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The cytoplasmic volume of cells is occupied and crowded by a variety of macromolecules, such as proteins
and cytoskeleton structures. Such diverse macromolecules make the cell cytoplasm not only structurally
heterogeneous but also dynamically heterogeneous: Some macromolecules may diffuse freely inside cell
cytoplasm at certain timescales while others hardly diffuse. Studies on the effects of the dynamic heterogeneity
on reaction kinetics have been limited even though the effects of the crowdedness and structural heterogeneity
were investigated extensively. In this study, we employ a simple model of mixtures of mobile and immobile
matrix particles, tune the degree of dynamic heterogeneity by changing the fraction of immobile matrix particles,
and investigate reaction kinetics in such heterogeneous media. We employ the loop formation of a single polymer
chain as a model reaction and perform Langevin dynamics simulations. We find that the free-energy barrier of
the loop formation is decreased as the systems become more crowded with matrix particles. But the free-energy
barrier is not sensitive to the dynamic heterogeneity. As dynamic heterogeneity increases with an increase in
the fraction of immobile matrix particles, however, the diffusivity of the system decreases significantly. The
decrease in the diffusion (due to the dynamic heterogeneity) and the decrease in the free-energy barrier (due to
the crowdedness) lead together to a complicated trend of the loop formation kinetics. As the volume fraction of
immobile matrix particles reaches a critical value at the percolation transition, the reaction kinetics becomes
significantly heterogeneous and the survival probability distribution of the chain loop formation becomes
stretched-exponential. We also illustrate that the heterogeneous reaction rate near the percolation transition
relates closely to the structures of local pores in which the polymer is located.
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I. INTRODUCTION

Cell cytoplasm and cell membranes consist of various
components, of which size and interaction vary tremendously.
In the case of cell cytoplasm, for example, up to 40% of its
volume is filled with proteins, organelles, and cytoskeleton
networks [1,2], which makes the structure inside cells intrin-
sically heterogeneous. Such a structural and compositional
heterogeneity entails dynamic heterogeneity, i.e., the diffusion
of certain macromolecules significantly differs depending on
the size and the interaction of neighboring components. Both
static and dynamic heterogeneity would affect the transport
and the chemical kinetics of proteins in cells. However, the
effect of the dynamic heterogeneity remains elusive, while the
effect of crowdedness and static heterogeneity on the kinetics
has been investigated extensively. In this study, therefore, we
would like to investigate the effect of the static and dynamic
heterogeneity on the reaction kinetics of a model reaction by
performing molecular simulations. We show that as the dy-
namic heterogeneity becomes significant, the heterogeneous
kinetics appears where a single reaction rate constant may not
describe the reaction kinetics.

The shape and functions of proteins in crowded and het-
erogeneous environments are different from those in dilute
solutions [3,4]. Previous experiments [1,5–7] and theoret-
ical studies [8–10] showed that the crowdedness affected
cell metabolism [11], transport phenomena [12,13], and cell
signaling [14]. Previous studies [15–17] also showed that

the crowdedness of cell cytoplasm might bring about two
competing effects on the kinetics: (1) the protein diffusion
slows down as the system becomes more crowded, which
should inhibit the diffusion-controlled reaction, but (2) the
crowdedness may increase the effective collision between two
reactants such that the reaction rate may be enhanced. In this
study, we also observe such competing effects of crowdedness
on the kinetics in our simulations, but find that the dynamic
heterogeneity complicates the competing effects significantly.
This suggests that the dynamic heterogeneity needs to be
taken into account when one tries to investigate the kinetics
in complex systems.

Systems with matrix particles that do not diffuse at all
have been studied extensively [18–21]. Those matrix particles
are fixed in space at random positions and become obstacles
to fluid particles, thus constructing random (porous) media
[22–29]. The transport of fluid particles in random media
is described well by a percolation theory. When the volume
fraction (φ) of the quenched matrix particles is below its
critical value (φc, the percolation threshold volume fraction),
a percolating network of free volume exists, through which a
fluid particle diffuses. When φ > φc, the percolating network
disappears and the long time diffusion of the fluid particles
should vanish [30–33]. When φ = φc, the percolating free
volume is fractal such that the diffusion of fluid particles
become subdiffusive at all timescales. The value of φc depends
on the relative size and the interaction potential of the fluid
particle. However, studies on the kinetics in random media
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have been relatively limited. In this study, we introduce a
simple system of mixtures of quenched and free matrix par-
ticles. Free matrix particles diffuse at a reaction timescale
while quenched matrix particles do not diffuse at all. The
diffusion of matrix particles that occupy the system is, then,
heterogeneous. We tune the degree of dynamic heterogeneity
and investigate its effect on the kinetics by changing the
fraction (γ ) of the quenched particles.

We employ the loop formation of a single polymer chain as
a model system in this study. The loop forms when two ends of
the linear chain meet each other, which should involves a large
conformational change. The loop formation is an intramolecu-
lar reaction of a single chain relevant to biopolymer reactions
such as protein folding or DNA hairpin formation. Because
reactive sites, two ends of a polymer, need to encounter each
other to initiate the reaction, the end-to-end distance (rete) of
the polymer chain, therefore, can serve as a reaction coordi-
nate. And many theories have been developed to discuss the
loop formation kinetics based on Smoluchowski-type diffu-
sion equation[34–37] with a single diffusion coefficient (Dete)
and the equilibrium distribution function of rete. But when the
kinetics becomes significantly heterogeneous as in our study,
such theoretical description fails to describe the reaction ki-
netics of the loop formation properly. We also investigate the
reverse reaction of the loop formation, i.e., unlooping reac-
tion, which is hardly affected by surrounding matrix particles.

The rest of the paper is organized as follows. In Sec. II
we discuss the simulation model and methods in details.
Simulation results are presented and discussed in Sec. III.
Section IV contains the summary and conclusions.

II. MODEL AND METHOD

Our simulation system consists of a single flexible polymer
chain and matrix particles. There are two types of matrix
particles: (a) mobile particles that can diffuse freely and (b)
immobile particles that are fixed as obstacles in space. The
polymer chain is modeled as a bead-spring chain comprised of
32 monomers of diameter σ and mass m, which are the units
of length and mass in this study, respectively. The bonding
interaction [Ub(r)] between chemically bonded monomers is
described by a harmonic potential, i.e., Ub(r) = K (r − r0)2,
where r is the distance between two monomers and r0 = σ . We
set K = 1000kBT/σ 2, where kB and T denote the Boltzmann
constant and temperature, respectively. Matrix particles are
modeled as spherical particles of diameter σc and mass m. The
value of σc is either σ and 4σ in this study. Note that matrix
particles of σc = σ are comparable in size with monomers
while matrix particles of σc = 4σ is slightly larger than the
radius of gyration of the polymer chain, i.e., Rg,bulk = 3.7 ±
0.6, when there is no matrix particle around the chain.

The non-bonding interactions between particles in our
simulations are described by a truncated and shifted
Lennard-Jones potential as follows:

ULJ (ri j ) =
{

4ε
[( σi j

ri j

)12 − ( σi j

ri j

)6] − εrc , r < rc,

0, r � rc,

where ri j is the distance between the ith and the jth particles,

and εrc = 4ε[( σi j

rc
)
12 − ( σi j

rc
)
6
]. The interaction strength ε is

set to kBT and is the unit of energy in this study. σi j is the
arithmetic mean of the diameters of i and j particles; i.e.,
σi j = σi+σ j

2 . We set rc = 21/6σi j such that the interactions
between particles are purely repulsive except the interaction
between two end monomers of the polymer chain. Only for
the pair of end monomers of the chain, we set ε = 4kBT and
rc = 2.5σ such that the looped state of the polymer chain
becomes energetically stable to some extent.

We perform Langevin dynamics (LD) simulations under
the canonical ensemble via LAMMPS simulator as follows:

m
d2r
dt2

= −∇rU − ξ
dr
dt

+ δFr (t ), (1)

where U is the total sum of inter-particle interactions
including both bonding and non-bonding interactions. ξ is a
friction coefficient and is set to ξ = 2. δFr (t ) denotes a ran-
dom Gaussian force that satisfies the fluctuation-dissipation
theorem, i.e., 〈δFr (t )δFr (t ′)〉 = 2ξkBT δ(t − t ′). We set kBT =
1. We use the velocity-Verlet integrator and the integration
time step is 0.002τ , where τ is the reduced time unit, i.e.,
τ ≡

√
mσ 2/kBT .

We use a cubic simulation box of dimension L = 25σ

with periodic boundary conditions in all directions. Initial
configurations are generated by inserting a single polymer
chain and matrix particles sequentially at random positions.
We grow the polymer by adding monomers without any
overlap sequentially. Then, we insert matrix particles without
overlaps with preexisting particles until the volume fraction
(φ) of matrix particles reaches φ = πσ 3

c N/6L3, where N is
the total number of matrix particles.

To equilibrate the system, we let all matrix particles diffuse
freely such that they are distributed in space with an equilib-
rium distribution at time t = 0. We equilibrate the system until
the polymer and matrix particles diffuse at least more than
their own size. Then, we select Nm mobile particles and No

immobile particles (obstacles) randomly; i.e., N = Nm + No.
We fix the obstacles at their own positions during the produc-
tion simulation runs. φm = πσ 3

c Nm/6L3 and φo = πσ 3
c No/6L3

denote the volume fractions of the mobile and the immobile
particles, respectively. The total volume fraction (φ) of all
matrix particles is, therefore, φ = φo + φm. The ratio of the
immobile particles to the total number of matrix particles is
γ = No/N = φo/φ.

To investigate polymer dynamics in crowded environ-
ments, we calculate both the mean-square displacement
(〈[
r(t )]2〉) and the time correlation function of the end-to-
end distance [Cete(t )] of the polymer as follows:

〈[
r(t )]2〉 = 〈|�r(t ) − �r(0)|2〉, (2)

Cete(t ) = 〈rete(t )rete(0)〉 − 〈rete〉〈
r2

ete

〉 − 〈rete〉2

2

. (3)

Here, �r(t ) is the position vector of the center of mass of
the chain at time t and rete(t ) is the end-to-end distance of
the chain. 〈· · · 〉 denotes the ensemble-average. We fit Cete(t )
to an exponential function, i.e., Cete(t ) ≈ exp(−t/τete), and
extract the relaxation time τete. The polymer conformation is
characterized by a probability distribution function [p(rete)] of
the end-to-end distance. We also obtain a free-energy profile
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[F (rete)] along the end-to-end distance (a reaction coordinate
for the loop formation) by using F (rete) = −kBT ln[p(rete)].

The end-to-end distance (rete) of a polymer chain has been
considered as a suitable reaction coordinate for loop forma-
tion kinetics [38–40]. Effective diffusion coefficient (Dete)
along the reaction coordinate can be estimated by calculating
the mean-square displacement (〈(
rete(t ))2〉) of the polymer
end-to-end distance, i.e., 〈(
rete(t ))2〉 = 〈|rete(t ) − rete(0)|2〉.
〈(
rete)2〉 is supposed to reach a plateau at sufficiently long
times where 〈(
rete(t = ∞))2〉 ≈ 2σ 2

ete = 2(〈r2
ete〉 − 〈rete〉2).

The diffusion coefficient (Dete) along the reaction coordinate
is obtained by using Dete = σ 2

ete/τete.
We decide that a loop forms when rete is smaller than a

contact distance (rloop). We set the value of rloop = 1.8σ to
the value of rete at a local minimum in p(rete) [Fig. 2(a)]. We
calculate the mean-first passage times (τloop and τunloop) for
looping and unlooping processes, respectively. The survival
probability [S(t )] of looping (unlooping) reaction is defined
by a probability for a looped (unlooped) polymer to remain in
the same state after time t . We fit the simulation results for S(t )
to a stretched exponential function of S(t ) = exp[−(t/τ )β].
β is a measure of how heterogeneous the reaction
kinetics is.

III. RESULTS AND DISCUSSION

A. The pore percolation transition of the system

The diffusion of macromolecules in porous media de-
pends significantly on the volume fraction (φo) of immo-
bile matrix particles [30,41,42]. When φo is larger than its
critical value (φc) at the pore percolation transition, no per-
colating free volume exists such that the macromolecules
do not diffuse at long timescales. Then, the mean-square
displacement (〈[
r(t )]2〉) is not linear with time t at long
times but rather reaches a plateau. Only when φo < φc and
a macromolecule is placed within a percolating free volume,
the macromolecule undergoes the Brownian diffusion at long
timescales and 〈[
r(t )]2〉 ∼ t1. At the percolation threshold
of φo = φc, the free volume is fractal at all length scales and
the macromolecules should undergo the subdiffusion at all
spatiotemporal scales.

Figure 1(a) depicts the mean-square displacement
(〈[
r(t )]2〉) of the center of mass of the polymer chain
in our study for small matrix particles (σc = 1σ ) of φ =
0.05 and 0.1. Note that the fraction (γ ) of immobile particles
varies from 0 to 0.8. For a given value of the total volume
fraction (φ) of matrix particles, the diffusion slows down as γ

increases. When φ = 0.1 and γ = 0.8, the polymer diffusion
becomes anomalous, i.e., 〈[
r(t )]2〉 ∼ t0.7 at several orders
of magnitude of time. Such anomalous subdiffusion is also
observed for large matrix particles at sufficiently large values
of γ and φ.

The values of φc for the pore percolation transition depends
on the sizes of both matrix particles and polymers (macro-
molecules). It is not a trivial task to determine the exact value
of φc for polymers in random porous media, especially when
intermolecular interactions are a continuous function instead
of a hard-sphere interaction (where an exact estimate of the
free volume is allowed). One also has to take the finite-size
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FIG. 1. (a) The mean-square displacement 〈[
r(t )]2〉 of the cen-
ter of mass of the polymer chain for different values of φ and
γ of matrix particles of σc = 1. (b) 〈[
r(t )]2〉’s of independent
trajectories in 20 different matrix configurations for different values
of φo with γ = 1 (the upper panel for σc = 1 and the lower panel for
σc = 4).

scaling behavior into account to pinpoint the value of φc,
which is also beyond the scope of the current study. Instead,
we plan to estimate the approximate range of φc by observing
〈[
r(t )]2〉 for each matrix configuration.

Figure 1(b) shows 〈[
r(t )]2〉’s of 20 independent trajec-
tories in 20 different matrix configurations, which start from
different initial configurations of small (upper panel) and
large (lower panel) matrix particles. Note that while mobile
matrix particles diffuse freely, immobile matrix particles are
fixed at initial positions during the simulations such that the
matrix configuration of one trajectory is different from others.
Therefore, the transport properties of a chain in 20 matrix
configurations would differ from one another, especially near
the percolation transition.

Above a certain volume fraction of immobile particles
near the percolation threshold, the confined diffusion would
appear such that 〈[
r(t )]2〉 reaches a plateau at long times. As
shown in Fig. 1(b), the volume fraction at which the confined
diffusion begins to appear depends on the size of matrix
particles (σc = 1 and 4). In case of σc = 1 (upper panel), all
〈[
r(t )]2〉’s of 20 trajectories show a diffusive behavior at
for φo � 0.08 but the confined diffusion begins to appear for
φo = 0.1. This indicates that φc lies between φo = 0.08 and
0.1. Similarly, φc lies between φo = 0.27 and 0.3 for large
matrix particles (lower panel). We also confirmed that the
volume fraction where the confined diffusion appears depends
only on φo regardless of γ and φ investigated in our study.

B. The structure and dynamics of the polymer chain

The kinetics of a chemical reaction is determined mostly
by (1) the free-energy barrier (
F ‡) and (2) the effective
diffusion coefficient (Dete) along the reaction coordinate, i.e.,
the end-to-end distance (rete). Dete relates to how fast the
reactant samples the phase space and crosses the free-energy
barrier. Therefore, Dete determines the pre-exponential factor
of the Arrhenius equation. In this section, we estimate Dete

and the free-energy profile [
F (rete)] as a function of rete by
calculating the distribution function [p(rete)] of rete and using

F (rete) = −kBT ln[p(rete)].
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FIG. 2. (a) Probability distribution functions [p(rete )] of the end-to-end distance of a polymer chain at different values of φ and γ . A
black solid line indicates p(rete ) of a polymer chain in a solution without matrix particles. (Inset) The free-energy profiles (
F (rete )/kBT =
−ln[p(rete )]) as a function of rete. (b) The probability (ploop) of the polymer chain being looped as a function of φ for small and large matrix
particles. (Inset) The radius of gyration (Rg) of the polymer. (c) The diffusion coefficient (Dete) of the end-to-end distance (rete) as a function
of φ for different values of γ and σc. Black symbols represent Dete with γ = 0 at a given φ.

Figure 2(a) depicts p(rete) for the systems of large matrix
particles. The attractive interaction between two ends of the
polymer chain results in the bimodal distribution of rete and
consequently the double-well free-energy profile [
F (rete)].
We divide the polymer conformation into a looped and an un-
looped states by employing a criterion of rloop ≈ 1.8σ , which
is the location of the local minimum of p(rete) [Fig. 2(a)].
Without any matrix particles [a black solid line in Fig. 2(a)],
an unlooped state is more stable than a looped state due to
the large conformational entropy for unlooped states. As we
introduce matrix particles (with an increase in φ), the proba-
bility of the polymer being in the looped state becomes higher.
For the highest value of φ = 0.4 in this study, the looped
state becomes more stable by about 1kBT than the unlooped
state as in the inset of Fig. 2(a). The radius of gyration (Rg)
of the polymer [inset in Fig. 2(b)] is also decreased as the
system gets more crowded with more matrix particles. It is
well-known from previous experiments and simulations that
the crowding effects lead to a smaller size of macromolecules
due to the excluded volume interactions [5,43–45].

Interestingly, both p(rete) and 
F (rete) are not subject to
the fraction (γ ) of immobile crowders [Fig. 2(a)]. For a given
value of φ, p(rete)’s are all identical within statistical error
bars regardless of γ . This indicates that the free-energy profile
and free-energy barrier for the reaction are determined not
by the mobility of matrix particles but by their density. We
also calculate the probability (ploop) that a polymer chain
forms a loop by using ploop = ∫ rloop

0 p(rete)drete. As depicted
in Fig. 2(b), for a given size (σc) of matrix particles, ploop’s
overlap as a function of φ for different values of γ .

Figure 2(b) also shows that for a given volume fraction
(φ) of matrix particles, a polymer chain in media of smaller
particles is more likely to form a loop than in media of larger
particles. This leads to a smaller radius of gyration (Rg) of the
polymer chain [the inset of Fig. 2(b)] and a deeper free-energy
minimum at the looped state in the media of smaller matrix
particles. Such a deep free-energy minimum arises because
small matrix particles tend to create large excluded volume
more easily than large matrix particles, which makes unlooped
(extended) conformations less favorable.

While both p(rete) and 
F (rete) are not subject to the
fraction (γ ), the rate of conformational change is sensitive
significantly to γ . Figure 2(c) depicts the diffusion coefficient
(Dete) of the end-to-end distance as a function of φ. Black
lines indicate the values of Dete for γ = 0 when all matrix
particles are mobile. For γ = 0, Dete decreases gradually
with an increase in φ. For large matrix particles of σc = 4σ ,
Dete decreases by about 21% as φ increases from 0 to 0.3.
However, for small matrix particles of σc = 1σ , Dete decreases
by about 65%.

As γ increases and more matrix particles become immo-
bile, Dete decreases quickly even for large matrix particles.
In case of small matrix particles, the decrease of Dete due
to immobile particles is more prominent. When φo becomes
sufficiently high, the polymer chain even fails to undergo
conformational relaxation such that Cete(t ) hardly decays with
time and we cannot estimate the value of Dete. We find that
the conformational relaxation still occurs slightly above the
percolation threshold with φo > φc where the translational
diffusion of the center of mass of the chain vanishes. When
φo exceeds φc far enough, the conformational relaxation does
not occur such that τete goes to infinity, Dete = 0. For example,
in Fig. 2(c), in the case of φo � 0.16 > φc ≈ 0.1 for small
crowders, we cannot estimate τete and consequently Dete.

C. The kinetics of the looping and the unlooping
of the polymer chain

In this subsection, we investigate the kinetics of both
looping and unlooping of a polymer chain in crowded environ-
ments. In general, the reaction is expected to slow down when
either the free-energy barrier (
F ‡) increases or the effective
diffusion coefficient (Dete) decreases.

First, we investigate the kinetics in crowded solutions
where all matrix particles are free to diffuse (γ = 0). In
Fig. 3(a), the looping time (τloop) and the unlooping time
(τunloop) are plotted as a function of φ = φm for two different
sizes of matrix particles. In case of looping (upper panel),
τloop shows a different trend depending on the sizes of crow-
ders: τloop increases with an increase in φ for small matrix
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FIG. 3. (a) The looping time (τloop) and unlooping time (τunloop)
as functions of φ when all matrix particles are mobile (γ = 0). (b)
The free-energy barrier difference (
F ‡ − 
F ‡

bulk) between poly-
mers in porous media (φ 
= 0) and bulk solutions (φ = 0).

particles while τloop decreases with φ for large matrix par-
ticles. However, in case of unlooping (lower panel), τunloop

increases with an increase in φ regardless of the matrix
particle size. However, the increase in τunloop is not significant
for larger matrix particles.

Figure 3(b) shows how the free-energy barrier of looping
(
F ‡

loop) and unlooping (
F ‡
unloop) change with φ. The def-

initions of 
F ‡
loop and 
F ‡

loop are described in the inset of

Fig. 2(a). 
F ‡
bulk denotes the value of either 
F ‡

loop or 
F ‡
unloop

when there is no matrix particle (φ = 0), which are 2.8kBT
for looping and 2.2kBT for unlooping. In case of looping, the
free-energy barrier 
F ‡

loop decreases as more matrix particles

are introduced, for which 
F ‡
loop − 
F ‡

bulk � 0. This indicates
that if one considers only the free-energy barrier, the reaction
would become faster and τloop would decrease as φ is in-
creased. At the same time, if one considers only Dete (, which
decreases with an increase in φ), τloop is expected to increase.
Therefore, τloop is determined by the competing effects of

F ‡

loop and Dete. For large matrix particles, the decrease in Dete

is marginal such that a decrease in 
F ‡
loop overwhelms a weak

slowdown in Dete, and hence τloop decreases with φ. However,
for small matrix particles, a substantial slowdown in effective
diffusion (a decrease in Dete) overwhelms a relatively weak
decrease of 
Floop, which leads to an increase in τloop.

In case of unlooping, 
F ‡
unloop increases with φ because

the looped state becomes more stable. As shown in Fig. 3(b),
therefore, 
F ‡

unloop − 
F ‡
bulk increases with φ. In case of small

matrix particles (σc = 1σ ), the increase in 
F ‡
unloop is signifi-

cant because the free volume of the system may be excluded
more effectively with small matrix particles. Both the decrease
in Dete and the increase in 
F ‡

unloop (with an increase in φ) lead
to the slower kinetics of unlooping, for which τunloop increases
with φ regardless of the matrix particle size. The increase in
τunloop for large matrix particles is relatively moderate because
changes in both Dete and 
F ‡

unloop are moderate compared to
those of small matrix particles. Our results for γ = 0 with
only mobile matrix particles are consistent with previous
works by Shin et al. [17,46].

Figure 4 depicts how the heterogeneous dynamics (that
arises due to the immobile particles) would affect the kinetics
of looping and unlooping. Because 
F ‡

loop and 
F ‡
unloop do

not change with γ at a given φ, only the effects of γ on
Dete would affect τloop and τunloop. Figures 4(a) and 4(b)
depict τloop of different values of γ in media of small and
large matrix particles. For small matrix particles [Fig. 4(a)],
τloop increases with φ much more sharply as we increase γ

because Dete is decreased tremendously with γ . For large
crowders [Fig. 4(b)], τloop gradually decreases when γ = 0.2.
But, τloop begins to increase as γ increases at a given φ. And it
shows even a nonmonotonic behavior when γ � 0.4, because
a slowdown in Dete is so prominent with γ � 0.4.

However, there is no significant change in τunloop with γ at a
given φ as shown in Fig. 4(c). This implies that the unlooping
of the polymer is marginally affected by Dete. This is because
unlooping of the polymer occurs within a short length scale
where rete � 1.8σ , while Dete is involved with the longest
relaxation modes of the polymer.

D. Heterogeneous loop formation kinetics
above the percolation threshold

As φo nears φc, the pore structure becomes quite hetero-
geneous as in previous studies [30,47]. For φo < φc, there
exists a percolating pore network. At the same time, there
are large but isolated and non-percolating pores that are
tortuous around the percolation threshold. The percolation,
size and tortuosity of pores affect the translational diffusion
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FIG. 4. The looping time (τloop) as a function of φ in media of (a) small and (b) large matrix particles. Different colors indicate different
values of γ . (c) The unlooping time (τunloop) as a function of φ for different values of σc and γ .
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of molecules in porous media all together. In the previous
subsection, we find that φc ≈ 0.1 and 0.3 for small and
large matrix particles, respectively. In this subsection, we
investigate how the kinetics of looping and unlooping be-
comes heterogeneous near the percolation threshold in such
heterogeneous environments.

To characterize the heterogeneity in kinetics, we calculate
the relative deviation (δrel) defined as δrel ≡ δ(un)loop/τ(un)loop,
where δ(un)loop is the standard deviation of (un)looping times
of 20 independent trajectories. We also investigate how the
survival probabilities [S(t )] of looping and unlooping reac-
tions decay with time t to characterize the heterogeneity in
kinetics. We fit the simulation results for S(t ) to the stretched
exponential function of S(t ) = exp[−(t/τ )β] and obtain the
value of β. In case reactions occur homogeneously with a
single reaction rate constant, β = 1. If the reaction kinetics
becomes dispersed and heterogeneous with different reaction
rate constants, S(t ) becomes stretched with β < 1. Such
stretched exponential decay has been reported for various
systems where different relaxation times existed [48–51]. The
deviation of β from unity, therefore, reflects how much the
reaction kinetics is dispersed.

Figure 5 depicts δrel and β of looping and unlooping
kinetics as a function of φo. Note that we plot all data points
with different values of φ (and φm). We check all data points
and find that δrel and β depend hardly on φ but mostly on
φo. We mark the region where φc is likely to be located with
blue and red bands for small and large matrix particles in the
Fig. 5. In case of looping (filled symbols), δrel is around 0.15
when φo � φc. Interestingly, however, δrel increases sharply
as φo approaches φc in media of both small and large matrix
particles. This implies that the reaction rate of loop forma-
tion becomes heterogeneous significantly near the percolation
threshold. Similarly, β of looping kinetics decreases from
unity to 0.6 as φo approaches φc.

However, δrel and β of unlooping kinetics do not change
much with φo even near the percolation threshold. As shown
in Fig. 3(c), the unlooping kinetics is hardly correlated with
γ . Unlooping of a polymer chain occurs much faster than
looping and is not affected by Dete much [Fig. 4(c)]. This
implies that while unlooping, the polymer would have less
chance to collide with obstacles and experience the spatial
heterogeneity. This would make the unlooping kinetics of the
polymer chain remain homogeneous even when the dynamics
and structure of matrix particles become heterogeneous.

Our simulation results for δrel and β indicate that as φo

reaches φc and the pore structure becomes heterogeneous,
the kinetics of looping becomes dispersed and heterogeneous,
too. To investigate how the loop formation rate correlates
with local heterogeneous environments, we perform following
analyses. For a given set of (φ, γ ), we let τloop,i denote the
looping time for the polymer chain in the ith configuration
among 20 different matrix configurations. τloop and δ are the
average and the standard deviation of 20 values of τloop,i.
Then, we divide 20 configurations into three groups depend-
ing on the value of τloop,i: slow looping, moderate looping, and
fast looping as follows: $1) slow looping: τloop,i > τloop + δ,
$2) moderate looping: |τloop,i − τloop| < δ, $3) fast looping:
τloop,i < τloop + δ.
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FIG. 5. (a) Relative deviation (δrel) for looping and unlooping
times as a function of φo in the media of large and small matrix
particles. (b) β of the stretched exponential function as a function
of φo in media of large and small matrix particles. In both (a)
and (b), blue- and red-shaded bands represent the ranges where the
percolation threshold concentrations (φc’s) are located for small and
large matrix particles, respectively.

We find that there is a strong correlation between a local
pore geometry and looping time: A confined polymer forms
a loop faster. Figure 6(a) shows 〈(
r(t ))2〉 of the polymer
center of mass for 20 individual trajectories in porous media
of σc = 4σ , φo = 0.4, and φm = 0. Different colors repre-
sent different groups defined above: Slow (red), moderate
(yellow), and fast (blue) looping groups. Because the vol-
ume fraction of immobile crowders exceeds the percolation
threshold (φc ≈ 0.3) in this figure, there are different sizes of
nonpercolating local pores: Some of them are large enough for
the polymer to diffuse at small length scales but cannot diffuse
at long timescales and others are so small that a polymer
hardly move and 〈[
r(t )]2〉 reaches a plateau quickly. As
shown in Figure 6(a), there is a clear correlation between the
looping time and the local structure: (i) Polymers in the slow
looping group tend to diffuse well translationally (at short
timescales) and (ii) polymers in the fast looping group are
confined and hardly diffuse such that 〈[
r(t )]2〉 reaches a
plateau even at short times.

We also investigate how the looping time (τloop,i) would
relate with the distribution [p(rete)] of rete and the time corre-
lation function [Cete(t )] of rete. As shown in Figs. 6(b) and
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FIG. 6. (a) 〈(
r(t ))2〉’s of 20 independent trajectories in different matrix configurations of large matrix particles of φo = 0.4 (γ = 1). (b)
p(rete ) for each group with different looping rate. (c) Cete(t ) for each group with different looping rate. In both (b) and (c), the statistical errors
of one standard deviation are indicated with shaded area. (d) 
P ≡ (ps − pf )/pm as a function of φo. (e) 
T ≡ (τ−1

s − τ−1
f )/τ−1

m as a function
of φo. The blue and red shaded bands represent the ranges where the percolation threshold concentrations (φc’s) are located for small and large
matrix particles, respectively.

6(c), the looping time of each configuration shows a clear
correlation with both p(rete) and Cete(t ). Polymer chains in the
slow looping group are more likely to be extended such that
the slow looping polymers have higher p(rete) at a large rete

than the moderate and fast looping polymers. And Cete(t ) of
the slow looping group decays much slower than those of fast
and moderate looping groups. This suggests that a polymer
chain in relatively large pores are likely to diffuse faster but is
extended such that the conformational relaxation slows down,
for which the loop formation process becomes slow.

The heterogeneous kinetics and the difference between dif-
ferent looping groups become prominent near the percolation
transition. To investigate the differences in polymer conforma-
tion and conformational relaxation time among three groups,
we estimate both the probability of a polymer chain forming
a loop and the relaxation time of Cete(t ) for each group. ps,
pm, and p f stand for the probabilities of a polymer chain
in slow, moderate, and fast looping groups forming a loop,
respectively. For example, ps is calculated by using p(rete) for
the slow group and ps = ∫ rloop

0 p(rete)drete. Similarly, τs, τm,
and τ f denote the relaxation times obtained from Cete(t ) in
slow, moderate, and fast looping groups, respectively.

Figures 6(d) and 6(e) depict 
P ≡ (p f − ps)/pm and

T ≡ (τ−1

f − τ−1
s )/τ−1

m , respectively. If there were to be no
correlation, 
P ≈ 0 and 
T ≈ 0. As the polymer conforma-
tion becomes heterogeneous and strongly correlated with the
loop formation, however, 
P and 
T should increase. As
shown in Figs. 6(d) and 6(e), 
P ≈ 0 and 
T ≈ 0 when φo <

φc, implying that below the percolation transition, the loop
formation kinetics is hardly correlated with the polymer con-
formation and its relaxation time. However, as φo approaches

φc, both 
P and 
T increase sharply, suggesting that the
heterogeneous loop formation kinetics would result from the
spatial heterogeneity of the medium due to the presence of
immobile obstacles surrounding the polymer.

IV. CONCLUSION

In this study, we investigate the kinetics of looping and un-
looping of a single polymer chain in crowded and disordered
environments. We tune the degree of dynamic heterogeneity
of matrix particles by changing the fraction (γ ) of the number
of immobile particles: γ = 0 corresponds to when all matrix
particles diffuse while all matrix particles are immobile for
γ = 1. We investigate the translational diffusion of the center
of mass of the polymer chain to characterize the pore percola-
tion transition threshold (φc).

As the volume fraction (φ) of total matrix particles in-
creases, the size of the polymer becomes smaller and the
free-energy barrier (
F ‡) for looping (unlooping) increases
(decreases). Meanwhile, the diffusion (Dete) of the end-to-
end distance becomes slower as we increase φ. The rates of
looping and unlooping are determined by a balance between

F ‡ and Dete, for which the kinetics of looping and unlooping
shows complicated behaviors depending on the matrix particle
size.

As the volume fraction (φo) of immobile particles reaches
the pore percolation threshold concentration (φc), the pore
structures become heterogeneous such that the kinetics of
looping becomes also dispersed and heterogeneous signifi-
cantly. However, the unlooping is not influenced much by
the value of γ . We investigate the correlation between the
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local heterogeneous structure and the looping kinetics, and
find that a polymer chain in a relatively large pore is more
likely to be extended and perform a slower conformational
relaxation. This leads to a slow looping kinetics for the
polymer chain. Such a correlation between the local structure
and the looping kinetics becomes significant near and beyond
the pore percolation transition.
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