized by ad hoc
cutoff wave numbers kc

α . The latter are sometimes related to
the position kmax

α of the maximum of Sαα (q) by kc
α = akmax

α .
The single free parameter a is then determined by a calibra-
tion procedure such that the predicted glass transition of the
theory is in reasonable agreement with, for instance, the one
determined from simulations [37]. Generically, increasing the
kc
α will cause increasing contributions to the memory function

and hence shift the predicted glass-transition point to lower
densities.

The time-dependent friction �ζ ∗
α (t ) is obtained from a

self-consistent closure of the generalized Langevin equation
as [34–36]

�ζ ∗
α (t ) = nD0

α

24π3

∫
d3k k2[�s(k, t )]αα

× [h(k) · √
n · �(k, t ) · √

n · h(k)]αα. (5)

Here, n is the diagonal matrix of partial densities, nαβ =
δαβnα , and h(q)/n is the matrix of static total correlation func-
tions related to the static structure factor by S(q) = 1 + h(q).
The notation [A]αβ is used here to refer to the α, β-element
of a matrix A. For later reference, let us denote the long-time
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limit of the friction kernel as

ζ̄α = lim
t→∞ �ζ ∗

α (t )/D0
α. (6)

For the present purpose, it is convenient to rewrite Eqs. (3)
to (5) in the form

mς

αβ (q, t ) = δαβ

nλα (q)

6π2q2

∑
α′β ′α′′β ′′

∫ ∞

0
dk k4

× ĉς

αα′ (k)ĉς̄

αα′′ (k)ĉς

ββ ′ (k)ĉς̄

ββ ′′ (k)�ς

α′β ′ (k, t )�ς̄

α′′β ′′ (k, t ), (7)

denoting by ς̄ the label opposite to ς . The auxiliary function
ĉς

αβ (k) is defined in terms of the Ornstein-Zernike direct cor-
relation function cαβ (k) by ĉαβ (k) = cαβ (k)

√
xα and ĉs

αβ (k) =
δαβ . Recall that the c(k) are related to the static structure factor
by S−1(k) = 1 − √

n · c(k) · √n.
Equation (7) emphasizes a number of features of mς (q, t ):

it is a symmetric bilinear form of the �(k, t ) and �s(k, t ), with
coupling coefficients that depend only on the static structural
properties of the system. In particular it does not depend
on the kinetic parameters that characterize the short-time
motion; i.e., it is independent on D0

α . Equation (7) together
with Eq. (2) provides a closed set of equations to determine
simultaneously the collective, �(q, t ), and the tagged-particle,
�s(q, t ), density correlation functions of the glass-forming
mixture.

B. MCT

Following a Zwanzig-Mori projection technique, the ir-
reducible collective friction kernel m(q, t ) is a correlation
function of fluctuating forces δ �fα ( �q) propagated dynamically
in the subspace orthogonal to the one-point density fluctu-
ations. MCT proceeds by assuming that the slow dynamics
of these forces is dominated by their structural contributions.
The approximation thus consists of expressing the fluctuating
forces through their overlap with density-pair fluctuations,
δnβ (�k)δnγ ( �p), with �k + �p = �q in order to satisfy momentum
balance in the statistical average. As a result, the memory
kernel m(q, t ) is approximated through a dynamical four-
point density correlation function evolving with the reduced
propagator. This in turn is approximated by the product of
two-point density correlation functions, at the same time
replacing the reduced propagator with the full one. (This
splitting is not just a Gaussian approximation—a subtle point
that is sometimes overlooked.)

For the case of mixtures, the procedure results in [38]

mαβ (q, t ) = n

2q2

∫
d3k

(2π )3

∑
α′β ′α′′β ′′

Vαα′α′′ ( �q, �k, �p)

×Vββ ′β ′′ ( �q, �k, �p)�α′β ′ (k, t )�α′′β ′′ (p, t ). (8a)

The coupling vertices are obtained after an additional ap-
proximation of static triplet correlations in terms of two-point
quantities as

Vαα′α′′ ( �q, �k, �p) = ( �q · �k/q)ĉαα′ (k)δαα′′ +( �q · �p/q)ĉαα′′ (p)δαα′ .

(8b)

For the tagged-particle memory kernel, the simplest non-
trivial overlap of the fluctuating forces δ �f s

α ( �q) with structural

quantities is with δns
β (�k)δnγ ( �p). Repeating the steps to ob-

tain m(q, t ) mutatis mutandi [or alternatively, considering a
(M + 1)-component mixture in the limit where xM+1 → 0],
one gets

ms
αβ (q, t ) = δαβ

1

q2

∫
d3k

(2π )3

∑
α′β ′

V s
αα′β ′ ( �q, �k)

×�α′β ′ (k, t )�s
α (p, t ), (9a)

with vertices

V s
αα′β ′ ( �q, �k) = ( �q · �k/q)2ĉαα′ (k)ĉαβ ′ (k). (9b)

As in SCGLE, the memory kernels are found to be inde-
pendent on kinetic parameters, i.e., on D0

α . Equations (8) and
(9) emphasize that in MCT, m(q, t ) is a bilinear functional
of the �(k, t ), where the tagged-particle dynamics does not
enter; the tagged-particle kernel ms(q, t ) is, as in SCGLE, a
bilinear functional of �(k, t ) and �s(p, t ). Equations (2) and
(8) thus form a closed set of equations that determines the
collective density correlation functions �(q, t ). Once these
are known, Eqs. (2) and (9) determine the tagged-particle
correlation functions �s(q, t ).

The projection-operator formalism used to derive the MCT
equations ensures that the theory recovers the expected con-
servation laws and symmetries. Technically, it is reflected
by the appearance of wave numbers �k and �p = �q − �k in
both memory kernels, while the SCGLE expression of these
memory kernels contains only couplings to fluctuations to
wave vector �k.

III. ASYMPTOTICAL SOLUTION

Both SCGLE and MCT approximate the memory kernels
mς (q, t ) as a bilinear functional of the �ς (k, t ). The main dif-
ference in structure is, first, that, in MCT, the ς = s terms do
not enter in the collective memory kernel, and that in SCGLE
the wave-vector integral has a simpler structure involving
only the wave vector �k and not �p = �q − �k. This structure is
reminiscent of the q → 0 limit that is also discussed within
MCT [21,39] in the context of generalized hydrodynamics.
Note, however, that the differences in the low-q structure of
the theories have important consequences for the determi-
nation of collective transport coefficients. For example, the
generalized elastic moduli of the mixtures are determined by
Green-Kubo relations that can, in MCT-like approximations,
be related to the combinations

∑
αβ

√
xαmαβ (q, t )

√
xβ in the

limit q → 0. Although all nontrivial individual elements of
mαβ (q, t ) diverge as ∼1/q2 in that limit (for both MCT and
SCGLE), this particular combination remains finite in MCT,
while it does not generically do so within SCGLE. A similar
difference arises in the determination of the interdiffusion
coefficient; we discuss this briefly in Sec. VI.

Despite these differences, both theories share the same
mathematical structure,

mς (t ) = F[�ς ′
(t ),�ς ′′

(t )] (10a)
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or more specifically

mς

αβ (q, t ) =
∑

α′β ′α′′β ′′ς ′ς ′′

∑
�k �p

V ςς ′ς ′′
αα′α′′ ( �q, �k, �p)

×V ςς ′ς ′′
ββ ′β ′′ ( �q, �k, �p)�ς ′

α′β ′ (k, t )�ς ′′
α′′β ′′ (p, t ), (10b)

where the vertices can be read off by comparison with Eq. (7)
[augmented with [(1 − δς ′ς ′′ )/2]2], respectively, with Eqs. (8)
and (9).

Equation (10) represents a common structure: the memory
kernel is a tensor product of the �, contracted with a vertex
vector V both from the left and from the right. (This property
is typically lost in nonequilibrium extensions of MCT.) As a
result, the functional F preserves positive definiteness: if the
matrices �(t ) are positive definite (in the sense defined by our
matrix algebra, i.e., for every wave number and every ς ), so
will be m(t ). This in turn ensures that the solutions �(t ) of the
evolution equation (2) closed with either SCGLE or MCT will
preserve an exact property dictated by the Brownian dynam-
ics: they will be completely monotone functions, i.e., they can
be written as the superposition of purely relaxing exponentials
whose weights are positive definite matrices. This was known
for the MCT solutions [25] and is hereby extended to those of
SCGLE. As a consequence, both theories preserve exactly the
feature that equilibrium structural relaxation in a Brownian
system is never of compressed-exponential or superdiffusive
form.

We are interested in the long-time behavior of the solutions
of Eq. (2) with Eq. (10). Let us thus assume that t � t0,
where t0 is some timescale associated to the decay of density
fluctuations without memory effects. Retaining only those
terms that will contribute to kinetic arrest at long times, we
replace Eq. (2) by an equation of structural relaxation [40]

0 = S · m(t ) · S − �(t ) − S · d

dt

∫ t

0
m(t − t ′) · �(t ′) dt ′,

(11)
which amounts to dropping the term containing only the time
derivative of the correlation function in the original evolution
equation, and where the q and ς dependence is understood
implicitly.

In Eq. (11), the kinetic parameters D0
α that characterize

the short-time motion of the system have dropped out. A
similar conclusion holds for the masses in a system undergo-
ing Newtonian dynamics, under the mild assumption that the
system is not completely underdamped at large times. Thus,
Eq. (11) predicts that the dynamics close to the ideal glass
transition is asymptotically independent on kinetic parameters
such as the ratios of free-particle mobilities or mass ratios.
Recent molecular-dynamics and Brownian-dynamics simula-
tions strongly support this prediction [41].

Anticipate that close to the glass transition, the solutions
�(t ) of either theory describe a two-step structural relaxation:
there emerges an increasingly large intermediate-time window
over which �(t ) ≈ Fc, where Fc is the long-time limit of
the correlation function at the transition. An asymptotic so-
lution to Eq. (11) shall be constructed in the time window
where |�(t ) − Fc| is small. This occurs for t/t0 � 1 on some

timescale tσ . Writing t̂ = t/tσ , we start with the ansatz

�(t̂ tσ ) = Fc +
√

|σ |G(1)(t̂ ) + |σ |G(2)(t̂ ) + O(|σ |3/2). (12)

The timescale tσ will later be fixed such that the expansion
terms in Eq. (12) remain of the required order in |σ | for long
times.

A. Nonergodicity parameters

To order O(σ 0), inserting Eq. (12) into Eq. (11) gives the
equation relating the critical nonergodicity parameter Fc to
the memory kernel evaluated at the transition point. Rearrang-
ing terms, one gets

(Sc − Fc)−1 = (Sc)−1 + mc[Fc, Fc]. (13)

Here and in the following, the superscript c marks quantities
that are evaluated at the glass-transition point. In fact, Eq. (13)
holds for the long-time limit F = limt→∞ �(t ) also off the
critical point when dropping the superscripts c.

Equation (13) is a nonlinear implicit equation for Fc and
may as such have many different solutions. Based on the
fact that the memory kernel preserves positive definiteness,
one shows that the long-time limit of the correlation function
�c(t ) is the largest positive (semidefinite) solution of Eq. (13)
[25]. As a consequence, a simple iterative scheme to solve
Eq. (13) (taking Sc as the initial guess for Fc) is guaranteed
to converge to the desired solution. Further, Eq. (13) contains
possible bifurcation points, where depending on the control
parameters entering m, new branches of positive definite solu-
tions appear. These bifurcation points are the glass-transition
points of MCT or SCGLE. Note that F = 0 (corresponding to
the fluid state) is always a solution and for sufficiently small
coupling coefficients will be the physical one. Equation (13)
then allows for fluid-glass transitions; it also, depending on
the model system, allows for glass-glass transitions that mark
the discontinuous change from one ideal glass to another
one with differing mechanical properties, and are signaled by
jumps in F from one positive-definite value to another.

Inserting the SCGLE form of the memory kernel in
Eq. (13), one arrives at (now dropping c superscripts)

FSCGLE(q) = S(q) ·
[

S(q) + q2

λ(q)ζ̄
1
]−1

· S(q), (14)

where 1/λ(q)ζ̄ is to be read as δαβ/λα (q)ζ̄α . Equation (14)
highlights the role played by ζ̄α in determining the localiza-
tion length of the individual species. The expression can be
inserted in the definition of the memory kernel to yield a
closed nonlinear equation for the ζ̄ which is routinely solved
in the framework of SCGLE to determine the glass transition.
From Eq. (14) one also readily reads off the q → 0 limit of the
SCGLE nonergodicity parameters, FSCGLE(q → 0) → S(q).
For the normalized one-component case, this is equivalent to
f (q → 0) → 1. Within MCT, this only holds for the self-part
of the dynamics, not the collective part. There, the nonergodic
state is characterized by a (mechanical) susceptibility χ̃ =
(1 − f (0))χT that is less than the isothermal susceptibility
from the thermodynamic equation of state, χT . The SCGLE
approximation amounts to stating that the glass is an infinitely
rigid solid [42].
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Equation (13) can be rewritten as � = F · S−1 =
[S−1 + m]−1 · m. Within SCGLE, recall that mσ

αβ (q, t ) =
δαβ (λα (q)/q2)ζ̄α (t ). In particular, individual elements of
ζ̄α[F] can vanish for a subset of the species, say, labeled by
ᾱ. In this case, one obtains a “mixed glass” or “partially ar-
rested” state [18] where the corresponding �αᾱ = 0 although
F generically is a fully occupied matrix. In other words, for a
mixed glass state, the nonergodicity matrix of the propagator
� has zero eigenvalues (one for each mobile species). This
is different from the MCT prediction: there, m is a strictly
positive definite matrix for all glassy states, including those
where the self-dynamics of some species relaxes to zero. But
then � is the product of two positive definite matrices and
as such has (strictly) positive eigenvalues only; and the same
holds for F. We shall investigate this issue numerically in
Sec. V.

B. Critical amplitudes

To order O(|σ |1/2), one gets from Eq. (12)

G(1)(t̂ ) + Sc · mc[Fc, Fc] · G(1)(t̂ )

= 2Sc · mc[Fc, G(1)(t̂ )] · (Sc − Fc). (15)

This has to hold for arbitrary t̂ , and thus the time- and wave-
vector dependence of G(1)(t̂ ) split,

G(1)ς (q, t̂ ) = Hς (q)g(t̂ ). (16)

This is known as the factorization theorem within MCT [11].
It implies that, close to the glass-transition point, correlation
functions to different wave numbers can be scaled on top of
each other by q- and observable-dependent prefactors to show
a common, generic time dependence. The scaling function
g(t̂ ) will be determined in next order of the σ -expansion. The
critical amplitude H satisfies, rearranging terms with the help
of Eq. (13),

H = 2(Sc − Fc) · mc[Fc, H] · (Sc − Fc). (17)

This is an eigenvalue equation for a linear map on the algebra
of (k, ς )-dependent matrices,

H = Cc[H]. (18)

Equations (13) and (18) jointly determine the glass-transition
points: While Eq. (13) holds for the long-time limit generally,
the condition that H is an eigenvector of Cc to eigenvalue
unity provides the selection criterion for critical points. To
this eigenvector there also corresponds a left-eigenvector Ĥ
defined by (Ĥ, f ) = (Ĥ,C[ f ]) for any trial matrix f . We
abbreviate the normalization as

N = (Ĥ, H · (Sc − Fc)−1 · H ). (19)

The properties of C are important in determining the
possible asymptotic behavior and are in turn determined by
the structure of the coupling vertices. Within MCT, one has
that C—only for the collective part, ς = {}—is an irreducible
map in the sense of Perron and Frobenius [25]. As such, it
is guaranteed to have a nondegenerate maximum eigenvalue
which is the spectral radius, with an associated eigenvec-
tor that can be chosen strictly positive. One further proves
that the spectral radius of C is always bounded by unity.

Hence, there is a unique critical amplitude H associated to
those control-parameter points where a unit eigenvalue of
Cc indeed appears. As a consequence of the fact that the
critical eigenvalue of Cc is nondegenerate, the glass-transition
singularities in MCT belong to the A� class of bifurcations
in the classification due to Arnol’d [11]. Note that Eq. (18)
is equivalent to the statement that the implicit equation (13)
can no longer uniquely be inverted locally around Fc because
the first-order Taylor expansion term is degenerate; at least
two solutions merge in the bifurcation point. In principle,
more than two solutions can merge in a single point, and this
would be signaled by degeneracies in further Taylor expansion
terms. We will in the following consider critical points of
the most generic type, i.e., where just two solutions merge
(A2 singularities or standard glass-transition singularities). A
consequence is that the generic transition described by MCT
for the collective dynamics is discontinuous—at the critical
point, a nonzero Fc first emerges as the physical solution of
Eq. (13), and thus the long-time limit of �(t ) jumps from zero
to that value.

The fact that within MCT the tagged-particle dynam-
ics (ς = s) does not enter this determination of critical
points opens the possibility for separate tagged-particle crit-
ical points. Because the tagged-particle correlation functions
�s(t ) couple only linearly into the respective memory kernel,
the generic case here is not a bifurcation of the kind described
above, but rather a continuous increase of Fs from zero to
nonzero values.

In SCGLE, C has a relatively simple structure. Switching
to a discrete spectrum of q for simplicity, we obtain

Hς

αβ (q) =
∑

q′α′β ′ς ′
Cςς ′

qαβ,q′α′β ′H
ς ′
α′β ′ (q′)

=
∑

q′α′β ′ς ′
v

ς

qαβ v̄
ς ′
q′α′β ′H

ς ′
α′β ′ (q′). (20)

Obviously this implies that H (q) ∝ vq = [Sc(q) − Fc(q)] ·
[λ(q)/q2] · [Sc(q) − Fc(q)] (where λ is the diagonal matrix
of the λα). Again, C has a nondegenerate eigenvector, and the
condition that the corresponding eigenvalue is unity defines
the glass-transition point as a bifurcation point in the nonlinear
equations. However, in SCGLE this statement includes both
the collective and the tagged-particle dynamics simultane-
ously. Note that even in partially arrested states, all entries
of H (q) within SCGLE are nonvanishing, which verifies the
applicability of the Perron-Frobenius theorem.

The discussion of the linear map (18) emphasizes a sub-
stantial difference between MCT and SCGLE. In the one-
component case, the latter theory essentially deals with a sin-
gle scalar “dynamic order parameter” [see also Eq. (14)] γ =
ζ̄−1 = limt→∞ δr2(t )/6 [18] that is the squared localization
length of a particle in the glass. In MCT, at least in principle,
the tagged-particle dynamics can remain unarrested in the
glass, even for a one-component fluid. We will discuss such
a case in Sec. IV. Extending to mixtures, the MCT statement
that the collective structure of the glass is qualitatively the
same both in the single and the double glass may be an
oversimplification that SCGLE addresses differently; we will
come back to this point in Sec. V.
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C. Scaling function

In order O(|σ |), we have to take into account that the
coefficients in Eqs. (10) and (11) change when one considers
state points slightly off the critical point. Hence,

(1 − C)[G(2)(t̂ )] = (Sc − Fc) · mc[H, H] · (Sc − Fc)g(t̂ )2

− 2(Sc − Fc) · mc[Fc, H] · H∂t̂ (g ∗ g)(t̂ )

+ (Sc − Fc) · (Sc)−1 · �m/|σ |, (21a)

where ( f ∗ g)(t ) = ∫ t
0 f (t − t ′)g(t ′) dt ′ and

�m= S · m[Fc, Fc] · (Sc− Fc)− Sc · mc[Fc, Fc] · (Sc − Fc).
(21b)

Taking the scalar product with Ĥ on both sides, the left-hand
side vanishes, and there remains

0 = λg(t̂ )2 − d

dt̂

∫ t̂

0
g(t̂ − t̂ ′)g(t̂ ′) dt̂ ′ + sgn σ (22)

with the definitions

λ = (Ĥ, (Sc − Fc) · mc[H, H] · (Sc − Fc))/N (23)

and

σ = (Ĥ, (Sc − Fc) · (Sc)−1 · �m)/N (24)

with normalization given by Eq. (19). There holds λ ∈
[1/2, 1] for discontinuous transitions [11]. We will assume
λ < 1 tacitly in the following; the case λ = 1 corresponds
to that of a higher-order singularity. The last equation fixes
the expansion parameter σ in terms of control-parameter
distances. Consider the case where the transition is driven
by a change in a given physical control parameter, say, the
density n. The control-parameter distance is usually defined
as ε = (n − nc)/nc, and it obeys ε > 0 in the glass and ε < 0
in the liquid. From the definition of �m it is clear, that
asymptotically close to the transition, there holds σ ∝ ε, so
that both small parameters play the same role.

Equation (22) is the celebrated β-scaling equation of MCT.
It holds for SCGLE as well. This transfers a remarkable
feature of MCT also to SCGLE: the appearance of nonuni-
versal power laws (time fractals) with exponents a and b.
In particular, Eq. (22) has, for the cases λ < 1, power-law
solutions of the form g(t̂ ) ∼ t̂ x. The time-dependent terms of
Eq. (22) balance if the exponent is chosen to obey

λ = �(1 − a)2

�(1 − 2a)
= �(1 + b)2

�(1 + 2b)
(25)

with a, b>0, denoting separately the solutions for x=−a<0
and x = b > 0. Thus, λ is referred to as the exponent parame-
ter of the theory. Since λ is determined by the vertices entering
the memory kernel, the power laws t̂−a and t̂ b are generic
in the sense that they appear irrespective of the microscopic
details of the model under study; but they are nonuniversal in
the sense that the numerical values of the exponents depend
on these microscopic details.

In detail, at the critical point, σ = 0, the asymptotic so-
lution converges for t̂ → ∞ if one sets g(t̂ ) = t̂−a. From
demanding that the second term in Eq. (12) remains of or-
der unity at t = t0, one fixes tσ = t0|σ |−1/2a. This timescale
diverges as one approaches the transition, and there opens a

window for the so-called critical decay law, identified as the
short-time asymptote in the rescaled time of Eq. (22).

For σ 	= 0, the critical decay law is cut off at long times. If
σ < 0, Eq. (22) admits the long-time asymptote g(t̂ ) ∼ −Bt̂b,
valid for t/tσ � 1 but t/t ′

σ � 1, where t ′
σ = t0|σ |−1/2a−1/2b is

fixed by demanding that |σ |1/2t̂ b is of order unity at t = t ′
σ .

This power law is the so-called von Schweidler law [11], and
it describes the decay of the correlation functions from the
intermediate-time plateau Fc on the liquid side of the glass
transition (σ < 0). The coefficient B of the von Schweidler
law depends (only) on λ and is fixed numerically by matching
the asymptotic solutions t̂−a and t̂ b of Eq. (22). Note that as
σ → 0−, both tσ and t ′

σ diverge, but also the ratio t ′
σ /tσ . Thus,

an increasingly large time window opens where the relaxation
of the correlation function is described by the scaling law. For
σ > 0, g(t̂ ) → const as t̂ → ∞ replaces the von Schweidler
law and describes arrested solutions in the glass.

In summary, the leading-order asymptotic expansion of the
correlation functions in either SCGLE or MCT is, at transition
points with λ < 1, using t = t̂ tσ and recalling �(t ) = Fc +√|σ |Hg(t̂ ):

�(t ) = Fc + H (t/t0)−a for t � t0, t � tσ , (26a)

�(t ) = Fc − H̃ (t/t ′
σ )b for tσ � t � t ′

σ , σ < 0, (26b)

�(t ) = Fc + Ĥ
√

σ for tσ � t , σ > 0. (26c)

IV. ONE-COMPONENT GLASS TRANSITIONS

We first exemplify the similarities and differences between
the theories for simple one-component model systems. For
numerical calculations, we discretize wave-number integrals
by an equidistant grid of M points, with grid spacing �q.
Unless mentioned otherwise, calculations were performed
with M = 400 and �q = 0.1/R. The implied large-k cutoff
of Q = 40/R is reasonably large to not affect the results
qualitatively. The grid used here is somewhat finer than the
one used by default in many MCT calculations, and somewhat
coarser than that used in previous SCGLE calculations.

The nonergodicity parameters F were determined by iter-
atively solving Eq. (13) for both theories. To determine glass-
transition points, a bifurcation search in the control parameters
was performed to maximize the largest real eigenvalue e of
Eq. (18). While true critical points are characterized by e = 1,
the value of e obtained in the numerical procedure indicates
the precision with which parameters like the exponent param-
eter λ can be given. We typically demand |e − 1| � 10−3 or
better. The equations in the time domain for the full theories
were solved by an algorithm outlined in Ref. [26]. We report
all dynamical quantities as functions of time t in units of the
free-diffusion time τ0 = R2/D0 = 1.

A. Hard-sphere system (HSS)

The prototypical theoretical reference system for the struc-
tural glass transition is that of monodisperse hard spheres
(HSs) of diameter R. The system has a single control pa-
rameter, expressed as a dimensionless packing fraction ϕ =
(π/6)nR3. We choose the diameter as the unit of length,
introducing dimensionless wave numbers q̃ = qR. For the
static structure factor S(q), the standard Percus-Yevick (PY)
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FIG. 1. Nonergodicity parameters f c(q) (symbols) and f s,c(q)
(lines) for the hard-sphere (HS) system with PY structure factor, for
MCT (open diamonds, dashed line, respectively) and SCGLE (filled
diamonds, solid line) at their respective critical points. Cross symbols
denote experimental data for f c(q) from Ref. [43].

approximation [33] provides an analytical parameter-free es-
timate. We will in the following discuss the standard normal-
ized correlation functions, φ(q, t ) = �(q, t )/S(q).

Figure 1 shows the results for the nonergodicity parameters
(NEPs) f c(q) = F c(q)/Sc(q) and f s,c(q) = F s,c(q) obtained
from both MCT and SCGLE for the HS model and evaluated
at their respective critical points. For the SCGLE calculations,
the cutoff parameter was chosen as kc = 12.1957 [corre-
sponding to the position of the second maximum in S(q) at
the transition density]. With this choice, both theories predict
glass-transition packing fractions that are very similar. We
obtain ϕc ≈ 0.5143 for SCGLE and ϕc ≈ 0.5158 for MCT.

The NEPs shown in Fig. 1 display the standard behavior
found in many glass-forming fluids: The collective f c(q)
display oscillations as a function of wave number q that are
roughly in phase with those of S(q), indicating medium-
range order induced by the hard-core repulsion. The different
structure at q → 0 of SCGLE that was pointed out above is
clearly seen by an increase of the respective f c(q) to unity that
sets in for qR � 3. The MCT values of f c(q) instead approach
a limiting value f c(0) ≈ 0.42 in this regime. Experimentally,
the f c(q) have been obtained from dynamic light scattering
on colloidal hard-sphere-like suspensions [43]; these data are
included in Fig. 1 as cross symbols.

In both theories, f s(q) is a monotonically decaying func-
tion of q that interpolates through the oscillations of f (q).
The width of the f s(q)-versus-q curve is a measure of the
localization length of a tagged particle and thus a measure of
the average size of nearest-neighbor cages. SCGLE predicts
a somewhat narrower f s(q)-versus-q curve, corresponding
to less tight localization in the glass. The dynamic order
parameter of SCGLE is obtained as ζ̄ ≈ 78.89/R2; using the
definition of the localization length, we obtain rc = 1/ζ̄ ≈
0.113R from SCGLE. The corresponding MCT value has to
be obtained by a separate calculation of the mean-squared dis-
placement from the q → 0 limit of Eq. (9); one obtains rc =

0 2 4 6 8 10 12 14 16 18 20
qR

0.0

0.2

0.4

0.6

0.8

1.0

h(
q)

,
hs (q

)

HSS

MCT

SCGLE

FIG. 2. Critical amplitudes h(q) = H (q)/S(q) (symbols) and
hs(q) = Hs(q) (lines), for the HSS as predicted by MCT (open di-
amonds and dashed lines, respectively) and SCGLE (filled diamonds
and solid lines), with the PY approximation for the static struc-
ture factor. Cross symbols represent experimental estimates of h(q)
from Ref. [44].

1/
√

limt→∞ limq→0 q2ms(q, t ), and for the numerical results
of Fig. 1 the value rc ≈ 0.0745R. In both cases, rc amounts to
a fraction of about 10% of the particle diameter. This is often
referred to as the Lindemann criterion for melting.

The critical amplitudes h(q) = H (q)/S(q) obtained from
Eq. (18) are shown in Fig. 2. (We set the normalization to
N = 1 here.) Again the functional shapes obtained from the
two theories are reasonably similar; the MCT results have
been discussed in detail [20]. Generically, h(q) shows a nar-
row dip around the q value where f c(q) is maximal: when the
nonergodicity plateau is large, the next-order asymptotic de-
cay needs to have a smaller amplitude because the correlation
function is bounded.

The major differences between SCGLE and MCT again
are a slower decay of the curves with q in MCT, and the
emergence of an increase towards small q in the collective part
in SCGLE. Here, due to the definition of H (q) involving terms
S(q) − F (q), the SCGLE result obeys h(q) → 0 for q → 0,
which results in an additional peak around qR = 1. Again, the
MCT result for the collective dynamics approaches a nonzero
constant at q → 0. Recently, a careful analysis of data from
dynamic light scattering allowed an experimental estimate of
h(q) for the HSS close to the glass-transition point [44]; the
corresponding data are displayed in Fig. 2 as cross symbols.

We now illustrate the scaling behavior of the correlation
functions, φ(q, t ) and φs(q, t ), in the vicinity of the glass
transition in both SCGLE and MCT. Figure 3 shows these
functions for a set of exemplary wave numbers around the
first peak in the static structure factor. At and above the glass
transition (solid and dashed lines in the figure), the decay to-
wards a nonzero long-time limit given by f (q), is seen. Close
to but below the glass transition (square and circle symbols),
the correlators decay to zero on a timescale that gradually
diverges as ϕ → ϕc from below, opening an increasing time
window where the correlation functions remains close to the
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FIG. 3. Correlation functions φ(q, t ) and φs(q, t ) close to the
glass transition of the monodisperse HS system using PY static
structure, as predicted by SCGLE [left: panels (a) and (c)] and by
MCT [right: panels (b) and (d)]. Results are shown for four differ-
ent densities and three wave numbers: qσ = 3.45 (filled symbols),
7.05 (shaded symbols), and 12.05 (empty symbols) as labeled. For
SCGLE, the densities are ϕ1 = 0.514 (squares), ϕ2 = 0.51425 (cir-
cles), ϕ = 0.51425742 ≈ ϕc (solid lines), and ϕ3 = 0.5145 (dashed
lines); for MCT: ϕ1 = 0.5155, ϕ2 = 0.5158, 0.5158357 ≈ ϕc, and
ϕ3 = 0.5159.

plateau values f c(q). These plateau values depend on the wave
number, and so does the shape of the final relaxation towards
zero in the fluid.

As anticipated from Eq. (22), all curves for a given density
can be scaled on top of each other. We exemplify this in Fig. 4
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h(
q)

10-5 10-2 101 104 107t

10-2

10-1

100

|φ
(q

,t)
-f c

(q
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(a) SCGLE

(b) MCT

FIG. 4. Correlation functions from Fig. 3 shown as |φ(q, t ) −
f c(q)|/h(q) in order to emphasize the scaling laws in SCGLE
(top panel) and MCT (bottom panel). Dotted (red) lines show the
corresponding critical decay laws (t/t0)−a, and dash-dotted (red)
lines indicate the von Schweidler laws ∼− (t/tσ )b where appli-
cable (using a = 0.3545, b = 0.7628, and t0 = 0.008 for SCLGE;
a = 0.312, b = 0.5845, and t0 = 0.002 for MCT). Symbols corre-
spond to the collective correlation functions φ(q, t ), while (green)
solid lines indicate the tagged-particle correlation functions φs(q, t ).

by demonstrating the asymptotic collapse to a q-independent
scaling function for the quantity |φ(q, t ) − f c(q)|/h(q). Here,
the critical decay law ∼(t/t0)−a clearly emerges (dotted lines
in the figure), although the time window where the corre-
lators follow this law depends both on q and on the pack-
ing fraction. For ϕ < ϕc, the timescale tσ sets the timescale
where the correlators cross over to the von Schweidler law,
∼− (t/tσ )b; this is shown by dot-dashed lines in the fig-
ure. A further rescaling by t �→ t̂ = t/tσ would collapse the
functions |φ(q, t ) − f c(q)|/h(q)

√|σ | also in this regime; this
has been discussed at length in the context of MCT [20,21]
and shall not be repeated here. Similarly, for σ > 0 all the
correlators cross over to a final plateau that, in the scaled
representation of Fig. 4 to first order, depends only on σ , i.e.,
the distance to the transition.

Thus, the qualitative scenario that emerges is identical
for SCGLE and MCT in the HSS. Because the dynami-
cal exponents close to the glass transition are nonuniversal,
the values obtained from SCGLE and MCT also slightly
differ. For the exponent parameter λ, we obtain λ ≈ 0.628
(e ≈ 0.999666) for SCGLE and λ ≈ 0.734 (e ≈ 0.999604)
for MCT. This corresponds to (a ≈ 0.3545, b ≈ 0.7628) and
(a ≈ 0.312, b ≈ 0.5845), respectively. This can be compared
to estimates a = 0.3 ± 0.08 and b = 0.52 ± 0.04 that were
recently obtained by studying the numerical derivatives of
experimentally measured correlation functions [44]. While
that value of a agrees within error bars with both theories,
the value of b is closer to the MCT prediction.

The timescale t0 that characterizes the nonasymptotic
short-time part of the relaxation was determined numerically
by matching the critical decay law to the full solutions,
with the chosen parameters we obtain t0 = 0.008 (0.002) for
SCGLE (MCT). The small but subtle difference in the value of
t0 indicates that this timescale is not fixed by the free-diffusion
matrix only and thus a nontrivial quantity to determine.

Figure 4 also demonstrates that the validity of the scaling
law depends on the wave number q. It can further be seen that,
while the scaling law demands that all correlators decay from
the plateau on the same timescale t ′

σ that is independent of q,
the relevant structural-relaxation time that one extracts from
the correlation function itself varies with q. This variation
amounts to a factor of 10 already for the q-range shown in
Figs. 3 and 4.

It is known empirically that, close to the glass tran-
sition, the long-time part of the relaxation functions can
be well described by a stretched-exponential law, φ(q, t ) ≈
Aq exp[−(t/τq)βq ], where the structural-relaxation time τq and
the stretching parameter βq depend on the wave number. In
the limit q → ∞, it has been shown within the framework
of MCT that the stretched-exponential law (also known as
“Kohlrausch law”) with βq→∞ = b arises as a limit law [45].
The proof rests on the emergence of the universal scaling laws
and the fact that at large q, the vertices decay to zero quickly
enough. This leads to the statement that f c(q) → 0 in the
limit q → ∞, and that H (q)/ f c(q) does not grow faster than
q. In SCGLE, in fact, from Eqs. (14) and (20) one obtains
f c(q) ∼ 1/q2 and that H (q)/ f c(q) is bounded by a constant
as q → ∞. The proof of Ref. [45] thus can be adapted, so that
the stretched-exponential law also emerges as an asymptotic
limit law for q → ∞ in SCGLE.
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FIG. 5. Parameters of stretched-exponential fits, φ(q, t ) ≈
Aq exp[−(t/τq )βq ], to the long-time part of the correlation functions
obtained from SCGLE (filled symbols) and MCT (open symbols).
Fits were obtained for the packing fractions ϕ = 0.51425 (SCGLE)
and ϕ = 0.5158 (MCT), respectively, in the range t ∈ [104:1010].
Lines are the parameters obtained from fits to the corresponding
tagged-particle correlation function φs(q, t ). Horizonal lines in the
upper panel indicate the values of the von Schweidler exponent,
b = 0.7628 (SCGLE) and b = 0.5845 (MCT), respectively.

The situation is exemplified in Fig. 5, where we show
the fit parameters Aq, τq, and βq, obtained from stretched-
exponential fits to correlators of SCGLE and MCT close to
their respective glass transitions. Some care has to be taken
in the choice of the fit region, in order to avoid overfitting the
crossover from the microscopic short-time relaxation to the
long-time structural relaxation. As a cross-check, we verify
that the amplitudes Aq closely match the expected plateau
values f c(q) obtained from the solution of the theory. That
this is indeed the case for our fits can be seen from comparing
the lower panel of Fig. 5 with Fig. 1.

The relaxation times τq as a function of q vary roughly
in phase with the amplitudes, and hence with the static
structure factor S(q) for the collective dynamics. The relax-
ation time obtained from fitting the tagged-particle correlation
functions in the HS case interpolate between the oscillations
corresponding to the collective relaxation dynamics for wave
numbers qR � 7, i.e., for q exceeding the position of the first
peak in S(q). At low q, the tagged-particle relaxation time
τ s

q ∼ 1/q2, for both SCGLE and MCT, which reflects the
existence of a diffusion pole in the hydrodynamic limit. As

discussed above in connection with the f c(q), SCGLE copies
this behavior also to the collective relaxation dynamics as
a consequence of the Vineyard approximation. This reflects
an (unphysical, in the present monodisperse system) slow
collective-diffusion pole. The more involved structure of the
MCT memory kernel does not suffer from this issue. At
large q, a further qualitative difference between SCGLE and
MCT becomes evident: within SCGLE, the relaxation time
approaches an asymptotic constant, τq→∞ → const, whereas
in MCT it approaches a decaying function of increasing q.

The stretching exponents βq (top panel of Fig. 5) again
show the oscillations in q that are inherited from the static
structure of the system. Again, in the low-q limit, SCGLE
and MCT differ qualitatively for the collective dynamics, and
this difference is due to the simplification of the memory
kernel present in SCGLE. For the tagged-particle dynamics,
βq→0 → 1 holds, and again this reflects the correct hydrody-
namic diffusion pole, where density fluctuations decay expo-
nentially. For both theories, the data are compatible with the
expected large-q behavior βq→∞ → b, although in MCT there
appear some small deviations, possibly due to small numerical
inaccuracies.

The difference in the power-law exponents obtained from
MCT and SCLGE is small, and thus the quantitative differ-
ences between the two theories that are shown for example in
Fig. 4 are unlikely to be assessed in simulation or experiment:
the asymptotic power laws are valid over limited windows in
time, and preasymptotic corrections to the scaling law can be
strong (depending on the observable and in particular the wave
number). Additional relaxation mechanisms not accounted for
in either theory are present in experiment and simulation and
cause deviations also at long times and close to the ideal
glass-transition point where the asymptotic laws should hold
best. This makes a robust determination of the scaling laws
from data notoriously difficult. To assess systematic errors
made by the theories, one would also need to understand
better the way in which approximations used for S(q) alter
the numerical values. The effect of such approximations can
be larger than the differences discussed in connection with
Fig. 4, which we therefore consider irrelevant for practical
purposes. However, a systematic study of the q-dependence
of relaxation times and of the shapes of structural-relaxation
spectra could probe the differences between MCT and SCLGE
that are highlighted by Fig. 5.

B. Generalized Gaussian-core model (GCM4)

An illustrative example concerning the different treatment
of collective and self-dynamics in MCT and SCGLE is pro-
vided by the generalized Gaussian core model with exponent
4 (GCM4). One assumes the (bounded) pair potential

V (r) = εe−(r/R)4
, (27)

where ε is the energy in units of the thermal energy, and R = 1
sets the unit of length. The GCM4 has been studied in the
context of ultrasoft colloids such as star-polymer solutions,
and it is a model system that captures the occurrence of a
cluster phase [46–48], i.e., a phase where particles can overlap
with each other such that a further increase in density does
not change the interparticle spacing but rather the number of
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FIG. 6. Nonergodicity parameters f c(q) (symbols) and f s,c(q)
(line) for the generalized Gaussian core model GCM4 using the
MSA structure factor, for energy ε = 1, as obtained within MCT
(open diamonds) and SCGLE (filled diamonds) at their respective
glass-transition points. Within MCT, f s,c(q) = 0. Open circles show
the MCT f (q) at the “type A” transition where f s(q) starts to increase
continuously from zero.

particles sharing the same average location. A cluster glass
phase has been found specifically for the GCM4 model using
some polydispersity in size to avoid crystallization [49]. In
these cluster phases, the collective dynamics of the density
fluctuations is slow, but hopping-like single-particle motion
persists. This is quite different for the Gaussian core model,
where the glassy relaxation shows stronger coupling between
collective and self-motion than usual [50,51]. Mixed states
of the kind observed in the GCM4 (i.e., arrested collective
dynamics with mobile single-particle dynamics) have been
discussed extensively in the context of mixtures, in both MCT
and SCGLE. For one-component systems they are less promi-
nent and have not yet been reported in theory (not counting
systems with frozen disorder [52,53]).

A good approximation of the static structure of the GCM4
for not too low temperature is provided by the mean-spherical
approximation (MSA), where one sets c(r) = −βV (r) out-
side the hard core [33]. Since the GCM4 has no hard core,
the MSA here amounts to setting c(q) = −βV (q) for all q,
where the Fourier transform V (q) of V (r) is obtained in terms
of generalized hypergeometric functions. The model then has
two control parameters, viz., the inverse temperature ε (setting
the thermal energy to unity) and the density n.

Nonergodicity parameters f (q) and f s(q) obtained for the
GCM4 at ε = 1 with both MCT and SCLGE are shown in
Fig. 6. SCGLE, using again kc = 12.1957 as above for the
HSS, gives a glass transition at nc ≈ 7.758134 (λ ≈ 0.534).
While some qualitative features of f c(q) are as expected from
the above discussion, it is remarkable that the f -versus-q
curve, apart from the well-understood increase for q → 0,
shows only a single strong maximum. This expresses the fact
that, contrary to the HSS, the glassy structure of the GCM4
model lacks the well-defined nearest-neighbor distance � that
expresses itself in oscillations of a period ≈2π/� in the
Fourier transform.
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FIG. 7. Normalized collective density correlation functions
φ(q, t ) and tagged-particle density correlation functions φs(q, t ), for
the GCM4 model as predicted by MCT for fixed ε = 1, at wave num-
ber qR = 1.4 and number densities nR3 = 6.5, 7.0, 7.08, 7.1, 7.31,
and 7.35 as indicated.

MCT gives a glass transition at nc ≈7.085247 (λ≈0.535).
But here, while f c(q) > 0 indicates the usual discontinuous
(“type B”) glass transition, the tagged-particle nonergodicity
parameters remain zero, f s,c(q) = 0. Thus, MCT describes
the arrest of collective density fluctuations in the GCM4
model where tagged-particle motion remains ergodic. Further
increasing the density, a second transition is encountered
at nc,s ≈ 7.31, where f s(q) 	= 0 arises but the f (q) remain
continuous. This latter is not a transition signaled by a critical
eigenvector in C[H], but rather in the analogous equation or
Cs[Hs] which in MCT is separate. The tagged-particle noner-
godicity parameters f s,c(q) increase continuously from zero,
and since f s(0) = 1 always has to hold, the f s(q)-versus-q
curve just above the second transition is a narrowly peaked
function around q = 0. To this corresponds a localization
length that diverges to infinity as one approaches the transition
from the localized side. A more stringent investigation of the
asymptotic behavior close to such “type A” transitions within
MCT requires additional care [54] and is beyond the scope
of the present paper. But to illustrate the generic scenario
for the dynamical correlation functions, Fig. 7 shows MCT
results for a set of densities that span the two transitions.
The collective density correlators φ(q, t ) show the two-step
glass-transition scenario discussed above in connection with
the HSS (albeit with untypically low plateau values for the
wave number chosen in the figure). At the same time, the
tagged-particle correlation functions φs(q, t ) (dashed lines
in Fig. 7) remain decaying to zero in the long-time limit;
they also do not show an indication of a two-step relaxation
scenario. As the type A transition is crossed, no peculiar
behavior is seen in the collective dynamics (top two curves
in the figure), while the tagged-particle correlation function
develops a finite long-time limit that rises continuously from
zero.

The separation of the collective glass transition and the
single-particle localization transition obtained from MCT
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depends on the choice of ε. As one increases this parameter,
the two transition points merge (for example, for ε = 5, the
single transition point nc ≈ 1.2358 is obtained in MCT). This
is intuitively expected, since for large ε, the energy of thermal
fluctuations is no longer sufficient to surmount the energy
barrier posed by the potential, and the system approaches
hard-core behavior. (But note that the quality of the MSA
approximation for the static structure should be more carefully
evaluated in this limit.) Figure 8 shows the glass-transition
curves obtained for the GCM4 from MCT and SCGLE in the
(n, 1/ε)-plane. Both theories predict the intuitively expected
trend (i.e., arrest at higher density for higher temperature). Let
us note that the shape of the f c(q)-versus-q curves discussed
in conjunction with Fig. 6 does not change qualitatively with
ε, and for both theories the height of the nonergodicity param-
eters simply increases somewhat with increasing ε. Also the
values of λ do not change appreciably: They slightly increase
with increasing ε for SCGLE but decrease for MCT; a clear
physical interpretation of this effect is unknown to us. The
values for ε = 1 are close to λ = 1/2 for which one would get
a von Schweidler exponent of b = 1, indicating nonstretched
exponential structural relaxation.

One notes the emergence of a “cluster glass” phase within
MCT at high temperatures (area between the solid and dashed
MCT lines in the figure) with collective arrest but long-range
tagged-particle motion. A qualitative comparison of our MCT
results to the simulation data of the cluster glass phase of
Ref. [49] is beyond the scope of this paper, but we find it
remarkable that the theory reproduces the peculiar behavior
of this permeable-particle model. A similar decoupling of
tagged-particle and collective motion at high temperatures
in the dynamics of a bounded-potential model can also be
identified in recent simulations of particles interacting with
a generalized Hertzian potential [55].

V. BINARY HARD-SPHERE MIXTURES (BHSMS)

To discuss more clearly the different role played by the
collective and the tagged-particle dynamics close to the
glass transition, we now turn to the model system of binary
hard-sphere mixtures (BHSMs). For this, let us consider
N = Nb + Ns (big and small) spheres of diameters Rb and Rs

and interacting through the HS potential. The three control
parameters of this system can be expressed in terms of the
overall packing fraction ϕ, the relative packing fraction of the
second species x̂s ≡ x̂ = ϕs/ϕ, and the size ratio δ = Rs/Rb.
We use the convention that δ < 1, and fix the unit of length
by the size of the larger particles, Rb. The concentration x̂ sets
the number concentrations xs ≡ x = Ns/N and xb ≡ 1 − x of
the two species. For convenience, let us denote the conversion
rule that follows from observing

x̂b + x̂s/δ
3 = [xb + xsδ

3]−1, (28a)

viz.,

x̂ = xδ3

1 − x(1 − δ3)
, x = x̂/δ3

1 − x̂(1 − 1/δ3)
. (28b)

In the numerical calculations for the BHSM, we determine the
cutoff parameters kc

α used in SCGLE [see Eq. (4b)] to coincide
with the first minimum after the main peak in Sαα (q). This is
a convenient procedure to account for the change in length
scale as one crosses over from x̂ = 0 to x̂ = 1 for δ � 1.
Note that this gives slightly different results for ϕc and λ

in the monodisperse case when compared to the HS results
presented above. We also adopt a different discretization of
the q-space integrals: following Ref. [56] we use M = 1000
points with �q = 0.4/Rb.

For size ratios δ close to unity, both theories essentially
give the same result: depending on concentration x̂, only
small variations in ϕc and the related quantities result. The
typical scenario observed in both approaches for δ � 0.6 is a
fluidization by mixing, causing ϕc(x̂) to increase with respect
to the monodisperse hard-sphere value (x̂ = 0) such that the
ϕc-versus-x̂ curve exhibits an intermediate maximum. Let us
mention that MCT also predicts a regime of vitrification by
mixing for δ close to unity, in agreement with computer-
simulation results [57]. For δ = 0.8, for instance, the MCT
ϕc-versus-x̂ curve has a minimum [38], and for δ = 0.7 a
curve with both a maximum and a minimum emerges. This
nonmonotonic trend as a function of size ratio is not reported
within SCGLE [18].

Figure 9 displays the predictions of the SCGLE (filled dia-
monds) and MCT (open diamonds) corresponding to the case
δ = 0.5 that is representative for the ordinary “fluidization-
by-mixing” case. Two noteworthy quantitative differences
between these theoretical predictions can be seen: first, the
enhancement of ϕc due to mixing is more pronounced within
SCGLE. Second, the position of the maximum in the ϕc-
versus-x̂ curve is shifted to lower x̂ in SCGLE as compared
to MCT. Within the latter, the strongest effects on the critical
concentration are typically found when both species con-
tribute roughly equally to the overall packing (by volume);
within SCGLE, no intuitive rule emerges in this sense (note,
however, that the small particles already dominate by number
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FIG. 9. Glass-transition points of the binary-hard sphere model
for size ratios δ = 0.5 (diamonds) and δ = 0.2 (circles), evaluated
within SCGLE (top panel; filled symbols) and MCT (bottom panel;
open symbols), as functions of small-particle volumetric concentra-
tion x̂. Lines with symbols represent discontinuous (type B) tran-
sitions, whereas dashed lines indicate continuous transitions (type
A). Stars indicate endpoint singularities of type B transition lines
(exponent parameter λ = 1). Dotted vertical lines indicate cuts of
constant x̂ that are considered in Figs. 11–14.

concentration, x, for the maximum in the ϕc-versus-x̂ curve
also within SCGLE).

In the following we shall be concerned with smaller size
ratios. Figure 9 also shows the glass-transition points for
mixtures with δ = 0.2 as obtained from both theories (filled
and open circles), which exemplifies the typical scenario for
very size-disparate mixtures. Both approaches predict glass-
glass transitions to occur below a certain threshold δ � 0.4
[18,56]. In essence, for sufficiently large size asymmetry,
the small species can distinguish a glass whose structure is
governed by the large particles (with interdispersed small par-
ticles), from a glass whose structure emerges smoothly from
that of the small-particle monodisperse glass (with embedded
big particles). If the length scales controlling these glassy
structures (set by δ) are sufficiently different and both species
contribute significantly to dynamical arrest (intermediate x̂
for MCT, intermediate x for SCGLE), an increase in overall
packing fraction triggers first the transition from the fluid to
the large-particle glass, and then, at a higher packing fraction,
from the large-particle glass to the small-particle glass. A
typical signature of this idealized glass-glass transition is a
discontinuous jump in mechanical moduli. As shown in Fig. 9,
for δ = 0.2 the window of two glass transition extends from
x̂ ≈ 0.4 to x̂ ≈ 0.7 in MCT. For SCGLE, in contrast, this
window appears narrower and extends only from x̂ ≈ 0.03 to

x̂ ≈ 0.1. At the large-x̂ end of this window, the two transition
lines that extend from x̂ = 0 and x̂ = 1, respectively, meet in
a crossing point.

For the size ratio δ = 0.2, the transition line extending
from x̂ = 0 is one where only the big particles freeze. Within
MCT, this implies that, while all collective correlation func-
tions arrest to nonzero nonergodicity parameters, the tagged-
particle correlation function associated with the small species
still decays. Within SCGLE, the same is true, but additionally
the collective propagator matrix � develops zero entries (as
discussed above in Sec. III A) for �ss. In both cases, since
one can continuously cross over from this partially arrested
glass to the fully arrested glass that both theories predict for
large x̂ (or x) and large ϕ, this implies that there appears
a further transition line where small-particle motion arrests.
This transition from the partially arrested glass to the fully
arrested one is a continuous transition in the sense that there
the relevant nonergodicity parameters rise continuously from
zero. These type A or localization transitions are shown as
dashed lines without symbols in Fig. 9; hence the region
between these dashed and the surrounding solid transition
lines demarks the region of the partially arrested glass.

Here, a qualitative difference between MCT and SCGLE
emerges regarding the topology of the kinetic-arrest diagram:
within MCT, the localization line that determines arrest of
the self-motion of small particles in the glass formed by the
large particles is essentially separate from the collective glass-
transition lines. In SCGLE, however, this localization lines
necessarily emerges from the endpoint of the small-particle
glass-transition line (that extends from x̂ = 1).

Note that the endpoint of the small-particle glass-transition
line does not generically coincide with the crossing point of
the two collective glass-transition lines. Mathematically, the
transition lines drawn in Fig. 9 are the physically relevant parts
of a bifurcation diagram with two lines of A2 singularities that
cross and each end at a “higher-order singularity” (A3 singu-
larity indicated by λ = 1) of which just one bears physical
significance [11]. By a further tuning of parameters it can
occur that these endpoints meet (and thus coincide with the
crossing point, in an A4 singularity). These features have been
discussed within MCT at length in the context of the square-
well model [58], the simplest known microscopic model of
physical relevance for which MCT exhibits these higher-order
singularities. The topology of the bifurcation scenario (in a
state space with three relevant control parameters) is robust,
and thus it emerges from both MCT and SCGLE, although
the distinction between the crossing point and the endpoint
singularity appears to have been overlooked in previous SC-
GLE literature.

The values of the exponent parameters along the transition
lines displayed in Fig. 9 and discussed above are shown in
Fig. 10. The generic trend is that MCT predicts slightly larger
values of λ, but as discussed above these differences translate
to small differences in the critical exponents that are hard
to distinguish in experiment or simulation. A quantitative
difference, however, becomes manifest in the location of the
endpoint singularity where λ → 1, regarding the volumet-
ric concentration x̂ of the small particles. In line with the
discussion above, SCGLE predicts much smaller x̂ to be
sufficient to trigger the higher-order singularity. In the vicinity
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of the endpoints, different asymptotic decay laws apply, as
formally the exponent of the critical decay law approaches
zero, a → 0. There then appear logarithmic decay laws, as
has been worked out in detail for MCT [59–61] and applies
mutatis mutandi for SCGLE. Such logarithmic decay laws
cause the correlation functions for a range of parameters near
the endpoint singularity to appear as anomalously stretched in
their decay, and this signature can be identified in experiment
or simulation.

To elucidate the different types of glass transitions that
are predicted for size-disparate HS mixtures, we show in
Fig. 11 the nonergodicity parameters at a fixed q value,
as a function of increasing total packing fraction ϕ along
various cuts through the state diagram of constant x̂. (These
cuts are illustrated by vertical dotted lines in Fig. 9.) For

0.0

0.2

0.4

0.6

0.8

1.0

f αα
, f

αs , ψ
αα

bb
ss

0.54 0.58 0.62 0.66
ϕ

0.4
0.6
0.8
1.0

e

0.52 0.56 0.6 0.64 0.68
ϕ

SCGLE MCT

fl-sg

sg-dg

loc

fl-sg

fl-sg loc fl-sg

loc

fl-sg

sg-dg

dg-dg

FIG. 11. Top panels: nonergodicity parameters fαα (q)=Fαα (q)/
Sαα (q) (b: filled diamonds; s: filled circles) and corresponding long-
time limits of the propagator, ψαα (q) = [F(q) · S−1(q)]αα (open
symbols) as functions of total packing fraction ϕ along cuts of
constant x̂ for δ = 0.2, for fixed wave number qR = 12.2. Left
panel: SCGLE for x̂ = 0.01 (left) and x̂ = 0.08 (right). Right panel:
MCT for x̂ = 0.3 (left), x̂ = 0.5 (shifted in ϕ by 0.04 for clarity;
middle), and x̂ = 0.65 (shifted by 0.10; right). Solid and dashed
lines indicate the tagged-particle nonergodicity parameters f s

α (q).
(Some open and closed triangle symbols overlap due to numerical
closeness.) Bottom panels: Maximum real eigenvalues relevant for
the asymptotic expansion (triangle symbols). For MCT, also the
separate eigenvalues for the tagged-particle correlator expansion are
shown (crosses).

ease of comparison, we show the ad hoc normalized values
fαβ (q) = Fαβ (q)/

√
Sαα (q)Sββ (q). As ϕ is increased from the

fluid state at low packing fraction to the fully arrested “double-
glass” state at high packing fraction, three qualitatively differ-
ent scenarios can be distinguished, two of which are predicted
to occur within SCGLE and also MCT, and a third that is
specific to MCT.

Table I summarizes the schematic behavior of the noner-
godicity parameters and the long-time limits of the propaga-
tors along the cuts considered in Fig. 11. We discuss the three

TABLE I. Qualitative behavior of the nonergodicity parameters fαα (q) of the collective dynamics, the tagged-particle nonergodicity
parameters f s

α (q), and the propagator long-time limits �αα (q) at the different glass transitions. Table entries indicate the change in the respective
quantity as follows. +: jump discontinuity; (+): typically small jump discontinuity; 0: remains zero; /: kink; −: no effect; empty: does not
occur in the theory. The different transitions are as follows, with typical x̂ values given for the δ = 0.2 transition diagram. fl–sg/sg–dg: fluid
to single glass, followed by glass-glass transition from single to double glass (SCGLE: x̂ = 0.08; MCT: x̂ = 0.65); fl–sg/loc: fluid to single
glass, followed by localization transition to double glass (SCGLE: x̂ = 0.01; MCT: x̂ = 0.3); fl–sg/loc/dg–dg: fluid to single glass, localization
transition of small particles, glass-glass transition (MCT: x̂ = 0.5).

fbb fss f s
b f s

s �bb �ss

Type SCGLE MCT SCGLE MCT SCGLE MCT SCGLE MCT SCGLE MCT SCGLE MCT

fl–sg/ + + + + + + 0 0 + + 0 (+)
loc / − / − / − / / / − / −
fl–sg/ + + + + + + 0 0 + + 0 (+)
sg–dg + + + + + + + + + + + +
fl–sg/ + + + 0 + (+)
loc/ − − − / − −
dg–dg + + + + + +
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FIG. 12. Normalized collective, φαα (q, t ) (solid lines), and
tagged-particle, φs

α (q, t ) (dashed), density correlation functions at
wave number qR = 12.2 for binary-hard sphere mixtures with size
ratio δ = 0.2, along a path of constant small-particle volumetric
concentration x̂ and increasing total packing fraction ϕ; for a path
crossing the fluid–single-glass transition and a localization transition
for the small particles (fl–sg/loc). Left panels show the large-particle
correlators, α = b, right panels the small-particle correlators, α = s.
(a) and (b): SCGLE for x̂ = 0.01 and ϕ = 0.54, 0.545, 0.546, 0.547,
0.548, 0.55, 0.56, 0.58, 0.59, 0.595, 0.6, and 0.605. (c) and (d): MCT
for x̂ = 0.3 and ϕ = 0.5, 0.51, 0.515, 0.52, 0.522, 0.525, 0.53, 0.54,
0.55, and 0.56.

generic cases below, together with the exemplary evolution
of the density correlation functions with increasing packing
fraction.

The first path of increasing ϕ, exemplified here by cuts
at fixed low x̂, crosses first a discontinuous transition from
fluid to “single glass” (fl–sg), where the collective density
fluctuations freeze, long-range transport of the large particles
ceases, but long-range transport of the small particles remains
possible. In other words, all the collective nonergodicity pa-
rameters fαα (q) jump from zero to finite values, and f s

big(q)
jumps to a finite value, but f s

small(q) remains zero. This behav-
ior is found in both MCT and SCGLE. Specific to SCGLE
is the prediction that, in the single-glass state entered upon
crossing this fl–sg transition, the propagator-long-time limit
�ss(q) remains zero; in MCT it jumps to a finite value, albeit
that value can be small, depending on the value of q. A further
increase in packing fraction eventually causes arrest of the
small particles, at a localization (loc) transition. Here, within
SCGLE all relevant quantities exhibit a kink, i.e., a disconti-
nuity in the slope. Within MCT, only the tagged-particle non-
ergodicity parameter associated to the small-particle motion,
f s
s (q), shows such behavior, while all other quantities remain

unaffected. Figure 12 shows the evolution of the density corre-
lation functions along the first path. The collective correlation
functions φαα (q, t ) show qualitatively the same behavior in
both SCGLE and MCT. Owing to the differences in the
respective state diagrams, the paths are evaluated at different
small-particle concentrations x̂ in the two theories; this causes
notable quantitative differences in the numerical values of
the nonergodicity parameters, in particular those associated to
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FIG. 13. Density correlation functions as in Fig. 12, but for a
path crossing the fluid–single-glass transition followed by a single-
glass–double-glass transition (fl–sg/sg–dg). Top panels: SCGLE for
x̂ = 0.08 and ϕ = 0.63, 0.632, 0.635, 0.64, 0.645, 0.65, 0.66, 0.662,
and 0.665. Bottom panels: MCT for x̂ = 0.65 and ϕ = 0.54, 0.542,
0.545, 0.548, 0.55, 0.555, 0.558, and 0.56.

the small particles. Hence, the evolution of a two-step decay
scenario around the fl–sg transition is hard to detect in the
case of the small-particle correlators of SCGLE. As a result,
the tagged-small-particle correlators and their collective coun-
terparts remain numerically closer in SCLGE than in MCT,
although they show the same qualitative difference regarding
the absence respective presence of a two-step decay pattern.

The second exemplary path crosses the transition to the
single glass (fl–sg), followed upon further increase of packing
fraction by another discontinuous transition to a double glass
(sg–dg). This latter is characterized by jump discontinuities
in all long-time limits, i.e., jumps from one finite value to
a higher one at all q. The qualitative behavior here is the
same for both SCGLE and MCT. The dynamical scenario
is exemplified by Fig. 13. Again, because the fl–sg/sg–dg
scenario is present in MCT at much higher small-particle
concentrations x̂ than in SCGLE, numerical differences in the
respective plateau values become evident. Apart from this,
both theories show that for the large particles, collective and
tagged-particle relaxation dynamics is nearly identical at the
wave number chosen.

For the small particles, the tagged-particle correlation func-
tions decay much faster than their collective counterparts; the
latter decay as slowly as those associated to the large parti-
cles. This is the qualitative signature of the fluid–single-glass
transition [56]. The strong decoupling in the relaxation of
self- and collective correlations of the small particles has been
verified in experiments and simulations on binary colloidal
mixtures [27,28]. It is also known from noncolloidal glass
formers and has been the basis to explain fast-ion conduction
in sodium-silicate melts [29,30].

Around the single-glass–double-glass transition, a two-
step decay scenario emerges for the tagged-small-particle
correlator, signaling the approach to a discontinuous arrest
transition for the small-particle dynamics that is different from
the localization transition encountered along the first path. At
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FIG. 14. Density correlation functions as in Fig. 12, but for a path
crossing the fluid–single-glass transition, followed by a localization
transition, followed by a double-glass transition (fl–sg/loc/dg–dg).
MCT results for x̂ = 0.5 and ϕ = 0.52, 0.53, 0.535, 0.54, 0.55, 0.57,
0.575, 0.58, and 0.582.

the same time, the remaining correlation functions (that are
already nonergodic on both sides of the sg–dg transition) show
a two-step decay from one plateau to another finite one.

The third path, specific to MCT, arises because in this
theory, the localization transition and the sg–dg transition do
not emerge from singularities of the same stability matrix.
They thus do not both end in the same higher-order singularity
point and leave open the possibility of first crossing from the
fluid into the single glass discontinuously (fl–sg), followed by
continuous localization of the small particles (loc) into a fully
arrested glass, followed by a further discontinuous transition
where this fully arrested glass transforms into a more tightly
packed one (dg–dg). The corresponding dynamical evolution
is shown in Fig. 14. In essence, the evolution of the collective
correlation functions is the same as that encountered along the
second path, because the single-particle localization dynamics
in MCT does not couple back to the collective quantities.
Only the tagged-small-particle correlators show qualitative
differences to the behavior exhibited by Fig. 13: around the
double-glass transition, these correlators are already noner-
godic, so that also for them, a two-step decay from one plateau
to another finite one is observed.

Despite the differences regarding the arrest of small par-
ticles and the shape of the glass-transition diagram in the
(x̂, ϕ) plane, many predictions of both theories again are rather
similar when evaluated at similar concentrations x̂. This is
in particular true for the case where only double-glass states
are predicted. We demonstrate this by a comparison of the
nonergodicity parameters for the size ratio δ = 0.5 in Fig. 15.
Both SCGLE and MCT yield roughly similar f c

αβ (q) for the
cases x̂ = 0.2 and x̂ = 0.8, taken as exemplary for the full
state space. In contrast to the monodisperse case, even in
the limit q → 0, no strong differences are seen in the partial
nonergodicity factors. This is due to the fact that the q→0
behavior reflects the presence or absence of conservation
laws; the formulation of both theories in the case of mixtures
rests on the partial number-density fluctuations, and these
do not obey a separate momentum-conservation law. Thus,
the corresponding partial nonergodicity parameters approach
unity for q → 0, just as the tagged-particle quantities. In this
respect, the starting points from SCGLE and MCT (hinging
respectively on the tagged-particle momentum fluxes and the
collective ones) become quite similar.

FIG. 15. Nonergodicity parameters for binary hard-sphere mix-
tures (PY closure) with size ratio δ = 0.5. (a) and (c) Volume
concentration of small particles x̂ = 0.2; (b) and (d) x̂ = 0.8. Top
panels show the normalized nonergodicity parameters f c

αβ (q) =
F c

αβ (q)/
√

Sαα (q)Sββ (q), for SCGLE (filled symbols) and MCT (open
symbols). Lines are the tagged-particle f s,c

α (q) (solid: SCGLE;
dashed: MCT). The three independent elements of the matrix are
shown as labeled. The bottom panels show the propagator long-time
limits �αβ (q) = [Fc(q) · S−1(q)]αβ . All four elements are shown as
labeled.

As expected, more notable differences arise in the noner-
godicity parameters of the partially arrested glass. We exem-
plify this by the case δ = 0.2 and x̂ = 0.002; this corresponds
to a state point previously discussed in the context of SCGLE
[18]. In Fig. 16 we show the nonergodicity parameters fαβ (q),
f s
α (q) (upper panel) and propagator long-time values �αβ (q)

(lower panel) for two overall packing fractions: one at the
transition from the fluid to the partially arrested glass (left
panels of the figure), and one slightly above the localization
transition of the small particles, i.e., the transition from the

FIG. 16. Nonergodicity parameters for binary hard-sphere mix-
tures as in Fig. 15, but for size ratio δ = 0.2 and small-particle
concentration x̂ = 0.002. Evaluated (a) and (c) at the glass-transition
point ϕc and (b) and (d) at a packing fraction slightly above the
separate localization transition of the small particles.
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partially arrested to the fully arrested glass (right panel).
Again, at finite q both theories yield qualitatively similar
predictions. In the limit q → 0, differences are seen that are
reminiscent of the monodisperse hard-sphere case discussed
above. In fact, this is a surprising signature of the partially
arrested glass that appears even in the collective nonergodicity
parameters of MCT, although that theory a priori treats the
tagged-particle motion as a fully separate problem: while for
the fully arrested glass (cf. Fig. 15) the q → 0 limits of f c

αβ (q)
are all unity, in the partially arrested glass, a finite value less
than unity is approached on the resolution of the numerical
q-grid used in the calculation, for f c

bb(q) (cf. open diamonds
in Fig. 16).

As discussed above, within SCGLE the propagator matrix
�(q) appears as a natural quantity. In the partially arrested
glass, the elements �αs(q) are strictly zero in SCGLE, and
only at the localization transition, they rise continuously from
zero to finite values. This is exemplified in Fig. 16. Within
MCT, the �αβ (q) are strictly nonvanishing, as a consequence
of the (strict) positive definiteness of both F(q) and S(q).
However, as shown in Fig. 16, the corresponding values
�αs(q) in the partially arrested glass are nearly zero even
within MCT. One can interpret either the SCLGE prediction,
�αs(q) = 0, as an approximation to small but nonzero values,
or the MCT prediction, �αs(q) ≈ 0, as an approximation of
an exact zero.

VI. CONCLUSION

We have presented and discussed asymptotic solutions for
the dynamics close to conditions of dynamical arrest for
two microscopic theories of the glass transition, the mode-
coupling theory (MCT) and the self-consistent generalized
Langevin equation theory (SCGLE). Both approaches share a
very similar mathematical structure that is governed by that of
a generalized Langevin equation, i.e., an integro-differential
equation governed by an increasingly slowly decaying and
dominant memory kernel for the density-correlation func-
tions. Hence, the solutions of such equations are broadly
similar. This notion of similarity is rendered mathematically
rigorous by recognizing that the β-scaling analysis describ-
ing the asymptotic decay of the correlation functions close
to the glass transition, first developed by Götze for MCT,
applies to both formalisms. The appearance of asymptotic
power-law decay in time is thus a robust feature shared by
both theories. This extends also, broadly speaking, to further
theoretical approaches such as a mode-coupling-like theory
based on generalized hydrodynamics [19]. This renders them
“universal” in a certain, mathematically well-defined, sense.

The most notable differences arise in the way the tagged-
particle dynamics is treated. MCT focuses on the collective
density correlation functions and treats the tagged-particle
problem as separate, motivated by an argument that in the
thermodynamic limit the effect of a single particle onto the
dynamics of N others vanishes in a certain sense. SCGLE
on the other hand incorporates a coupling to both collective
and tagged-particle dynamics in the memory kernel of both
the collective and the tagged-particle density correlations,
arguing in effect that the collective friction can be thought of
a combination of single-particle friction contributions.

In most cases, where the tagged-particle dynamics is
closely coupled to that of the collective density fluctuations,
the differences between the predictions of the two theories
are consequently minor. Notably this is the case for (nearly)
monodisperse HSSs, and we expect a similar conclusion to
hold for many standard glass-forming systems whose in-
teractions are dominated by strongly repulsive interactions
on a typical nearest-neighbor distance (such as soft spheres
or Lennard-Jones systems). The main relevant distinction
between the theories in this case is the treatment of long-
wavelength fluctuations, where SCGLE effectively treats the
amorphous solid as infinitely rigid to first approximation.
This approximation affects the calculation of hydrodynamic
transport coefficients, for which MCT is expected to be the
more adequate theory.

Qualitatively different descriptions emerge when one con-
siders partially arrested glasses, i.e., the case where the self-
dynamics (of at least one species) decouples from the collec-
tive slowing down. A simple example is given by the gen-
eralized Gaussian core model (GCM4), where MCT predicts
the appearance of a partially arrested glass when the thermal
energy is comparable or larger than the energy scale of the
penetrable-core repulsion. Here, the tagged-particle motion
remains ergodic at the glass transition of the collective density
fluctuations and shows localization only at a higher density.
Qualitatively, this scenario is in agreement with the observed
appearance of a cluster-glass phase in the GCM4.

While within MCT, the peculiarities of the tagged-particle
motion are not evidently incorporated into the arrest dynamics
of collective density fluctuations, numerically, the delocal-
ization of small particles in a size-disparate binary mixture
leaves an imprint on the collective arrest even for the MCT
predictions. In this sense, even in the treatment of partially
arrested glass states, SCGLE and MCT can be seen as close
approximations to each other. There it remains to be verified
through experiment and simulation which description is more
accurate. A recent comparison of SCGLE to both experiment
and simulation of various paths to dynamical arrest in size-
disparate hard-sphere mixtures has been performed as a first
step in this direction [28].

The similarity of description extends from the simple
liquids discussed here to more complex interactions, for
example, to particles with relevant orientational degrees of
freedom. A possible treatment is by a spherical-harmonics
representation of the angular dependence of density fluctu-
ations, and this route has been used in MCT [62–65] as
well as in SCGLE [66]. Again, many qualitative features of
the theories are in broad agreement. Also in these systems,
partially arrested glasses can be found both within MCT and
SCGLE, for particles whose asphericity is small enough so
that certain spherical-harmonics modes of density fluctuations
can decouple from the translational ones [67]. It will be
interesting to test the predictions of both theories in these
cases, as they represent partially arrested glasses irrespec-
tive of the collective or tagged-particle nature of the density
fluctuation.

However, in the treatment of transport coefficients (such
as tagged-particle diffusion and interdiffusion) the theories
differ qualitatively. The interdiffusion coefficient in a bi-
nary mixture describes the collective transport mechanism

042601-17



L. F. ELIZONDO-AGUILERA AND TH. VOIGTMANN PHYSICAL REVIEW E 100, 042601 (2019)

0

100

200

300

400

500

600

700
x b

x s
M

ccαβ
(q

) bb
ss
bs

0 5 10 15 20 25
qRb

0

100

200

300

400

500

600

700

x b
x s

M
ccαβ

(q
)

δ = 0.5  (a)

δ = 0.2  (b)

FIG. 17. Long-time limits limt→∞ q2Mαβ
cc (q, t ) related to the

interdiffusion coefficient in a binary mixture, as obtained from
MCT through the individual components of the memory kernels
q2mαβ (q, t ) (different symbols as labeled); see text for details.
(a) Fully arrested glass (δ = 0.5 and x̂ = 0.2); (b) partially arrested
glass (δ = 0.2 and x̂ = 0.002). The values for q → 0 approach a
species-independent value.

that equalizes concentration fluctuations. It can be derived
on the basis of a Mori-Zwanzig equation for the con-
centration fluctuations xsδ�b − xbδ�s in the limit q→0,
and its inverse is proportional to the time integral of
the corresponding memory kernel Mcc(t ) [68]. Within
MCT, this memory kernel is related to the q → 0 lim-
its of the partial-current memory kernels mαβ (q, t ) appear-
ing in Eq. (8a) by xbxsMcc(t ) = m̂bb(t )/xs = m̂ss(t )/xb =
−m̂bs(t )/

√
xbxs, where m̂αβ (t ) = limq→0 q2mαβ (q, t ). This

symmetry in the species labels reflects the fact that in a
binary mixture, a single interdiffusion coefficient exists, since
concentration fluctuations of one species are linked to that
of the other by the number conservation law. The SCGLE
memory kernel, Eq. (7), does not have this form, and therefore
it is not obvious how to extract interdiffusion coefficients from
the present SCGLE.

In the (fully arrested) glass, the memory kernel Mcc(t )
of MCT approaches a finite long-time limit, and thus the
interdiffusion coefficient vanishes since the time integral over

Mcc(t ) diverges. It remains open how accurate this description
is in partially arrested glasses, i.e., whether interdiffusion
remains effective if one of the two species remains able
to undergo long-range motion. Within MCT, this is only
reflected through the tagged-particle memory kernels and does
not explicitly appear in the equation to determine the inter-
diffusion coefficient. However, again, numerically the values
obtained for limt→∞ Mcc(t ) in the partially arrested glass are
close to zero. This is demonstrated in Fig. 17: we show
limt→∞ xbxsMαβ

cc (q, t ) = limt→∞ q2m̂αβ (q, t )/√xᾱxβ̄ (where
ᾱ denotes the species not labeled by α) for the two exemplary
glassy states discussed in Figs. 15 (left, x̂ = 0.2 for δ = 0.5,
a fully arrested glass) and 16 (left, x̂ = 0.002 for δ = 0.2, a
partially arrested glass). One recognizes in Fig. 17 that the
long-time limit of Mcc(q, t ) in the fully arrested glass (for δ =
0.5) approaches a finite constant as q → 0, and this indicates
that interdiffusion has ceased. A zero value in this limit signals
finite interdiffusion, and one notes that the value obtained in
the partially arrested glass (δ = 0.2) is indeed close to zero.

While MCT can be regarded as more microscopically
accurate, the SCGLE approach has practical advantages that
it owes to its comparable simplicity. Notably it is more eas-
ily extended to nonequilibrium situations that involve aging
subsequent to a temperature or density quench; the resulting
theory is referred to as NE-SCGLE [69]. In the MCT frame-
work, the rigorous extension to aging has been attempted [70],
but the resulting theory is complicated to handle and has not
yet yielded specific quantitative results beyond a schematic-
model level [71]. One reason for the structural complexity of
that nonequilibrium MCT is the need to treat both correlation
and response functions as separate objects (in the absence of
a fluctuation-dissipation theorem far from equilibrium) and
on equal footing. NE-SCLGE allowed progress to be made
under the assumption that quenches allow the static structure
of the system to evolve adiabatically. The predicted scenario
compares favorably to computer simulations of aging HSSs
after a density quench [37] and with experimental results for
dynamically arrested spinodal decomposition in systems with
short-range attraction [72].

The asymptotic analysis that we presented here for SCGLE
should in principle help to establish rigorous predictions also
for aging systems. For example, the waiting-time dependent
relaxation time of density correlation functions is found to
follow a power law empirically [37,73]; it is a promising route
to establish such power laws precisely as asymptotic laws in
the spirit of the β-scaling analysis.
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