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Persistent exclusion processes: Inertia, drift, mixing, and correlation
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In many biological systems, motile agents exhibit random motion with short-term directional persistence,
together with crowding effects arising from spatial exclusion. We formulate and study a class of lattice-based
models for multiple walkers with motion persistence and spatial exclusion in one and two dimensions, and
use a mean-field approximation to investigate relevant population-level partial differential equations in the
continuum limit. We show that this model of a persistent exclusion process is in general well described by a
nonlinear diffusion equation. With reference to results presented in the current literature, our results reveal that
the nonlinearity arises from the combination of motion persistence and volume exclusion, with linearity in terms
of the canonical diffusion or heat equation being recovered in either the case of persistence without spatial
exclusion, or spatial exclusion without persistence. We generalize our results to include systems of multiple
species of interacting, motion-persistent walkers, as well as to incorporate a global drift in addition to persistence.
These models are shown to be governed approximately by systems of nonlinear advection-diffusion equations.
By comparing the prediction of the mean-field approximation to stochastic simulation results, we assess the
performance of our results. Finally, we also address the problem of inferring the presence of persistence from
simulation results, with a view to application to experimental cell-imaging data.
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I. INTRODUCTION

Random walks are a broad class of stochastic processes
relevant for modeling a wealth of phenomena [1,2]. An area
of application which has received significant interest is the
use of such models for the study of cellular motility [3–6].
Much of the existing literature on random walks considers
a single walker. However, in some contexts, it is useful to
model a population of walkers on a lattice, for which it is
necessary to account for interactions [3,7]. As a first model
of a system of interacting walkers (sometimes referred to as
agents), occupancy of a given lattice site by multiple agents
is forbidden, with attempted moves by agents into already
occupied sites being aborted. If the process evolves in contin-
uous time with each individual agent waiting an exponentially
distributed time between move attempts, then any two agents
will attempt simultaneous moves with probability zero and so
clashing move attempts do not occur. Alternatively, we may
allow the process to evolve in discrete time with a random
sequential update procedure: If there are N agents present,
then we make N sequential random choices of agent with
replacement, offering each chosen agent an opportunity to
move. Once N such offers have been made, we increment time
by a constant amount. When a simple random walk stepping
rule for individual agents is combined with either of these
two time evolution protocols and the abortion of moves onto
occupied sites, we obtain a model called the simple exclusion
process (SEP). A number of rigorous results are available
for this particular model [8–10], the most important of these
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being that in an appropriate continuum limit, the probability
of occupancy of a location evolves under the classical linear
diffusion (or heat) equation [9].

For most systems of interacting agents apart from the SEP,
exact continuum limit partial differential equations (PDEs)
have been not been established and indeed may not exist due
to subtle effects of interagent correlation (which happen to
conveniently remove themselves from some questions that
can be answered for the SEP). However, useful approximate
continuum limit PDEs can be obtained by mean-field argu-
ments in which correlation effects are either neglected (see,
e.g., Ref. [7], although the literature in this area is quite exten-
sive), or modelled in a simple approximate manner [11]. For
the SEP, the simplest mean-field approach actually produces
the correct PDE [7,12]. Further results have been developed
for variations on the simple exclusion process, including
incorporation of additional bias effects and accounting for
interactions between multiple species of walkers [12], as well
as consideration of alternative interaction rules [13–16]. In
many cases the predictions of the mean-field PDE agree well
with simulation averages, especially at low densities of agents,
but the quality of agreement degrades when interagent inter-
actions have a significant attractive component [16] or when
agents reproduce at random as well as moving at random.

In many scenarios including modeling of vehicle move-
ment [17], chemical reaction kinetics [18], cell motility [6],
and animal movement [19], it is clear that agents do not
move completely at random but exhibit short-term persistence
in the direction of motion, thus giving rise to the notion
of a persistent random walk (PRW) [3,19,20]. The case
of noninteracting walkers has received substantial attention
[3,21–24]. In particular, it is known that the noninteracting
persistent random walk is governed by a linear diffusion
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equation [23,24]. However, current work considering multiple
interacting persistent random walks remains sparse [25–27].

In the persistent exclusion process, we consider swarms
of interacting, motion-persistent agents. Mean-field approx-
imations may be used to derive an approximate continuum
description of such a system at the macroscopic level. Gav-
agnin and Yates [25] presented such an analysis for one model
formulation in which individual agents follow an explicit
velocity-jump process. Agents possess one of four possible
polarizations on a two-dimensional lattice, and either move
following a polarization-dependent rule for step directions, or
repolarize uniformly. Movement and repolarization are driven
by independent Poisson processes, and in the continuum
limit this model yields a system of four nonlinear PDEs
describing the dynamics of agents in each of the four possible
orientations. Even more recently, Teomy and Metzler [26,27]
reported results for transport in a general model of exclu-
sion processes in which agents possess a finite memory of
attempted moves and move in a memory-dependent manner.
The authors showed that in the continuum limit such a system
may be described by nonlinear advection-diffusion equations,
verifying their results for the case of steady-state transport in
one dimension.

In this paper, we present and analyze in one and two dimen-
sions a related but distinct model for a persistent exclusion
process where the motion persistence of individual agents is
incorporated as a single-step memory of the last successful
move taken [1,2,21,23,28,29], and hence the sequence of
successful moves made by each agent follows a strict Markov
rule. We begin by formulating our agent-based model for a
number of cases, from which we then derive population-level
descriptions in the continuum limit. For the basic case of a
single species of motion-persistent agents, we find that such
systems are approximately governed by nonlinear diffusion
equations. Although our analysis yields results resembling
those presented by Teomy and Metzler [26], key differences
are revealed regarding the descriptions of population-level
behavior. We extend our analysis to consider generalizations
of the basic model involving multiple species of interacting
agents as well as a superimposed global drift effect, showing
that in general such systems are approximately governed by
systems of nonlinear advection-diffusion equations. By com-
paring these continuum results to simulation data, we verify
that our derived continuum approximations hold for evolving,
inhomogeneous systems. Finally, we investigate methods for
inferring the presence of persistence from simulation results,
with a view to application to experimental cell-imaging data
[4,30].

II. AGENT-BASED MODEL

A. One-dimensional model

We consider N � 1 agents on Z, the usual one-
dimensional lattice of sites with integer coordinates. Agents
on the lattice are able to move right (R) or left (L), and to
each agent we ascribe the direction of its last successful move
to be its orientation. We thus partition the agent population
by orientation into two groups, denoted R and L. At each
timestep, we sample N agents with replacement following the
random sequential update procedure [7] previously described.

(a) (b)

FIG. 1. Movement attempt probabilities for a rightward (R) ori-
ented agent for (a) one-dimensional and (b) two-dimensional agent-
based models, where parameter ϕ ∈ [−1, 1] controls the extent of
motion persistence.

Each sampled agent, with probability P ∈ (0, 1], will attempt
to move. If the destination site is vacant the attempted move
is successful, otherwise it is aborted. Move attempts are made
with the following assigned probabilities: in the direction of
orientation with probability (1 + ϕ)/2, and against the direc-
tion of orientation with probability (1 − ϕ)/2. We illustrate
this in Fig. 1(a) for a right-oriented agent. The parameter
ϕ ∈ [−1, 1] controls the extent of motion persistence. We
make note that the case ϕ < 0 corresponds to a “negative”
persistence effect where agents have a propensity to undo their
previous move.

B. Two-dimensional model

Consider now the square lattice Z2. We may extend the
one-dimensional model to now consider four possible orien-
tations, right (R), left (L), up (U), and down (D). An attempted
move is taken in the direction of orientation with probability
(1 + ϕ)/4, against the direction of orientation with proba-
bility (1 − ϕ)/4, and in one of the two choices orthogonal
to the direction of orientation each with probability 1/4. We
illustrate this in Fig. 1(b) for an agent whose most recent move
was to the right.

Note that in this two-dimensional case, the parameter ϕ

controls only the propensity of agents to move in the direction
parallel to their orientation, and that we enforce that agents
move orthogonal to their orientation with a fixed probability.
We have obtained corresponding results for a more general
two-parameter model from which the simpler model can be
derived (see Appendix A), but for simplicity we limit our
discussion to the single-parameter model.

C. Two-dimensional model with global drift

We generalize the two-dimensional model to incorporate
both a local persistence and global drift. We introduce an
additional parameter λ ∈ [0, 1] that specifies the relative con-
tribution of local persistence and global drift, and parameters
h, v ∈ [−1, 1] controlling the direction and magnitude of
global drift in the horizontal and vertical directions respec-
tively. An agent offered the opportunity to move chooses its
move as follows. With probability λ, choose how to move
as in Sec. II B. Alternatively with probability 1 − λ, attempt
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FIG. 2. Movement attempt probabilities for a rightward (R)
oriented agent for the two-dimensional agent-based model with
global drift. Parameter ϕ ∈ [−1, 1] controls the extent of motion
persistence, λ ∈ [0, 1] controls the relative contributions of local
persistence and global drift, and h, v ∈ [−1, 1] control the direction
and magnitude of global drift.

a move that respects the imposed global drift: right with
probability (1 + h)/4, left with probability (1 − h)/4, up with
probability (1 + v)/4, or down with probability (1 − v)/4.
This movement rule is illustrated in Fig. 2 for an agent whose
most recent move was to the right.

It is important to note here that in our agent-based model,
agents only remember successful moves, with aborted move
attempts being “forgotten.” This is in contrast with the model
presented by Teomy and Metzler [26], in which the memory
is updated regardless of the outcome of a move attempt. The
resulting differences for bulk system behavior are immedi-
ately appreciable. For instance, in one dimension with extreme
negative persistence (ϕ = −1), Teomy and Metzler report that
mean square displacement (MSD) exhibits

√
t behavior for

starting densities above 1/2. For our model, however, such
behavior is never possible in the equivalent setting.

III. CONTINUUM-LIMIT ANALYSIS

A. Single species

For brevity, we show the derivation of the continuum-limit
PDE in the two-dimensional case, as the analysis for the
one-dimensional model is analogous. We model the agent-
based model as a random walk with internal states [1,2]. As
mentioned earlier, we partition agents by orientation into sub-
populations henceforth labeled R, L, U, and D. We introduce
Pn(i, j) as the vector of occupancy probabilities for the lattice
site (i, j) at time step n, with

Pn(i, j) = [Rn(i, j) Ln(i, j) Un(i, j) Dn(i, j)]�, (1)

where Rn, Ln, Un, and Dn are the respective occupancy prob-
abilities for right-, left-, up-, and down-oriented agents. We
also define the total occupancy Cn(i, j) to be

Cn(i, j) = Rn(i, j) + Ln(i, j) + Un(i, j) + Dn(i, j). (2)

Under a mean-field approximation, we assume that av-
erage lattice occupancies of distinct sites are independent,
and thus the evolution of Pn with time across the lattice is

approximately governed by the equation

Pn+1(k) = T n(k|k)Pn(k) +
∑

k′∈N (k)

T n(k|k′)Pn(k′), (3)

where N (k) = {k + e1, k − e1, k + e2, k − e2} denotes the
set of sites immediately adjacent to k, and e1,2 denote the basis
vectors in the x and y directions, respectively. T n(k|k′) is a
matrix of transition probabilities for the transition from site k′
to k, which is in general not constant but dependent on k, k′
and n as well as Pn. From this, we obtain the master equation
in Table I(a).

Following the typical procedure [3,7,12,23,25], we intro-
duce continuous coordinates (x, y, t ), a lattice spacing �, and
time step τ . We take x = �i, y = � j, t = τn. By making
a formal substitution of variables, our vector of occupancy
probabilities becomes

P(x, y, t ) = [R(x, y, t ) L(x, y, t ) U (x, y, t ) D(x, y, t )]�,

(4)
and the total occupancy becomes

C(x, y, t ) = R(x, y, t ) + L(x, y, t ) + U (x, y, t ) + D(x, y, t ).
(5)

We then substitute formally into Table I(a) and take Taylor
expansions of P and C to first order in t and second order
in (x, y). Cancelling a term in P(x, y, t ) from both sides and
rearranging, we arrive at the system in continuous variables
shown in Table I(b).

We now perform a judicious change of basis for the system
into the eigenvectors of the matrix

⎡
⎢⎣

−3 + ϕ 1 − ϕ 1 1
1 − ϕ −3 + ϕ 1 1

1 1 −3 + ϕ 1 − ϕ

1 1 1 − ϕ −3 + ϕ

⎤
⎥⎦ (6)

found to feature prominently within the continuous-variable
master equation in Table I(b). We use the change of basis
matrix

MP→� =

⎡
⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤
⎥⎦, (7)

to form from P the transformed quantity � given by

� = MP→�P =

⎡
⎢⎣

R + L + U + D
(R + L) − (U + D)

R − L
U − D

⎤
⎥⎦. (8)

Note that all components of � except the first correspond to
differences between subpopulation occupancy probabilities.
By symmetry of the problem, we reason that as � → 0 in
the continuum limit, these components should vanish since
no individual direction is preferred above others. We thus
formulate an ansatz for the form of � in which the vanishing
components are scaled by �, that is,

� = [φ1 �φ2 �φ3 �φ4]�, (9)
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where φi = φi(x, y, t ) for 1 � i � 4. From this, we obtain

P = φ1

4
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(10)

Transforming the system in Table I(b), we obtain the
simplified system in Table I(c). We first apply the continuum
limit �, τ → 0 for components φ2, φ3, φ4, which respectively
yields

(1 − C)Pφ2(x, y, t ) = 0, (11)

P
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]}
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P
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∂y
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Further, the equation for the first component φ1 (without
taking any limits) transpires to be
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+ O(�3). (14)

Solving (11), (12), and (13) for φ2, φ3, φ4, we differentiate
to obtain ∂yφ4 and ∂xφ3. Substituting into (14), we take the
continuum limit in the usual manner holding �2/τ constant
[3,7,12,23,25]. Noting that C = φ1, we obtain a nonlinear
diffusion equation of the general form

∂u

∂t
= ∇ · [D(u)∇u], (15)

where we take u = φ1 and the nonlinear diffusivity is given
by

D(u) = D

(
2 + ϕ

2 − ϕ

)
(1 − ϕu), D = lim

�,τ→0

�2P

4τ
. (16)

In the absence of persistence, we set ϕ = 0 and our diffusivity
reduces to D(u) = D, that is, we recover the linear diffusion
equation as a description of the simple exclusion process
[7,12].

In the case of the one-dimensional model, similar argu-
ments also produce the nonlinear diffusion equation given in
(15) where we interpret ∇ as acting in one dimension, and

D(u) = D

(
1 + ϕ

1 − ϕ

)
(1 − 2ϕu), D = lim

�,τ→0

�2P

2τ
. (17)

We note in both cases that for ϕ > 0 (ϕ < 0), the diffusiv-
ity D is linear in the density u and decreases (increases) with
increasing density, whereas for ϕ = 0 in the nonpersistent
case, the diffusivity remains density-independent. Holding u
constant, the diffusivity is also an increasing function of the
persistence parameter ϕ. Introduction of motion persistence
has thus led to the nontrivial result of a diffusivity intriguingly
dependent on both the density u and extent of persistence ϕ.

In the one-dimensional case, the diffusivity becomes neg-
ative for u > (2ϕ)−1. Together with the observation that on a
one-dimensional lattice the relative ordering of agents must
remain fixed, we conclude that at large ϕ and u, spatial
correlation of site occupancies on the one-dimensional lattice
becomes significant and so mean-field arguments employed in
this analysis are invalidated. We also observe that D becomes
unbounded as ϕ → 1. This corresponds qualitatively to a
degenerate case for the one-dimensional discrete process in
which agents are unable to change orientation and so are
forced to move in a fixed direction. Noting that noninteracting
walkers subject to this movement rule would exhibit ballistic
rather than diffusive motion, we suggest that this is in some
way reflected in the blowing up of D. Thus, we expect the
continuum results in one dimension to be useful mostly for
relatively dilute systems, or for low persistence. For the two-
dimensional case the diffusivity is always non-negative.

Whilst our analysis yields a diffusivity linear in the density
u for both one and two dimensions, the analogous result
for diffusivity in one dimension obtained by Teomy and
Metzler [26] varies quadratically with density. In particular,
the authors reported a critical density (1/2 in the mean-
field approximation), below which the diffusivity increases
with increasing persistence, and above which the diffusivity
instead decreases with increasing persistence. In contrast, our
model displays no such behavior, suggesting that the reported
behavior is characteristic of the specific model formulation
used where agents keep track of the last attempted move.

The model presented by Gavagnin and Yates [25] yielded
systems of four coupled PDEs which required explicit solu-
tions for each subpopulation in the continuum limit. On the
other hand, analysis of memory-based systems yields only
a single equation in the total population density, e.g., (15)
which naturally lends itself to interpretation as a nonlinear
diffusion equation. This is a result of the scaling argument (9),
where we take the limit in which the occupancy probability
at each position is uniformly distributed among the possible
orientations. In Sec. IV, we find that the match between
the resulting continuum description and simulation is very
good. Nonetheless, we hypothesize that in principle it may be
possible to derive a system of PDEs describing the individual
subpopulations and thus account for cases such as initial
conditions with nonuniform distribution of agent orientation.
From simulations of the agent-based model however, we find
that for mild persistence such initial anisotropies generally
dissipate quickly to recover the isotropic case considered in
our continuum-limit analysis.

Curiously, it is known that both the noninteracting per-
sistent random walk [23,24] and the nonpersistent exclusion
process [7] can be described by a canonical linear diffusion
equation in the continuum limit. Based on this knowledge, our
findings indicate that only upon combining both persistence
and exclusion does the system yield behavior governed by a
nonlinear diffusion equation.

B. Multiple species

Consider now M distinct species of random walkers on
the two-dimensional lattice, each of which possess species-
specific parameter values for motility P(k) and persistence
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ϕ(k), 1 � k � M. Subject to these parameters, agents of each
species are governed by the movement rules described in
Sec. II.

For the kth species, we introduce the vector of occupancy
probabilities

P(k)
n (i, j) = [

R(k)
n (i, j) L(k)

n (i, j) U (k)
n (i, j) D(k)

n (i, j)
]�

,

(18)

where R(k)
n (i, j) is the occupancy probability for right-oriented

agents of species k, and so on. Further, we define the total
occupancy probability for the kth species (across all four
orientations) to be

C(k)
n (i, j) = R(k)

n (i, j) + L(k)
n (i, j) + U (k)

n (i, j) + D(k)
n (i, j),

(19)

and the total occupancy probability across all species to be

Ctot
n (i, j) =

M∑
k=1

C(k)
n (i, j). (20)

We perform the analysis for the multispecies case par-
allel to the previous analyses, except we now consider
P(k)

n (i, j), P(k), and ϕ(k) for each individual species k. In the
continuum limit, we obtain a system of coupled advection-
diffusion PDEs for 1 � k � M described generally by

∂u(k)

∂t
= ∇ · [D(k)(u)∇u(k)] − ∇ · [u(k)v(k)(u)], (21)

where we have written u = [u(1), . . . , u(M )] and the diffusivity
and velocity field are given respectively by

D(k)(u) = D(k)

[
2 + ϕ(k)

2 − ϕ(k)

]
(1 − Ctot ), (22)

v(k)(u) = −D(k)

[
2 + ϕ(k)

2 − ϕ(k)

]
(1 − ϕ(k) )∇Ctot, (23)

with

D(k) = lim
�,τ→0

P(k)�2

4τ
, (24)

where for brevity we have written Ctot as defined in (20).
The diffusivity term D(k) is similar to that obtained for a

single species, except that it is now always a decreasing linear
function in the total density Ctot regardless of the value of ϕ.
In contrast to the case of a single species, each individual
species is now subject to a velocity field v(k) oriented parallel
to −∇Ctot, i.e., along the direction of steepest decrease in
total agent density. This is consistent with the exclusion effect
exerted by the total population on agents of each individ-
ual species. As expected, by setting M = 1 we recover the
single-species case [(15) and (16)], and we note that in the
nonpersistent case ϕ = 0, we recover a previously known
result derived by Simpson et al. [12].

C. Incorporating global drift

For the two-dimensional model with global drift described
in Sec. II C, the analysis of Secs. III A and III B require some
key modifications due to the drift. A discrete master equation
is formulated which, under the typical analysis, we convert

into continuous variables (x, y, t ) and take Taylor expansions.
As previously, a transformation (7) into the natural coordi-
nates of the system is then performed. With the presence of
drift, we can no longer apply the scaling arguments presented
in (9) since the presence of drift pushes the system away from
isotropy. Instead, we put forward an ansatz for the form of �

for the current system to be

� =

⎡
⎢⎣

φ1

L2 + �φ2

L3 + �φ3

L4 + �φ4

⎤
⎥⎦, (25)

where L2, L3, L4 are non-negative functions of φ1 only, and
φk = φk (x, y, t ), 1 � k � 4 are functions in (x, y, t ). We next
consider the case of a single isolated agent, in which all
attempted moves are successful, and formulate the transitions
between orientations as a discrete-time Markov chain, for
which the state space comprises of the four available orien-
tations {R, L,U, D}. This is described by the transition matrix

A = λ

4

⎡
⎢⎣

1 + ϕ 1 − ϕ 1 1
1 − ϕ 1 + ϕ 1 1

1 1 1 + ϕ 1 + ϕ

1 1 1 − ϕ 1 − ϕ

⎤
⎥⎦

+ 1 − λ

4

⎡
⎢⎣

1 + h 1 + h 1 + h 1 + h
1 − h 1 − h 1 − h 1 − h
1 + v 1 + v 1 + v 1 + v

1 − v 1 − v 1 − v 1 − v

⎤
⎥⎦. (26)

Solving for the stationary distribution π of the system de-
scribed by A yields the following, where entries correspond
respectively to the proportions of time spent by the walker
in right, left, up, and down orientations under an ergodic
interpretation:

π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 + 2h(−1 + λ) + λϕ

−8 + 4λϕ

1

4
+ h(1 − λ)

−4 + 2λϕ

−2 + 2v(−1 + λ) + λϕ

−8 + 4λϕ

1

4
+ v(1 − λ)

−4 + 2λϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

We now suppose that the stationary distribution π applies also
to the case of interacting agents. Noting that φ1 corresponds
to the total occupancy probability across all orientations,
we scale π by φ1 to obtain in absolute terms the limiting
occupancy probabilities for each orientation, π∗ = φ1π, and
so we have that

L2 = (π∗
1 + π∗

2 ) − (π∗
3 + π∗

4 ) = 0,

L3 = π∗
1 − π∗

2 = h(1 − λ)

2 − λϕ
φ1,

L4 = π∗
3 − π∗

4 = v(1 − λ)

2 − λϕ
φ1.

(28)
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We thus arrive at an ansatz for the form of �,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ1

�φ2

h(1 − λ)

2 − λϕ
φ1 + �φ3

v(1 − λ)

2 − λϕ
φ1 + �φ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

In order to take the continuum limit, we must further
enforce a scaling for weak drift [7,12], i.e., h, v ∈ O(�) to en-
sure that drift-related terms remain well-behaved in the limit,

h = �H, v = �V. (30)

Carrying out the remaining analysis using the ansatz (29)
yields the resulting advection-diffusion PDE in the continuum
limit for the single species case,

∂u

∂t
= ∇ · [D(u)∇u] − ∇ · [uv(u)] (31)

with diffusivity and velocity field given by

D(u) = D

(
2 + λϕ

2 − λϕ

)
(1 − λϕu), (32)

v(u) = 4D(1 − λ)

2 − λϕ
(1 − u)

[
H
V

]
, (33)

where D is as defined in Sec. III A. We note that upon
setting λ = 1, we recover the previously presented result (16),
corresponding to zero drift. For nonzero λ, we obtain also
a velocity field v representing the drift velocity parallel to
(H,V ). Further, the magnitude of each component of v is an
increasing function of ϕ, indicating that motion persistence
reinforces the presence of drift.

In the multispecies case, applying the arguments in
Sec. III B yields a system of advection-diffusion PDEs de-
scribed by (21) with diffusivity and velocity field respectively
given by

D(k)(u) = D(k)

[
2 + λ(k)ϕ(k)

2 − λ(k)ϕ(k)

]
(1 − Ctot ), (34)

v(k)(u) = D(k)

{
4(1 − λ(k) )

2 − λ(k)ϕ(k)
(1 − Ctot )

[
H

V

]

−
[

2 + λ(k)ϕ(k)

2 − λ(k)ϕ(k)

]
(1 − λ(k)ϕ(k) )∇Ctot

}
, (35)

where 1 � k � M for M interacting species and D(k) is as
defined previously in Sec. III B. For brevity, we have written
Ctot as defined in (20). We note that the velocity field v(k)

now contains a term in the direction of −∇Ctot arising from
population exclusion as well as the drift term parallel to
(H,V ). Setting λ = 1 to eliminate drift, the diffusivity and
velocity field revert to the previously obtained results [(22)
and (23)] as expected.

IV. RESULTS

The agent-based model was implemented for both the
one and two-dimensional cases. To obtain qualitative insight
on the effect of introducing motion persistence for the case
of a single isolated walker, the agent-based simulation was

FIG. 3. Representative trajectories of a single isolated walker for
0 � t � 2000 in absence of persistence (ϕ = 0, left panel) and with
maximum persistence (ϕ = 1, right panel). Color scale (far right)
shows time evolution.

run up to t = 2000 on a 200 × 200 lattice, starting at posi-
tion (100, 100) with parameters P = 1, ϕ = 0 (nonpersistent),
ϕ = 1 (persistent). Results displayed in Fig. 3 show that the
nonpersistent walker remains relatively close to its starting
point, moving in both a locally and globally random fashion.
In contrast, the persistent walker covers much more ground,
moving in locally directed bursts that are interspersed with
changes in direction, reflecting the local persistence in the
presence of the globally unbiased motion characteristic of the
persistent random walk [3,25,31].

A. Single species

In this subsection, we examine the results of our
continuum-limit analysis for homogeneous populations of
motion-persistent walkers. All simulations were performed
up to t = 1000 and sampled at t = 0, 100, 500, 1000, for
which corresponding PDE solutions were found. For the one-
dimensional case, we conducted simulations on a lattice of
size 200, starting with an initially uniform agent distribution
at density 0.8 on [80, 120] for both nonpersistent (ϕ = 0) and
persistent (ϕ = ±0.5) walkers, and P = 1. For all simulations
in this work, initial agent orientations were randomly assigned
with uniform probability from two and four possible orien-
tations for one and two dimensions respectively, in keeping
with the symmetry assumption of Sec. III A. Simulations were
averaged over 500 realizations, and the continuum-limit PDE
[(15) and (17)] was solved using the pdepe routine offered
by MATLAB with default settings, subject to the corresponding
initial conditions and no-flux boundary conditions. The results
shown in Fig. 4(a) confirm a close agreement between the
agent-based discrete model and its continuum-limit approxi-
mation. From these results, we note that a positive persistence
parameter ϕ = 0.5 results in faster dispersal of agents from
the initial configuration, compared with the nonpersistent case
where ϕ = 0. This is concordant with our observations made
earlier on the motion of isolated agents. Conversely, ϕ = −0.5
enforces a negative persistence and we observe that agents
disperse more slowly as a result—this agrees with the fact that
agents are now averse to moving in the same direction for mul-
tiple steps. As expected from Sec. III A, the match between
simulation and continuum results deteriorated for large ϕ and
high densities (not shown) and eventually solution of the PDE
[(15) and (17)] failed for sufficiently large ϕ since a negative
diffusivity resulted. Solutions for higher values of ϕ can be ac-
commodated by starting with a sufficiently low initial density.
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FIG. 4. (a) Comparison of simulation and PDE results for one-
dimensional model, for nonpersistent (ϕ = 0, center) and persistent
(ϕ = −0.5, left; ϕ = 0.5, right) walkers. (b) Representative snap-
shots of simulations for two-dimensional model for nonpersistent
(ϕ = 0, center) and persistent (ϕ = −1, left; ϕ = 1, right) walkers.
(c) Comparison of simulation and PDE results for two-dimensional
model using column-averaged data for each value of ϕ (ϕ = −1,
left; ϕ = 0, center; ϕ = 1, right). Results (a)–(c) shown at times
t = 0, 100, 500, 1000.

We now turn our attention to the two-dimensional case.
For ease of visualization, simulations were conducted on a
200 × 20 lattice with y-invariant initial conditions and lattice
occupancies were averaged along columns [12,25]. For the
PDE model, computing a column-averaged density amounts
to integrating out y dependence. We find that the column-
averaged density satisfies the same PDE as the original density
when we drop y terms in the gradient operator, i.e., we take

∇ ≡ ∂

∂x

for column-averaged solutions. Agents were initially uni-
formly distributed on [80, 120] × [1, 20] at density 0.8. Pa-
rameters corresponding to nonpersistent (ϕ = 0) and persis-
tent (ϕ = ±1) walkers were used, and P = 1 held fixed. Sim-
ulations were averaged across 20 realizations, and solutions
to the column-averaged PDE [(15) and (16)] were found as
previously. Snapshots of the lattice agent distribution taken at
each time for a single simulation realization for each value
of ϕ are shown in Fig. 4(b), and a comparison of column-
averaged simulation results to PDE solutions are presented

FIG. 5. Simulations for the two-dimensional model on a square
lattice with ϕ = 1 and P = 1. (a) Snapshot of a single representative
simulation at t = 1000. (b) Contour plot of simulation results (blue)
against PDE solutions (red) at t = 1000, with levels shown at 10%,
25%, 50%, and 75% of maximum simulated occupancy.

in Fig. 4(c). As previously noted, the column-averaged re-
sults provide an excellent match to simulation. A positive
persistence parameter (ϕ = 1) again results in faster dispersal
of agents compared to the nonpersistent (ϕ = 0) case, while
a negative persistence parameter (ϕ = −1) has the opposite
effect. In particular, we note that while in the one-dimensional
case the PDE solution deviates from simulated results for
large values of the persistence parameter and eventually be-
comes badly behaved, in two dimensions neither of these
issues are apparent. This suggests that the additional degree of
freedom has non-negligible consequences for the behavior of
the system, and that a level of caution may be necessary when
attempting to generalize one-dimensional results into higher
dimensions.

Subsequently we employed a 200 × 200 lattice and an ini-
tial agent distribution on [80, 120] × [80, 120] at density 0.8
to investigate the correspondence between discrete and contin-
uum results in a fully two-dimensional case. Parameters ϕ=1,

P = 1 were used. Results at t = 1000 were averaged across
20 simulation realizations and smoothed using a 10 × 10 con-
volution kernel J10. Solutions to the PDE [(15) and (16)] for
t = 1000 were found numerically using the solvepde routine
from the MATLAB PDE Toolbox. Figure 5 shows contour
plots of both the simulated and continuum density at 10%,
25%, 50%, and 75% of the maximum simulated occupancy
and again a close match confirms that the derived continuum
description accurately captures population-level behavior in a
general two-dimensional scenario.

For the two-dimensional model with global drift described
in Sec. II C, we performed simulations using a setup identical
that used previously for Figs. 4(b) and 4(c), except parameters
P = 1, ϕ = −1, 0, 1 were used and λ = 0.9, h = 0.5, v = 0
in order to enforce a weak rightward drift. Column-averaged
simulation results were averaged over 20 realizations, and
corresponding numerical solutions to the PDE [(31), (32),
and (33)] were found at each time. Representative simulation
snapshots for each value of ϕ are shown in Fig. 6(a), and
a comparison between simulation and continuum results is
shown in Fig. 6(b). From this, the addition of a global drift
effect is clearly visible. At long times, agents accumulate
near the right boundary due to the imposed no-flux condition.
We note that the presence of persistence in the ϕ = 1 case
has a synergistic effect with the rightward drift. Thus, from
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FIG. 6. (a) Representative snapshots of simulations for nonper-
sistent (ϕ = 0, center) and persistent (ϕ = −1, left; ϕ = 1, right)
walkers, and λ = 0.9, h = 0.5, v = 0. (b) Comparison of simula-
tion and PDE results for two-dimensional model with global drift
using column-averaged data for each value of ϕ (ϕ = −1, left;
ϕ = 0, center; ϕ = 1, right). Results (a) and (b) shown at times
t = 0, 100, 500, 1000.

both our agent-based and continuum results, we conclude that
presence of a positive persistence effect enhances both the rate
of agent dispersal as well as the extent of agent migration in
the presence of an external drift.

B. Multiple interacting species

For the case of two interacting species, we investigated the
correspondence between agent-based simulations and solu-
tions to the continuum PDE [(21), (22), (23)] for a range of

scenarios. As in Sec. IV A, unless otherwise mentioned, all
simulations were performed up to t = 1000 and sampled at
t = 0, 100, 500, 1000. First, we consider a y-invariant prob-
lem with two persistent species dispersing across a 200 × 20
lattice. Initially, agents were uniformly distributed at density
0.8 with species 1 on [70, 95] × [1, 20] and species 2 on
[105, 130] × [1, 20]. Both species were subject to identical
parameters P(1,2) = 1, ϕ(1,2) = 1. Simulations results were av-
eraged across 20 realizations, and column-averaged contin-
uum PDE solutions were found as previously in Sec. IV A.
In Fig. 7(a), we show a snapshot of a single realization of the
discrete simulation and then compare simulation to continuum
results. From this, we observe that the continuum approxima-
tion agrees well with simulation data for each species. In par-
ticular, we note that the species distributions become skewed,
reflecting the large-scale effect of spatial exclusion between
agents of different species at the interface near x = 100.

Following Simpson et al. [12], we consider a mixing
scenario with a nonpersistent “filler” species 1 distributed on
([1, 79] ∪ [121, 200]) × [1, 20] at density 0.3, and a persis-
tent “invading” species 2 distributed on [80, 120] × [1, 20]
at density 0.6. We take P(1,2) = 1 and ϕ(1) = 0, ϕ(2) = 1.
Simulations were run as for the previous example but results
were averaged over 40 realizations. Column-averaged contin-
uum PDE solutions were found as previously in Sec. IV A,
and results are shown in Fig. 7(b). From these results, we
again confirm that the continuum model provides an accu-
rate description of the agent-based process. As observed by
Simpson et al. [12] for nonpersistent agents, we also note that
continuum density profiles obtained for the mixing problem
display nonmonotone behavior as a result of interactions, as
shown in Fig. 7(b, inset).

Extending our investigation more generally to a
two-dimensional problem, we consider again the 200 × 200
lattice as previously, now with a fast-moving, persistent
species 1 [P(1) = 1, ϕ(1) = 1] interacting with a slow-moving,
nonpersistent species 2 [P(2) = 0.3, ϕ(2) = 0], initially
uniformly distributed at density 0.8 on [75, 95] × [60, 140]
and [105, 125] × [80, 120] respectively. Simulations were

FIG. 7. Comparison of simulation and PDE results for various multi-species problems: (a) Two identical species with P(1) = P(2) =
1, ϕ (1) = ϕ (2) = 1 dispersing onto the lattice. (b) Mixing of persistent species 2 [green, P(2) = 1, ϕ (2) = 1] into sparse population of
nonpersistent species 1 [black, P(1) = 1, ϕ (1) = 0]. Results for (a) and (b) shown at times t = 0, 100, 500, 1000.
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FIG. 8. (a) Representative simulation snapshots shown at t =
0, 100, 200, 300 for interaction of fast-moving, persistent species 1
[black, P(1) = 1, ϕ (1) = 1] with slow-moving, nonpersistent species
2 [green, P(2) = 0.3, ϕ (2) = 0] on a square lattice. (b) Comparison of
simulation and PDE results. Results shown at t = 300 with contours
shown at 10%, 25%, 50%, and 75% of the maximum simulated
occupancy of species 1.

performed up to time t = 300. Results were averaged over
20 realizations and smoothed by convolution as previously.
PDE solutions for t = 300 were found as in Sec. IV A.
Figure 8(a) shows snapshots of of a single simulation at
t = 0, 100, 200, 300, and Fig. 8(b) shows contours from the
PDE and simulated results at t = 300 at levels of 10%, 25%,
50%, and 75% of the maximum simulated occupancy of
species 1. We find that the continuum model largely captures
the simulated behavior, again confirming that the continuum
approximation holds well for two-dimensional systems with
interacting species.

Finally, we consider combined drift and multi-species in-
teractions with persistence. We found that in general the con-
tinuum approximation incorporating all three effects is more
fragile and often breaks down in situations where species
distributions have differing drift velocities and thus “collide”

FIG. 9. (a) Representative snapshots of simulations for in-
teraction of a persistent drifting species [black, ϕ (1) = 1, λ(1) =
0.75, h(1) = 1, v(1) = 0] with a nonpersistent drifting species [green,
ϕ (2) = 0, λ(2) = 0.75, h(2) = 1, v(2) = 0] on a 400 × 20 lattice.
(b) Comparison of simulation and PDE results. Inset: Red arrow
indicates formation of a small density front at t = 100 resulting from
persistence, drift and spatial exclusion. Results (a) and (b) shown at
t = 0, 100, 500, 1000.

with each other. We deal with a 400 × 20 lattice with a per-
sistent, drifting species 1 [ϕ(1) = 1] and a nonpersistent drift-
ing species 2 [ϕ(2) = 0] initially distributed on [110, 159] ×
[1, 20] and [160, 200] × [1, 20], respectively, with density
0.5. Parameters used were P(1,2) = 1, λ(1,2) = 0.75, h(1,2) =
1, v(1,2) = 0. Representative simulation snapshots at each
time are shown in Fig. 9(a). Simulations were then averaged
over 40 realizations and Fig. 9(b) shows a comparison of the
simulation and continuum results. We note that the species 1
distribution is more sharp and pointed compared to species 2,
a result of the interplay of persistence, drift, and spatial
exclusion. This can also be seen from the “bunching up” of
black agents in the snapshot data. In particular, we note that at
t = 100 a small density front is formed (see inset, indicated by
red arrow), an effect qualitatively captured by the continuum
description. This effect occurs because motion persistence
amplifies drift as observed previously, and disappears when
persistence for species 1 is switched off.

Whilst the continuum description has held mostly accurate
for the problems considered, we observe that the continuum
PDE results tend to deviate from the true simulated results
near the interface between species. This is especially evident
in Figs. 8 and 9, suggesting that non-negligible occupancy
correlations at such interfaces may render mean-field assump-
tions inaccurate. To correct for such effects in these regions,
further analytical or computational work may be necessary
[11,26,32].
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V. INFERRING PERSISTENCE FROM DATA

In the following discussion, we investigate the use of pair
correlation functions (PCFs) for inferring the presence or
absence of persistence in agent movement from simulation
results. PCFs are a common tool from statistical mechanics
used to characterize the average interactions in a spatial
particle distribution, and have recently been applied to
the context of examining cellular motility [30,33,34]. We
hypothesize that PCFs could be applied to examine motion
persistence in experimentally derived data, appropriately

discretized to a lattice [4,30,35]. We first consider the case of a
swarm of walkers uniformly distributed on a two-dimensional
lattice, and then extend discussion to the nonuniform case of
a swarm of walkers diffusing from an initial condition.

Gavagnin, Owen, and Yates [34] recently provided relevant
formulas for computing a on-lattice pair correlation function
based on the 
1 (Manhattan) norm. Following this, we define
the pair correlation function for a given distance metric d as

fd (m) = nd (m)

n̄d (m)
, (36)

FIG. 10. (a) Pair correlation function f (m) [see (36)] calculated for the Manhattan distance [see (37)] computed at t = 20 for a 100 × 100
lattice initially uniformly populated with identical agents at density 0.5, with parameters P = 1 and ϕ = −1, 0, 1, respectively. (b) � f =
f (m + 1) − f (m), where f is the pair correlation function as previously, computed at t = 500 for diffusing swarms on a 200 × 200 lattice
with parameters P = 1 and ϕ = −1, 0, 1 respectively. (b, inset) f computed at t = 500 for for the same data. PCF results shown both averaged
over 1000 simulations (black) and for a single simulation (red).
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where nd (m) is the number of unique particle pairs observed
to be separated by distance m, and n̄d (m) is the number
of such pairs expected to be observed if the particle dis-
tribution was truly random, referred to as complete spatial
randomness (CSR) [30,34]. We consider a rectangular lattice
of dimensions Lx × Ly and enforce periodic boundaries. The
Manhattan distance between (x, y) and (x′, y′) is thus

d (x, y) = min{|y − y′|, Ly − |y − y′|}
+ min{|x − x′|, Lx − |x − x′|}

� Lx + Ly

2
. (37)

As in Ref. [34], we consider

1 � m � min

{⌊
Lx

2

⌋
,

⌊
Ly

2

⌋}

and employ the normalization factor for periodic boundaries,

n̄d (m) = 2mN (N − 1)

LxLy − 1
, (38)

where N is the total number of agents present on the lattice.
In the following discussion, we take f (m) = fd (m) to be the
PCF calculated using the Manhattan norm.

A. Pair correlation function for a uniform swarm

Simulations were performed on a 100 × 100 lattice, ini-
tially populated at CSR and density 0.5 by agents with
parameters P = 1 and ϕ = −1, 0, 1 respectively. For each
simulation the PCF was calculated at t = 20, at which time
the system was judged to have relaxed to its steady state.
Results were averaged over 1000 realizations for each value
of ϕ. In Fig. 10(a), we overlay the averaged PCF with the
PCF calculated for a single simulation instance, which we
also display as a snapshot at t = 20. The PCF profiles re-
veal a striking contrast between persistent and nonpersistent
agents. In the nonpersistent case (ϕ = 0), we observe that
the PCF remains very close to unity, indicating negligible
deviation from CSR as expected. However, in the persistent
case (ϕ = 1), we observe that the PCF increases significantly
above unity at relatively small separation m < 5. We also
note the presence of a minor dip in the PCF at m ≈ 6, as
highlighted in the inset. With reference to the snapshot shown,
this is consistent with visible spontaneous formation of small,
localized agent aggregates, as has been previously reported
to result from persistence [36]. Indeed, for higher levels of
persistence achieved using the more general two-parameter
model, we observe the formation of much larger aggregates
(see Appendix B). Considering the case ϕ = −1, we note
the converse observation that the PCF decreases significantly
below unity for small separation m < 3, and increases to reach
a slight peak again near m ≈ 4 (see inset).

In experimentally relevant contexts, it is useful to con-
sider whether this method is robust given limited observation
data. The PCFs computed for a single simulation overlaid in
Fig. 10(a) display behavior at small distances consistent with
our observations for the averaged PCF. From this, it is clear
that it is possible to distinguish persistent agent behavior using
the PCF, even from a single lattice snapshot. This observation

FIG. 11. Comparison of shape of pair correlation functions
calculated at t = 50 and averaged over 1000 realizations of the
discrete model for varying values of the persistence parame-
ter ϕ and the probability P of an agent attempting to move:
(a) ϕ = 0.2, 0.4, 0.6, 0.8, 1.0, P = 1; (b) P = 0.2, 0.4, 0.6, 0.8, ϕ =
1 (bottom).

provides strong support for the experimental utility of the PCF
as a means of detecting persistence.

The effect of the persistence parameter ϕ was further
investigated by computing the PCF (averaged over 1000
realizations) for simulations with varying values of ϕ =
0.2, 0.4, 0.6, 0.8, 1.0, performed up to t = 20 with P = 1 and
agents initially distributed at CSR with density 0.5. The results
shown in Fig. 11(a) clearly show that increasing values of
ϕ result in roughly proportional increments in the PCF at
m = 1, corresponding to the probability of agents having an
immediate “neighbor.” Similarly, to investigate the effect of
the motility parameter P on the PCF, we performed simula-
tions for P = 0.2, 0.4, 0.6, 0.8, 1.0, with ϕ = 1 up to t = 50
and the same initial configuration as previously. Resulting
PCFs were averaged over 1000 realizations and shown also
in Fig. 11(b). These results show that the PCF is independent
of P, and so the distribution pattern of agents is solely in-
fluenced by persistence parameter ϕ. In light of this, further
work may investigate the PCF as a macroscopic statistic from
which information about the microscopic persistence may be
extracted.

B. Pair correlation function for a diffusing swarm

We now consider a nonuniform swarm of agents diffusing
away from an initial condition. A 200 × 200 lattice was used
on which agents were initially distributed on [80, 120] ×
[80, 120] with unit density. Simulations were performed up
to t = 500 with parameters P = 1 and ϕ = −1, 0, 1, respec-
tively. For each value of ϕ, the PCF was averaged over
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1000 realizations. For clarity, Fig. 10(b) displays the dif-
ferences � f = f (m + 1) − f (m) against m for the averaged
PCF, overlaid with the same result calculated from a single
simulation. The original averaged PCF f is shown in the
inset, and a snapshot of a single simulation at t = 500 is also
displayed. As in the case of a uniform swarm, a sharp increase
of the PCF for m < 5 is characteristic of positive persistence
(ϕ = 1) and similarly a sharp decrease for negative persis-
tence (ϕ = −1). In contrast to the case of a uniform swarm,
varying values of ϕ result in differing agent distribution
profiles for diffusing swarms and so the overall PCF varies
with both ϕ and time. Despite this, the behavior of the PCF
at small m remains characteristic of motion persistence (see
Appendix C). These findings suggest that the PCF may be
applicable for extracting information about persistence in both
uniform and nonuniform swarms of motile agents.

VI. CONCLUSION

We have presented a memory-based formulation for a
lattice-based persistent exclusion process in one and two
dimensions. In the basic case of a single species of motion-
persistent agents, we have shown that such systems are ap-
proximately governed in the continuum limit by nonlinear
diffusion equations similar to—but distinct from—a recent
related result [26]. We note that key macroscopic differences
arise from subtle differences in rules for agent memory in
the respective agent-based model formulations. In two di-
mensions, our analysis has been extended to allow for the
superposition of a global drift effect as well as interactions
between multiple species of persistent walkers, resulting in
systems of nonlinear advection-diffusion equations. To our
knowledge, equivalent continuum-limit descriptions of the
persistent exclusion process incorporating such effects have
not been previously presented. We have also explored the
utility of the PCF as a possible means of inferring the presence
of motion persistence from simulated data. Our conclusions
indicate that the PCF is a robust statistic from which persistent
agent behavior can be inferred in various settings.

Possible directions for extension of this work include
application of the derived continuum models to problems of
biological or other physical relevance, as well as investigation
of the usefulness of the PCF for detecting motion persistence
in experimental imaging data. Additionally, consideration of
quantitative or empirical methods for corrected mean-field
approximations [11,26,32] could be useful for developing im-
proved continuum models that better account for spatial cor-
relations in both single-species and multispecies distributions
of motion-persistent agents. Although we have considered
only simple exclusion as our model for interactions between
different agents, our approach should be able to be extended
to a broad class of interactions between agents, in which the
occupancies of a finite set of neighbors influence the choice
of step direction in competition with the motion persistence
[13,37].
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APPENDIX A: GENERALIZED
TWO-PARAMETER MODEL

The model as presented in the main paper uses a single
parameter ϕ ∈ [−1, 1] to capture the persistence in agent
motion. While the use of only a single parameter simplifies
analysis, this may be restrictive since the probability of an
agent moving orthogonal to its orientation is forced to be
0.5. We have considered a two-parameter model which allows
more control over the probabilistic rule followed by individual
agents.

We now introduce two parameters α, β ∈ [0, 1]. Under this
model, agents attempt moves in the direction of orientation
with probability β, against the direction of orientation with
probability (1 − α)(1 − β ), and in either of the choices or-
thogonal to the direction of orientation with probability α(1 −
β )/2. Thus, setting α = 2/3, β = 1/4 we may recover the
case of simple exclusion process. From this we may recover
the single-parameter model using the relations

α = 1 − 1 − ϕ

3 − ϕ
, β = 1 + ϕ

4
. (A1)

A similar analysis to that presented for the one-parameter
model can be performed for the two-parameter model. We
show here results obtained for the model incorporating persis-
tence and global drift, as the governing equations for the case
of persistence without drift can be recovered by setting λ = 1.
Employing mean-field arguments, we obtain the approximate
discrete master equation given in Table II. This can be taken
to its continuum limit in a similar fashion as demonstrated in
the main paper to yield the PDE

∂u

∂t
= ∇ · [D(u)∇u] − ∇ · [uv(u)], (A2)

with diffusivity and velocity field given by

D(u) = D

(
1 + Kλ

1 − Kλ

)
(1 − 2Kλu),

v(u) = 2D

1 − Kλ
(1 − λ)(1 − u)

[
H
V

]
,

where K is given by

K = −1 + α − αβ + 2β (A3)

and the constant D is defined by

D = lim
�,τ→0

�2P

4τ
. (A4)

For the case of multiple interacting species, we obtain the
system of PDEs

∂u(k)

∂t
= ∇ · [D(k)(u)∇u(k)] − ∇ · [u(k)v(k)(u)], (A5)
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TABLE II. Master equation for the generalized two-parameter model.

Pn+1(i, j) = (1 − P)Pn(i, j)

+ P

⎛
⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩

λdiag

⎡
⎢⎢⎣

β

(1 − α)(1 − β )
α(1 − β )/2
α(1 − β )/2

⎤
⎥⎥⎦+ (1 − λ)

1 + h

4
I

⎫⎪⎪⎬
⎪⎪⎭

Cn(i + 1, j)

+

⎧⎪⎪⎨
⎪⎪⎩

λdiag

⎡
⎢⎢⎣

(1 − α)(1 − β )
β

α(1 − β )/2
α(1 − β )/2

⎤
⎥⎥⎦+ (1 − λ)

1 − h

4
I

⎫⎪⎪⎬
⎪⎪⎭

Cn(i − 1, j)

+

⎧⎪⎪⎨
⎪⎪⎩

λdiag

⎡
⎢⎢⎣

α(1 − β )/2
α(1 − β )/2

β

(1 − α)(1 − β )

⎤
⎥⎥⎦+ (1 − λ)

1 + v

4
I

⎫⎪⎪⎬
⎪⎪⎭

Cn(i, j + 1)

+

⎧⎪⎪⎨
⎪⎪⎩

λdiag

⎡
⎢⎢⎣

α(1 − β )/2
α(1 − β )/2

(1 − α)(1 − β )
β

⎤
⎥⎥⎦+ (1 − λ)

1 − v

4
I

⎫⎪⎪⎬
⎪⎪⎭

Cn(i, j − 1)

⎞
⎟⎟⎠Pn(i, j)

+ P[1 − Cn(x, y)]

×

⎛
⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

β (1 − α)(1 − β ) α(1 − β )/2 α(1 − β )/2
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦+ (1 − λ)

1 + h

4

⎡
⎢⎢⎣

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

Pn(i − 1, j)

+

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0 0 0
(1 − α)(1 − β ) β α(1 − β )/2 α(1 − β )/2

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦+ (1 − λ)

1 − h

4

⎡
⎢⎢⎣

0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

Pn(i + 1, j)

+

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

α(1 − β )/2 α(1 − β )/2 β (1 − α)(1 − β )
0 0 0 0

⎤
⎥⎥⎦+ (1 − λ)

1 + v

4

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

Pn(i, j − 1)

+

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

α(1 − β )/2 α(1 − β )/2 (1 − α)(1 − β ) β

⎤
⎥⎥⎦+ (1 − λ)

1 − v

4

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

Pn(i, j + 1)

⎞
⎟⎟⎠

where the diffusivity and velocity fields are

D(k)(u) = D(k)

[
1 + K (k)λ(k)

1 − K (k)λ(k)

]
(1 − Ctot ), (A6)

v(k)(u) = D(k)

1 − K (k)λ(k)

{
2(1 − λ(k) )(1 − Ctot )

[
H
V

]}
(A7)

− D(k)

[
1 + K (k)λ(k)

1 − K (k)λ(k)

]
[1 − 2K (k)λ(k)]∇Ctot, (A8)

FIG. 12. Snapshots of a single simulation for agents with strong persistence (β = 0.9, α = 2/3) initially distributed at complete spatial
randomness with density 0.5. The corresponding times are (from left to right) t = 1, t = 10, t = 100, t = 500, t = 1000. Gradual formation
of spontaneous, slowly evolving aggregates is especially evident for t � 100 (the right three snapshots).
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FIG. 13. PCFs calculated from simulations of diffusing agent swarms with ϕ = 0, 1 at large times (from left to right t = 1000, t = 5000,
t = 10 000, t = 20 000), showing the distinguishing behavior at small m characteristic of persistent motion (compare red and blue curves). The
overall change in the PCF profile results from dispersal of bulk population.

and

D(k) = lim
�,τ→0

�2P(k)

4τ
. (A9)

For this general model, comparison of discrete simulation
results to continuum approximations yielded similar conclu-
sions to those presented in the main paper.

APPENDIX B: SPONTANEOUS AGGREGATION FOR
STRONG PERSISTENCE

Using the two-parameter model, agents with a strong per-
sistence were modelled by setting β = 0.9, α = 2/3. Agents
were initially distributed at complete spatial randomness at
density 0.5, and a single simulation was performed up to t =
1000 on a 100 × 100 square lattice with periodic boundary

conditions. Figure 12 shows lattice snapshots at several times,
revealing clear formation of slowly evolving aggregates.

APPENDIX C: PCF BEHAVIOR AT SMALL m REMAINS
CHARACTERISTIC OF PERSISTENCE

In order to further examine the behavior of the PCF for
a diffusing swarm of persistent agents, simulations were
performed as in Sec. V B. in the main paper for ϕ = 0
(nonpersistent) and ϕ = 1 (persistent) agents. Simulations
were advanced up to time t = 20 000, by which time the
agents were judged to have fully and uniformly dispersed.
PCFs were calculated at t = 1000, 5000, 10 000, 20 000 and
averaged over 100 realizations. As shown in Fig. 13, the
characteristic behavior of the PCF at small values of m as
discussed in the main paper is clearly evident across the full
timescale of agent dispersal, confirming that it is not obscured
by the bulk dispersal of agent population.
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