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Nuclear magnetic resonance (NMR) diffusion pore imaging has been proposed to study the shape of arbitrary
closed pores filled with an NMR-detectable medium by use of nonclassical diffusion encoding schemes.
Potential applications can be found in biomedical imaging and porous media research. When studying non-point-
symmetric pores, NMR signals with nonvanishing imaginary parts arise containing the pore shape information,
which is lost for classical diffusion encoding schemes. Key limitations are the required high magnetic field
gradient amplitudes and T2 relaxation while approaching the diffusion long-time limit. To benefit from the
slower T1 decay, we demonstrate the feasibility of diffusion pore imaging with stimulated echoes using Monte
Carlo simulations and experiments with hyperpolarized xenon-129 gas in well-defined geometries and show
that the necessary complex-valued signals can be acquired. Analytical derivation of the stimulated echo double
diffusion encoded signal was performed to investigate the effect of the additionally arising undesired terms on the
complex phase information. These terms correspond to signals arising for spin-echo sequences with unbalanced
gradients. For most possible applications, the unbalanced terms can be neglected. If non-negligible, selection
of the appropriate signal component using a phase cycling scheme was demonstrated experimentally. Using
stimulated echoes may be a step towards application of diffusion pore imaging to larger pores with gradient
amplitudes available today in preclinical systems.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) diffusion experiments
are widely employed in medical imaging and porous media
research to probe diffusion barriers via Brownian motion of
NMR-detectable atoms or molecules enabling, for example,
the detection of tumor lesions [1–8]. Mostly spin-echo se-
quences are used, which results in a considerable signal loss
due to T2 relaxation at longer echo and diffusion times limiting
the size of the restrictions that can be probed.

This limitation can be resolved using stimulated
echoes [9–19]. Stimulated echoes are generated by a
(90◦ − t1 − 90◦ − t2 − 90◦ − t3) sequence: The transverse
magnetization generated by the first 90° radio frequency (rf)
pulse is dephased by a first diffusion encoding gradient pulse
during t1 and is then stored longitudinally after the second rf
pulse. During t2 only the longitudinal component decaying
with the relaxation time T1 survives. A third rf pulse generates
transverse magnetization that is partly rephased by a second
diffusion gradient pulse during t3 yielding a stimulated
echo after t3. By prolonging t2, long diffusion times can
be reached while maintaining sufficient signal, since the
relevant T1 relaxation is typically an order of magnitude
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slower compared to T2 relaxation. The longer diffusion time
can be used to study slow diffusion rates; to remove artifacts
from, e.g., background gradients which have no effect during
z storage [20]; to compensate unavailability of gradient power
[10]; or to reach the diffusion long-time limit [21–23].

This work extends the utilization of stimulated echoes
to nonconventional gradient profiles that preserve phase
information about the structure of diffusion restrictions
[24], and to diffusion pore imaging (DPI). DPI enables
measurement of the average shape of arbitrary closed pores
in the considered volume element [25] at a much increased
signal-to-noise ratio (SNR) compared to conventional NMR
microscopy [26–32]. For stimulated echo diffusion encoded
experiments, only the magnitude of the diffusion encoded
signal has been considered and measured so far [33–35].
Nonetheless, DPI relies on obtaining complex-valued
diffusion encoded signals [25]. Generation of the complex
diffusion encoded signals is realized either with long-narrow
gradient profiles [25–29,31,36,37] or with double diffusion
encoded (DDE) experiments [30,38,39]. In contrast to the
long-narrow approach, the DDE approach is based solely
on short gradient pulses and allows utilizing stimulated
echoes to reach the long-time limit. This might be a step
towards application of diffusion pore imaging to larger pores
demanding lower gradient strengths, since the necessary high
gradient amplitude is a major current limitation.

A general property of using diffusion encoded pulse se-
quences with stimulated echoes is the fact that not only the
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signal corresponding to a spin-echo sequence with balanced
gradients arises but additional unbalanced terms occur as pre-
viously described by Khrapitchev and Callaghan [14]. Here,
we extend their approach to diffusion encoded signals with
explicitly nonvanishing imaginary parts, investigate the effect
of the additional terms on the final signal, and show that the
full pore space function can be reconstructed from stimulated
echo DDE experiments.

II. THEORY

A. Diffusion pore imaging

A pore with volume V filled with an NMR-detectable
diffusing medium is defined by the pore space function ρ(x)
which equals V −1 inside the pore and 0 outside. Using
pore imaging techniques, ρ(x) is determined by measuring
its Fourier transform ρ̃(q) = ∫Pore ρ(x)e−iqxdx, which is also
referred to as the “form factor” with the q-space [40] vector q.
For non-point-symmetric pores, ρ̃(q) is complex [24,36,39].
To measure the phase information ψ (q) = arg[ρ̃(q)], double
diffusion encoded (DDE) measurements [41] can be used,
from which the phase of ρ̃(q) can be extracted [30,38,39,42].

B. Double diffusion encoding and q-space imaging
with stimulated echoes

This section roughly sketches the derivation of the DDE
and q-space signals for stimulated echo sequences; details can
be found in the Appendix. In this section, idealized rf pulses
are assumed ignoring other possible coherent echo paths aris-
ing from experimentally imperfect rf pulses. As described in
[14], an NMR pulse sequence imprints specific phase factors
on diffusing spin packets. Using the rotating reference frame
and treating transverse magnetization as complex numbers, a
gradient pulse [amplitude Gi, duration δ, start time t , gyro-
magnetic ratio γ ; see Figs. 1(a) and 1(b)] imprints the factor
eiϕi on the spin packet with ϕi = −γ ∫t+δ

t Gi x(t ′)dt ′. Storing
the magnetization in the longitudinal direction and assuming
complete dephasing of transverse components, followed by
a flip back to the transverse plane, e.g., using 90◦

α1
and

90◦
α2

in Fig. 1(a), is equivalent to taking the real part of the
magnetization with appropriate phase factors according to the
pulse phases α j as defined in Fig. 1(c) so that eiϕ is trans-
formed to − 1

2 (ei(ϕ−α1+α2 ) + e−i(ϕ−α1−α2 ) ) [14]. Due to taking
the real part, the application of stimulated echo diffusion
encoding results in a superposition of terms originating from
different magnetization pathways, which reflect contributions
corresponding to both balanced and unbalanced gradients
[14], so that the concept of fully balanced diffusion encoding
gradients is not applicable to stimulated echoes. For a DDE
sequence with stimulated echoes as depicted in Fig. 1(a), the
phase factor for the case α j = 0 is given by

1
4

{
ei( ϕ1

2 −ϕ2+ ϕ3
2 ) + ei( ϕ1

2 +ϕ2+ ϕ3
2 +2ϑ )

+ ei(− ϕ1
2 −ϕ2+ ϕ3

2 −ϑ ) + ei(− ϕ1
2 +ϕ2+ ϕ3

2 +ϑ )
}
, (1)

where the first term equals the phase term arising for a
balanced spin-echo sequence with antiparallel wave vectors.
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FIG. 1. Schemes of the stimulated echo sequences for (a) double
diffusion encoding and (b) q-space imaging. α j denotes the phase of
the respective rf pulse. (c) The complex magnetization vector (red)
with phase ϕ (blue) lies in the transverse plane of the right-handed
rotating reference frame. With the convention that the excitation field
B1 points along the x axis for α = 0 as in [14,44] and choosing the
real axis along y, a 90° rf pulse with α = 0 generates real magneti-
zation and a pulse with α = π/2 generates imaginary magnetization
along the negative x axis.

The three other terms correspond to spin-echo encodings with
unbalanced gradients causing phases ϑ = −γ δG2xcm = qxcm

for spins located in a pore shifted by xcm from the origin
introducing a dependency on the center of mass position in
Eq. (1) when considering pores. For arbitrary α j different
superpositions of the four terms in Eq. (1) are obtained.

Usually, the unbalanced terms can be neglected when
describing the diffusion-encoded stimulated echo signal, since
large sample or voxel sizes l with homogeneous pore distribu-
tions are assumed. In a simple approach, the pore distribu-
tion can be approximated with a box function, Pxcm (xcm ) =
l−1rectl (xcm ), whose Fourier transform is given by a sinc
function, Pxcm (q) = sinc(ql/2), which decays to zero rapidly.
For the wave vectors used to probe the pore sizes, the mag-
nitude of Pxcm (q) converges to zero, as these are much larger
than those used to probe structures on the voxel size scale,
which yields a fast decay of the unbalanced terms compared
to the balanced ones. In the further evaluation, the unbalanced
terms are included nonetheless and the pores’ center of mass
distribution Pxcm (x) is introduced to analyze the effect of these
terms on the measured DDE phase and to check whether the
induced changes are relevant for DDE phase-based diffusion
pore imaging.
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TABLE I. Phase cycling scheme for double diffusion encoding.

Rf pulses Balanced term Unbalanced terms

S3 1 2 3 4 5 A = ei(
ϕ1
2 −ϕ2+ ϕ3

2 ) B = ei(
ϕ1
2 +ϕ2+ ϕ3

2 ) C = ei(− ϕ1
2 −ϕ2+ ϕ3

2 ) D = ei(− ϕ1
2 +ϕ2+ ϕ3

2 )

I α0 α1 α2 α3 α4 +a + + +
II α0 α1 + π

2 α2 + π

2 α3 + π

2 α4 + π

2 + + – –
III α0 α1 α2 α3 + π

2 α4 + π

2 – + – +
IV α0 α1 + π

2 α2 + π

2 α3 α4 – + + –
+I + II − III − IV → 4a 0 0 0

aOnly the sign is tabulated. Depending on the values of α0 − α4 phase factors arise according to Eq. (2), but they are identical within each
column.

Integrating over all random walk trajectories (for details see the Appendix) yields for arbitrary α j the signal

S3,STE(q) = 1
4 {ei(α0−α1−α2+α3+α4 )ρ̃∗(q/2)2ρ̃(q) + ei(α0−α1+α2−α3+α4 )P̃∗

xcm
(2q)ρ̃∗(q/2)2ρ̃∗(q)

+ ei(−α0+α1−α2+α3+α4 )P̃xcm (q)|ρ̃(q/2)|2ρ̃(q) + ei(−α0+α1+α2−α3+α4 )P̃∗
xcm

(q)|ρ̃(q/2)|2ρ̃∗(q)}, (2)

with the Fourier transform P̃xcm (q) of Pxcm (x), and the asterisks indicate complex conjugates. The first, balanced term contains
the desired DDE spin-echo signal,

S3,SE(q) = ρ̃∗(q/2)2ρ̃(q) (3)

[38,39], from which the form factor phase can be derived. Proceeding analogously for the q-space imaging sequence in Fig. 1(b)
results in

S2,STE(q) = − 1
2 {ei(−α0+α1+α2 )|ρ̃(q)|2 + ei(α0−α1+α2 )P̃∗

xcm
(2q)ρ̃∗(q)2}, (4)

with the spin-echo q-space imaging signal S2,SE(q) = |ρ̃(q)|2 comprised in the first term. The unbalanced terms, three of them
for the DDE signal and one for the q-space signal, are thus sensitive to pore translations and modulated by P̃xcm (q), contrary to
the spin-echo approach.

C. Phase cycling

To eliminate the unbalanced terms containing P̃xcm (q) in Eqs. (2) and (4), phase cycling can be used, as discussed in Ref. [14].
Tables I and II propose the necessary rf pulse phases for stimulated echo pore imaging. Acquiring the signals corresponding to
rows I – IV and calculating +I + II − III − IV yields the ei( ϕ1

2 −ϕ2+ ϕ3
2 ) term resulting in the desired balanced term ρ̃∗(q/2)2ρ̃(q).

For arbitrary α j , this approach is still valid, since only the relative phases between the table rows are relevant. In Table II, the
phase cycle for q-space imaging is listed.

D. Distribution of different pore space functions

Pores of M different sizes or shapes with the pore space functions ρn(x), volumes Vn, and center of mass distribution Pn,xcm (x)
are considered yielding the total DDE signal attenuation,

S3,STE,tot (q) =
M∑

n=1

fn
1

4
{ei(α0−α1−α2+α3+α4 )ρ̃∗

n (q/2)2ρ̃n(q) + ei(α0−α1+α2−α3+α4 )P̃∗
n,xcm

(2q)ρ̃∗
n (q/2)2ρ̃∗

n (q)

+ ei(−α0+α1−α2+α3+α4 )P̃n,xcm
(q)|ρ̃n(q/2)|2ρ̃n(q) + ei(−α0+α1+α2−α3+α4 )P̃∗

n,xcm
(q)|ρ̃n(q/2)|2ρ̃∗

n (q)}, (5)

with fn = Vn/(
∑M

n=1 Vn). For q-space imaging, the total signal is

S2,STE,tot (q) = −
M∑

n=1

fn
1

2
{ei(−α0+α1+α2 )|ρ̃n(q)|2 + ei(α0−α1+α2 )P̃∗

n,xcm
(2q)ρ̃∗

n (q)2}. (6)

Total spin-echo signals are S3,SE,tot (q) = ∑M
n=1 fnρ̃

∗
n (q/2)2 ρ̃n(q) and S2,SE,tot (q) = ∑M

n=1 fn|ρ̃n(q)|2 [43].

III. METHODS

A. Derivation of the form factor

To extract the form factor’s phase ψ (q) = arg[ρ̃(q)] from
the DDE signal following Ref. [39], ρ̃(q) and S3,SE(q)
are written in terms of magnitude and phase; i.e., ρ̃(q) =

A(q)eiψ (q) and S3,SE(q) = B(q)eiω(q), where A(q) = √
S2,SE(q)

is obtained from the q-space measurement. Inserting both into
Eq. (3) results in

B(q)eiω(q) = A(q/2)2e−2iψ (q/2)A(q)eiψ (q). (7)
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TABLE II. Phase cycling scheme for q-space imaging.

Rf pulses Balanced term Unbalanced term

S2 1 2 3 A = ei(−ϕ1+ϕ2 ) B = ei(ϕ1+ϕ2 )

I α0 α1 α2 –a –
II α0 α1 + π

2 α2 + π

2 + –
−I + II → 2a 0

aOnly the sign is tabulated. Depending on the values of α0, α1, α2,
phase factors arise according to Eq. (4), but they are identical within
each column.

Since A(q) and B(q) are real and positive, the following
recursive equation arises:

ψ (q) = 2ψ (q/2) + ω(q). (8)

Now, radial acquisitions of S3,SE(q) are considered; i.e., q =
nq with constant gradient direction n and increasing q > 0.
Using the measurement ω(q) = arg[(S3,STE(q)] and the initial
conditions ψ (q0 = 0) = 0 and ∂ψ (nq)/∂q|q=0 = 0, Eq. (8)
was recursively solved for the measured q values qi by setting
ψ (nq1) = 0 which allows obtaining ψ (nq2) from ω(nq2).
This allows proceeding to higher qi, finding ψ (nqi/2) by
linear interpolation if no measurement was taken at qi/2. All
calculations were performed ignoring the possible influence
of unbalanced terms in Eqs. (2) and (4).

Pore images were obtained by applying an inverse Fourier
transform to each radial spoke followed by an inverse Radon
transform.

B. Simulations

To investigate the validity of Eqs. (2) and (4) and the
influence of the unbalanced terms in the presence of finite
gradient timing, Monte Carlo simulations were conducted
for triangular pores aligned in the same direction. Rf pulses
were realized with rotation matrices. For comparison, the

corresponding spin-echo signals were simulated using the
Monte Carlo and the multiple correlation function (MCF)
approach (Eq. (144) of Ref. [45] and Refs. [36,46–49]) with
the analytically known Laplacian eigenfunctions of the trian-
gular domain [36], where accuracy was ensured by gradually
increasing the number of eigenfunctions. The following pore
distributions with ∫ Pxcm (x) dx = 0 were chosen:

(1) Rock or tissue sample with a ratio of 80% intraporous
space to 20% extraporous space. The specified maximum
gradient amplitude was 3.9 T/m, which is available for NMR
microimaging systems.

(2) Capillary phantom: A sample was simulated with a fill
factor, i.e., ratio of total area inside pore boundaries to sample
area, as found in typical capillary phantom experiments such
as studied in [27,28,37,50,51]. The fill factor was matched
to two phantoms: capillaries with 20 μm inner diameter and
150 μm outer diameter inside a 4 mm NMR tube in [50],
and capillaries with 10 μm inner radius and 360 μm outer
diameter inside a tube of 8 mm inner diameter in [27,28,37],
both yielding a fill factor of 0.003.

(3) Xenon phantom: Pore number and dimensions
matched those of the used phantom described in Sec. III C.

For (1)–(3), detailed specifications are tabulated in
Table III. The 37 gradient directions were distributed in 5°
steps in one half-space of q space. For α j = 0, the relation
S(−q) = S∗(q) holds true and can be used to calculate the
second half-space.

Additionally, two variations of the rock or tissue sample
were simulated with narrow homogeneous size distributions:
The first was made up of equilateral triangles with mean
edge length L0 = 10μm; the second consisted of cylinders
with mean diameter L0 = 10μm. Both distributions contained
18 500 pores with 100 different pore sizes between L =
0.75 L0 and 1.25 L0, each size occurring 185 times. Other
parameters were chosen identically to (1). In addition, for
both distributions, the volume fraction-weighted average pore

TABLE III. Parameters used in simulations of pore distributions.

Rock or tissue sample Capillary phantom Xenon phantom

Triangle edge length L (μm) 10 10 5750
Number of pores 18500 1730 77 = 7 × 11
Sample size (mm × mm) 1 × 1 5 × 5 41 × 79
Pores distributed Randomly Randomly On a square grid
D(μm2/ms) 1 1 37000
T (ms) 150 150 550
Gmax (T/m) 3.9 3.9 32 × 10−3

δ (ms) 2.88 2.88 2.94
qmax (μm−1) 3 3 7 × 10−3

Pore image 13 × 13 pixels 13 × 13 pixels 19 × 19 pixels
Nominal resolution (μm) 1.05 1.05 449
MCF simulation: Number of q values Nq,HS 1000 1000 1000
Monte Carlo simulation:
Random walkers per pore 2 × 105 5 × 105 1.5 × 106

Steps per random walk trajectory 2.65 × 105 2.65 × 105 1.02 × 106

Number of q values Nq [�q (μm−1)] 20 (0.158) 20 (0.158) 20 (3.68 × 10−4)
α0 to α4 0 0 0
Pore images: Number of directions 37 in 5° steps 37 in 5° steps 37 in 5° steps
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space function under idealized conditions (δ → 0, T → ∞)
was computed analytically to reconstruct an average pore
image, as well as the result for the long-narrow approach [36]
using the MCF technique.

Spin-echo signals were rescaled by 1/2 or 1/4 for compa-
rability to account for the signal reduction occurring for stim-
ulated echoes for q > 0. Before reconstructing pore images,
S(q = 0) for stimulated echoes was also rescaled to avoid
a signal jump compared to S(q > 0) in the reconstruction
described in Sec. III A.

C. Experimental implementation

For experimental verification of the stimulated echo pore
imaging approach, measurements with hyperpolarized xenon-
129 gas in phantoms with pores with equilateral triangular
cross section were performed. The pores (edge length L =
5750μm) were arranged on a 7 × 11 grid with gas flowing
continuously through the pores (150 ml/min) along the mag-
netic field direction and orthogonally to the plane, in which
the gradients were applied (Gmax = 32 mT/m; see Table III).
Repetition time (TR) was 18 s to ensure sufficient inflow of
newly hyperpolarized gas. The high free diffusion coefficient
D0 = (37 000 ± 2000)μm2/ms of the xenon gas mixture [26]
allows reaching the long-time limit for pores on the millimeter
scale.

Spin-exchange optical pumping (SEOP) was used for hy-
perpolarization [52–54] and a clinical 1.5 T MR scanner
(Magnetom Symphony, A Tim System, Siemens Healthcare,
Erlangen, Germany) for measurements. The setup is detailed
in Refs. [26,30].

q Space was sampled along radial lines using the stimu-
lated echo sequences depicted in Figs. 1(a) and 1(b). Time
intervals t1 and t2 between rf pulses and analog-to-digital
signal converter (ADC) readout ensure that the center of
the stimulated echo and the middle of the readout coincide.
As each rf pulse splits magnetization into three parts, i.e.,
dephasing and rephasing transverse magnetization and the
longitudinal magnetization component, the number of coher-
ence pathways increases with each new rf pulse by three
per already existing coherence pathway. Counting only those
leading to echo formation (spin echo and stimulated echo),
five echo pathways remain for a three-pulse sequence. But for
a five-pulse sequence, already 58 echo pathways occur [55].
To measure only the desired stimulated echo in the five-pulse
double diffusion encoded sequence, rf spoiling and gradient
spoiling were used. Following Zur et al. [56], rf spoiling
was conducted with α0 = 117, α1 = 234, α2 = 108, α3 = 99,
α4 = 207, while crusher gradients were applied in the longi-
tudinal storage periods [Figs. 1(a) and 1(b)]. Fluctuations in
the polarization level were compensated for by an additional
signal prereadout directly after 90◦

α0
.

Parameters were chosen as in Table III. Additional spec-
ifications were as follows: Duration of the rf pulses was
1.856 ms; to record pore images, 37 radial lines were recorded
in one half-space of q space with Nq = 14 q values and
�q = 0.539 mm−1. The second half-space was calculated as
described below. For phase cycling, the cycles designed in
Tables I and II were used with the rf pulse phases listed for rf
spoiling above. For a more detailed view, the vertical gradient

direction was additionally measured using a higher number of
q values (Nq = 24) with qmax = 5 mm−1, �q = 0.217 mm−1,
and δ = 2.10 ms. For the pore images, two repetitions of the
rows of Tables I and II were recorded and five repetitions for
the vertical direction with Nq = 24.

For signal calculation, after normalizing the readout data
(average of the echo amplitude) to the prereadout, the two,
respectively, five repetitions were averaged and then nor-
malized to S(q1 > 0). Normalization to S(q1) was chosen
because experimental values for S(q = 0) showed large signal
fluctuations potentially due to insufficient dephasing of other
coherent pathways. For phase-cycled signals, all averages
for all phase cycles were summed up with the respective
signs from Tables I and II and then normalized to S(q1). For
reconstruction of ρ̃(q) in case of phase cycling, S(q = 0)
was estimated by parabolic extrapolation of the real part of
the signal at the first two nonzero q values q1 and q2. For
comparison, simulated data were also normalized to q1.

For arbitrary α j , the relation S(−q) = S∗(q) was
used in the reconstruction although it does not hold
true in general. But if only the desired signal term
[ 1

4 ei(α0−α1−α2+α3+α4 )ρ̃∗(q/2)2ρ̃(q)] is present, which is
the case if phase cycling is used, and if the factor
ei(α0−α1−α2+α3+α4 ) is removed by normalization to S(q1), the
relation S(−q) = S∗(q) can be used to calculate the second
half-space. A pore image from Monte Carlo simulations was
computed with the same parameters for comparison.

Simulations, signal processing, and the recursive phase
reconstruction from DDE signals were performed in MATLAB

(MathWorks, Natick, MA).

IV. RESULTS

Figure 2 shows simulation results. For the rock or tissue
sample, P̃xcm (q) decays to zero already at small q values [light
blue line in Fig. 2(a), left]. Therefore stimulated echo (STE)
signals [light blue and light red lines in Fig. 2(a), columns S3,
S2], calculated by plugging the MCF-simulated form factor
into the analytical derivations [Eqs. (2) and (4)], coincide
well with the desired MCF-simulated spin-echo (SE) signals
(dark lines) considering both real and imaginary part, except
for the small q-value region, where the unbalanced terms
become evident due to the nonzero P̃xcm (q). For higher q
values, the undesired terms vanish and the STE signal equals
the pure spin-echo term, apart from the reduced magnitude
by one half per z-storage interval. Analytical derivations were
further checked by simulating STE signals at a lower number
of sampling points (dots in the three left columns) with the
Monte Carlo method.

The nonvanishing imaginary part of the STE DDE signal
allows for calculation of the form factor phase and thus unam-
biguous image reconstruction. The pore image (right column)
for stimulated echoes shows a clearly discernible triangle
and hardly deviates from the spin-echo image. Deviations are
probably due to Monte Carlo noise.

The distribution resembling capillary phantoms [Fig. 2(b)]
has a factor of 10 fewer pores so that the amplitude of
P̃xcm (q) does not fully decay to zero making the influence of
the undesired terms more pronounced. Therefore, the STE
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FIG. 2. Simulations for three different pore distributions in (a) to (d): Columns from left to right show the real part of the Fourier transform
of the pores’ center of mass distribution P̃xcm (q), the DDE signals S3(q), the q-space imaging signals S2(q), and pore images. For visual
comparison, spin-echo magnitudes were reduced by a factor of 4 for DDE signals, by a factor of 2 for q-space imaging, and the negative
q-space imaging signal was plotted for stimulated echoes. G indicates the gradient direction relative to the triangular pores. SSTE(q = 0) is not
displayed due to scaling of axes. Abbreviations used: SE = spin echo, STE = stimulated echo, MCF Sim. = simulations using the multiple
correlation function approach, MC Sim. = Monte Carlo simulations.

signals can deviate from the SE signals if a sampling point
occasionally hits an outlier of P̃xcm (q). Here, the strongest
deviation occurs for the imaginary part of the third sampling
point of the STE signals from Monte Carlo simulations. The
deviation of the STE signals from SE signals is stronger for
double diffusion encoding than for q-space imaging (compare

light colored lines for S3 and S2). Nevertheless, the few and
small outliers of the STE signals have little influence on the
pore image result.

If the number of pores is decreased further, the contribution
of the undesired terms increases. For the xenon phantom and
the vertical gradient direction [Fig. 2(c)], the projection onto
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FIG. 3. Experimental results for the phase-cycled stimulated echo DDE signal [(a), dots] and the phase-cycled stimulated echo q-space
imaging signal [(b), dots] in comparison to simulated spin-echo signals (lines) for the vertical gradient direction indicated by G. For simulations,
the MCF method was used with the same sampling points in q space as used in experiments. The individual phase cycle acquisitions and their
sums yielding the final signals S3(q) and S2(q) are shown. (c) To reconstruct the pore space function ρ(x), the phase of the Fourier transform
arg[ρ̃(q)] was estimated from S3(q) while the magnitude |ρ̃(q)| was calculated from S2(q).

the gradient direction effectively only shows a distribution of
seven pores. For this gradient direction, Re[P̃xcm (q)] shows
several local maxima with high amplitude [Fig. 2(c) left
column] in contrast to Figs. 2(a) and 2(b), which leads to very
strong deviations of the STE signals from the SE signals for
q < 2 mm−1. For q > 2 mm−1, signal amplitudes are already
very low so that high oscillations of Re[P̃xcm (q)] are hardly
visible. The gradient vector rotated by 30° [Fig. 2(d)] is
oriented relative to the shape of the triangular pores in the
same way as the vertical gradient direction and therefore the
SE signal decay is identical in Figs. 2(c) and 2(d), but the
projection of the pore distribution onto the gradient direction
is a result of all 77 pores so that fewer and smaller maxima
occur in Re[P̃xcm (q)]. Consequently, only one sampling point
of the Monte Carlo STE simulation deviates from the SE
signal. The fast decay of Re[P̃xcm (q)] occurs for most of the
sampled radial gradient directions so that these outweigh the
vertical and horizontal gradient directions in their contribution
to the pore image so that the STE image is nearly identical to
the SE version.

The experimental feasibility of the analytically derived
STE pore imaging approach was demonstrated with xenon gas
in phantom measurements. The results are shown in Fig. 3.
For the vertical gradient direction, a nonzero imaginary part
arises in the rf-spoiled STE DDE signal S3,I (q) [red dots in
Fig. 3(a) first plot]. The deviations from the simulated SE
signal (lines) are clearly visible. However, using a combi-
nation of four measurements with complementing rf pulse
phases, S3,I to S3,IV in Fig. 3(a), the undesired terms can
be removed through phase cycling (bottom left plot). The
same holds true for q-space imaging [Fig. 3(b)]. Recursively
calculating the phase using arg(S3) and taking the magnitude
from S2 yields the form factor ρ̃(q) and one-dimensional
pore projection ρ(x) [Fig. 3(c)], which is in good agreement
with the SE simulation [solid line in Fig. 3(c)]. Repeating
this phase cycling approach for all sampled radial gradient
directions in q space yielded the pore image in Fig. 4(a). The
triangular pore shape is clearly visible but slightly blurred due
to noise. Figure 4(b) shows the corresponding Monte Carlo
simulation for comparison.
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(b)(a)

FIG. 4. (a) Measured pore image obtained using stimulated
echoes and phase cycling to remove all but the pure spin-echo terms.
(b) Corresponding Monte Carlo simulation using stimulated echoes
and phase cycling.

Figure 5 shows that the STE approach behaves as the SE
version in the presence of pore size distributions: For the
considered pore size distributions, a shrinkage is observable
compared to the average pore image under idealized con-
ditions (δ → 0, T → ∞), which is mainly due to the
edge enhancing effect [43] which becomes apparent in the
comparison to the long-narrow approach. Apart from this
shrinkage in size, the reconstructed pore images portray good
approximations of the average pore image.

V. DISCUSSION

In this study, the signal equation for a double diffusion
encoding sequence with stimulated echoes was derived an-
alytically showing that phase information arising for non-
point-symmetric pores is preserved in the balanced spin-echo
signal term. However, using stimulated echoes always comes
at the price of introducing additional undesired unbalanced
terms that can potentially distort the total signal. If the
undesired terms are either negligible or are removed (see
discussion below), DDE-based diffusion pore imaging with
stimulated echoes is enabled. Moreover, applicability of stim-
ulated echoes to complex signals is not only relevant to pore
imaging but, in principle, of interest to all fields where signal
phases arise. The analytical derivation was validated with
Monte Carlo simulations for a non-point-symmetric triangle
domain for which nonvanishing imaginary parts arise in the

LN, MCF

(b)C
ylinders

(a)Triangles

SE, MCSTE, MCAverage

FIG. 5. Simulations of size distributions of (a) triangles and
(b) cylinders. Columns: (1) Volume fraction-weighted average pore
image for δ → 0, T → ∞; (2) Monte Carlo simulation using
stimulated echoes; (3) Monte Carlo simulation using spin echoes;
(4) MCF simulation using the long-narrow approach.

DDE signals. In addition, an experimental demonstration of
the STE pore imaging approach was conducted with hyperpo-
larized xenon.

In principle, the unbalanced terms modulated with the
Fourier transform of the pores’ center of mass distribution
P̃xcm (q) can disturb complex phase information obtained from
the DDE signal and induce a dependence of the stimulated
echo signals on the absolute positions of the pores in the
gradient system. For all applications to natural samples with
randomly distributed pores and imaging volume elements
large compared to the pore sizes, the phase information
needed to perform DDE-based pore imaging is practically
undisturbed by the unbalanced terms, so that these can be
neglected in the same way as for conventional diffusion-based
techniques considering the magnitude only. For medium sized
samples like capillary phantoms, small deviations from the
spin-echo curve might be observed. However, for ordered
samples with a very low number of pores local maxima with
high amplitudes can occur in P̃xcm (q > 0). In the latter case,
deviations are strongest in only a few of the radial gradient
directions for which the projection of the distribution onto
the gradient direction forms a pattern concealing a fraction of
the pores. However, as multiple radial directions are recorded
to acquire pore images, most of the directions do not point
along the main symmetry axes, so that a larger number of
different xcm positions are projected on those directions yield-
ing fast decaying unbalanced terms, so that these undisturbed
directions will dominate in the reconstruction of pore images.
Moreover, in experiments, P̃xcm (q)-based deviations might be
additionally suppressed due to inhomogeneity of the gradient
field causing averaging over a small span of q values and thus
effectively smoothing the stimulated echo signals.

If deviations caused by nonvanishing unbalanced signal
terms are observed, a suitable selective phase cycle can be
applied in the same way as for signal magnitude-based ap-
proaches as proposed by Khrapitchev and Callaghan. One
downside of the phase cycling approach is that the measure-
ment time increases by a factor of 4 for double diffusion
encoding, and doubles for q-space imaging. However, by
making use of this approach, it can be concluded that DDE-
based pore imaging with stimulated echoes can in principle
be applied to every type of sample, as either unbalanced
signal terms are too small to contribute to the total signal or
otherwise they cause deviations from the desired spin-echo
term but an appropriate phase cycling scheme can be used to
eliminate them.

The deviation of the STE echo signals from SE signals are
in principle stronger for double diffusion encoding than for
q-space imaging because three terms modulated with P̃xcm (q)
or P̃xcm (2q) arise for the DDE signal in addition to the spin-
echo term, whereas only one term modulated with P̃∗

xcm
(2q)

contributes to the q-space signal.
A disadvantage of the stimulated echo method, specifically,

is the relative signal intensity of 1/2 for q-space imaging
and 1/4 for double diffusion encoding when compared to
the respective spin-echo signals [9,15]. In addition, various
challenges arise for pore imaging in general when moving
from well-defined pore phantoms to tissue samples such as
physiological noise, cell membrane permeability, signal aris-
ing from extracellular water compartments, surface relaxation
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[36,39], or open connected geometries [57]. But a major
challenge of diffusion pore imaging lies in resolving pore size
and shape distributions. A direct inversion from an average
pore space function to the underlying distribution of indi-
vidual pore space functions poses, so far, an open problem.
Fortunately, for the proposed STE technique, no additional
complications arise concerning size and shape distributions
compared to spin echoes, which were discussed in detail
in [43]: For the short gradient method combing DDE and
q-space measurements applied in this work to narrow size
distributions, the signal is dominated by the pores with small
volume fractions while larger pores are underestimated so
that the reconstructed image exhibits a pronounced shrinkage
compared to the volume fraction-weighted average image.
Further, pore shape-specific artifacts such as underestimated
signal intensities in specific areas of the image can occur. An
image closer to the true average pore image can be obtained
with the long-narrow approach with finite timing parameters.
However, the requirement of the long-narrow approach that
the diffusion distance during the long pulse needs to be
sufficiently large to probe the whole pore imposes limitations
on pore sizes that can potentially be measured.

High gradient amplitudes are mandatory to perform pore
imaging at the micrometer scale [36] but are generally un-
available in clinical MRI machines. However, stimulated echo
sequences can partially solve the unavailability of gradient
power for larger pore sizes: The demand on gradient strength
reduces quadratically with pore diameter and, with stimu-
lated echoes, the diffusion time can be increased without
pronounced signal decay through T2 relaxation effects by
instead exploiting the typically long T1 relaxation time so
that the diffusion long-time limit can be reached in the larger
sized pores. This is feasible because DDE-based pore imaging
uses only short gradient pulses between which magnetization
can be stored longitudinally opposed to the long-narrow pore
imaging approach, which requires the application of very long
gradient pulses filling most of the diffusion time.

For example, demands on diffusion time and gradient
strength might be met on whole-body scanners with am-
plitudes of 45 mT/m for imaging of muscle cells, which
have much larger diameters than most cells (∼50 μm), using
phosphocreatine as the tracer. In muscle tissue, T2 is quite
short unlike T1, so that stimulated echoes may be used as
a tool to reach the diffusion long-time limit in muscle cells
[58–60]. Another feasible application could be diffusion of
N-acetylaspartic acid (NAA) in the soma of a neuron with
a soma diameter of 10 μm for 1.5 T/m gradients available
for small animal scanners [61–64]. However, the above listed
general pore imaging challenges remain before an application
in vivo may become feasible with this work being just one step
in that direction.

The stimulated echo z-storage periods add another benefi-
cial side effect: As a result of the shortened residence time
of the spins in the transverse plane, spins located in areas
affected by field inhomogeneities will collect smaller phases
as if the phases would accumulate over the total diffusion time
which could cause image warping or blurring.

In conclusion, using stimulated echoes in diffusion pore
imaging is feasible, thus opening the possibility to use longer
diffusion times by exploiting T1 relaxation.
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APPENDIX: STIMULATED ECHO SIGNALS FOR DOUBLE
DIFFUSION ENCODING AND q-SPACE IMAGING

Here, we provide a detailed derivation of Eqs. (2) and (4).
A pulse sequence, composed of radiofrequency pulses and

gradient pulses, imprints specific phase factors on diffusing
spin packets. These can be derived by sequentially applying
building blocks for (a) short gradient pulses, and (b) two
rf pulses generating stimulated echoes. Both are applied to
the preexisting transverse magnetization eiϕ of the considered
spin packet:

(a) A gradient pulse Gi of duration δ induces a phase factor
eiϕi to spins with

ϕi = −γ

∫ δ

0
Gi x(t )dt = −γ δGixi,path, (A1)

where γ is the gyromagnetic ratio and xi,path the center of mass
of the path that is traveled by the random walker during the
application of the gradient pulse [65]. In the limit of short
gradient pulses (δ → 0), xi,path is replaced with the position
xi of the spins during gradient application. If the pore’s center
of mass is translated from the origin to xcm, additional global
phase shifts ϑi occur. The effect of a short gradient pulse
(δ → 0) is given by

eiϕ → ei(ϕ+ϕi+ϑi ). (A2)

(b) For the time being, only rf pulses with fixed flip angles
of 90° but variable pulse phases α j are considered. α j defines
the rotation axis of the 90° rf pulses [see Fig. 1(c)], in which
the coordinate system is defined. Assume that two perfect rf
pulses separated by the storage time τ , i.e., (90◦

α1
− τ − 90◦

α2
)

as, e.g., used in Figs. 1(a) and 1(b), are applied to a transverse
magnetization eiϕ . The first pulse 90◦

α1
rotates the magnetiza-

tion by 90° around the axis given by α1. It is assumed that
the z-storage period τ is long enough to sufficiently dephase
the transverse magnetization. The stored magnetization in the
z direction has the same magnitude as the component of
the magnetization vector that is orthogonal to the effective
magnetic field during application of the 90◦

α1
pulse. The z

magnetization can be calculated by describing the 90◦
α1

pulse
as a rotation around the z axis by −α1 followed by a 90° rota-
tion around the x axis and omission of transverse components.
Thus, the magnitude of the stored z magnetization is given by
Re(ei(ϕ−α1 ) ). The z magnetization is returned to the transverse
plane by 90◦

α2
, which effectively flips the magnetization to lie

along the negative real axis followed by a rotation by α2,
resulting in Re(−ei(ϕ−α1 ) )eiα2 = − cos(ϕ − α1)eiα2 . Rewrit-
ing in terms of the exponential function shows that the
number of terms doubles and a factor 1

2 is introduced for each
(90◦

α1
− τ − 90◦

α2
) sequence:

eiϕ → − 1
2 (ei(ϕ−α1+α2 ) + e−i(ϕ−α1−α2 ) ). (A3)

For examples, see [14,44].
A DDE sequence with stimulated echoes [Fig. 1(a)] where

all rf pulses are applied along the x axis, i.e., α0 = α1 =
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α2 = α3 = α4 = 0, and with gradient vectors G1/2 applied at
t = 0, G2 at t = (T − δ)/2, and G3/2 applied at t = T − δ

with G1 = G2 = G3, is considered first: The initial excitation
pulse generates real magnetization pointing along the y axis.
Applying the first gradient to a pore translated from the origin
[Eq. (A2)] leads to the phase factor ei( ϕ1

2 + ϑ
2 ) with ϑ = 2ϑ1 =

2ϑ3 = ϑ2 = −γ δG2xcm. The next block (90◦
0 − τ − 90◦

0) re-
sults, according to Eq. (A3), in − 1

2 (ei( ϕ1
2 + ϑ

2 ) + e−i( ϕ1
2 + ϑ

2 ) ).
Applying Eqs. (A2) and (A3) for G2, (90◦

0 − τ − 90◦
0), and

G3/2, leads to the final phase factor composed of four terms
and a factor of 1

4 :

1
4

{
ei( ϕ1

2 −ϕ2+ ϕ3
2 ) + ei( ϕ1

2 +ϕ2+ ϕ3
2 +2ϑ )

+ei(− ϕ1
2 −ϕ2+ ϕ3

2 −ϑ ) + ei(− ϕ1
2 +ϕ2+ ϕ3

2 +ϑ )
}
. (A4)

Equation (A4) is the same as Eq. (1). A similar equation was
derived in [14]. However, in the following, the special case
of a set of closed pores is considered with focus on the final
signal phase which was not investigated so far. The ensemble
average of the first term yields S3,STE,1 = 〈 1

4 ei( ϕ1
2 −ϕ2+ ϕ3

2 )〉 =
1
4 S3,SE with S3,SE being the desired compensated signal that
arises for a spin-echo sequence with a 180° pulse inserted
after the second gradient pulse and opposite gradient vec-
tor of the first pulse given by Eq. (3). Using Eq. (A1)
and introducing the q vector q = −γ G2δ, the first term is

rewritten to S3,STE,1(q) = 〈 1
4 eiq(

x1,path
2 −x2,path + x3,path

2 )〉. Assuming
δ → 0, the centers of mass of the respective particle tra-
jectories during the gradient pulses are replaced by x1 =
x(0), x2 = x(T/2), and x3 = x(T ), yielding S3,STE,1(q) =
〈 1

4 eiq( x1
2 −x2+ x3

2 )〉. A large number N of closed pores is con-
sidered, where the distribution of the pores’ center of mass
is described by Pxcm (xcm ). The ensemble average is then the
average over all possible random walk trajectories in all pores
resulting in

S3,STE,1(q) = 1
4

∫
R3

dxcm

∫
Pore

dx1

∫
Pore

dx2

∫
Pore

dx3Pxcm (xcm )

× ρ(x1)ρ(x2)ρ(x3)eiq( x1
2 −x2+ x3

2 ). (A5)

In the diffusion long-time limit (T → ∞), x1, x2, and x3 are
uncorrelated, so that averaging independently over each xi

becomes possible:

S3,STE,1(q) = 1

4

∫
R3

dxcmPxcm (xcm )
∫

Pore
dx1ρ(x1)eiq x1

2

×
∫

Pore
dx2ρ(x2)e−iqx2

∫
Pore

dx3ρ(x3)eiq x3
2

= 1

4
ρ̃∗(q/2)ρ̃(q)ρ̃∗(q/2) = 1

4
ρ̃∗(q/2)2ρ̃(q),

(A6)

where the asterisk denotes the complex conjugate. Since
S3,STE,1(q) describes the balanced term (which is equal to the
signal arising for a spin-echo sequence with balanced gradi-
ents), phases from translations cancel out and the distribution
Pxcm (xcm ) disappears in Eq. (A6) due to ∫R3 dxcmPxcm (xcm ) =
1. Averaging over xcm introduces the Fourier transform of
the pores’ center of mass distribution P̃xcm (q) as prefactors in
the three undesired terms; i.e., the stimulated echo signal is
depending on the absolute positions of the pores because the
ϑi arising from unbalanced gradient contributions in Eq. (A2)
do not cancel out. Here, the ensemble average of the second
term of Eq. (A4) is used as an example, derived in analogy to
Eq. (A6) using the definition of ϑ :

S3,STE,2(q) = 1

4

∫
R3

dxcmPxcm (xcm )eiq2xcm ρ̃∗(q/2)2ρ̃∗(q)

= 1

4
P̃∗

xcm
(2q)ρ̃∗(q/2)2ρ̃∗(q). (A7)

The total DDE signal with stimulated echoes is

S3,STE(q) = 1
4 {ρ̃∗(q/2)2ρ̃(q) + P̃∗

xcm
(2q)ρ̃∗(q/2)2ρ̃∗(q)

+ P̃xcm (q)|ρ̃(q/2)|2ρ̃(q)

+ P̃∗
xcm

(q)|ρ̃(q/2)|2ρ̃∗(q)}. (A8)

For the q-space sequence with stimulated echoes [Fig. 1(b),
α0 = α1 = α2 = 0, G1 = G2 at t = 0 and t = T − δ], the
signal is derived in the same manner. Two phase factor terms
arise,

− 1
2 (ei(−ϕ1+ϕ2 ) + ei(ϕ1+ϕ2+2ϑ ) ), (A9)

which result in

S2,STE(q) = − 1
2 {|ρ̃(q)|2 + P̃∗

xcm
(2q)ρ̃∗(q)2}. (A10)

As three 90° pulses with the x axis as the rotation axis were
applied, the magnetization vector points along the negative y
axis resulting in the minus sign in Eq. (A10).

Still considering the special case with α j = 0, the polarity
of the diffusion-encoding gradients can in principle be chosen
arbitrarily for stimulated echoes, i.e., all parallel as above, or
one or multiple of the gradient directions can be chosen to
point along the antiparallel direction. In the case where the last
gradient G is replaced by −G the complex conjugate signals
will be measured, S∗

3,STE(q), respectively S∗
2,STE(q).

For the general case with arbitrary rf pulse phases α j in
Eq. (A3), Eqs. (A8) and (A10) extend to Eqs. (2) and (4).
Different α j yield different superpositions of the four terms
of the DDE signal (see Table I), respectively, of the two terms
of the q-space signal (Table II).
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