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Networks in the brain consist of different types of neurons. Here we investigate the influence of neuron
diversity on the dynamics, phase space structure, and computational capabilities of spiking neural networks. We
find that already a single neuron of a different type can qualitatively change the network dynamics and that mixed
networks may combine the computational capabilities of ones with a single-neuron type. We study inhibitory
networks of concave leaky (LIF) and convex “antileaky” (XIF) integrate-and-fire neurons that generalize
irregularly spiking nonchaotic LIF neuron networks. Endowed with simple conductance-based synapses for XIF
neurons, our networks can generate a balanced state of irregular asynchronous spiking as well. We determine
the voltage probability distributions and self-consistent firing rates assuming Poisson input with finite-size spike
impacts. Further, we compute the full spectrum of Lyapunov exponents (LEs) and the covariant Lyapunov vectors
(CLVs) specifying the corresponding perturbation directions. We find that there is approximately one positive LE
for each XIF neuron. This indicates in particular that a single XIF neuron renders the network dynamics chaotic.
A simple mean-field approach, which can be justified by properties of the CLVs, explains the finding. As an
application, we propose a spike-based computing scheme where our networks serve as computational reservoirs

and their different stability properties yield different computational capabilities.
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I. INTRODUCTION

Biological neural networks consist of a large variety of
interconnected neurons, which communicate via short stereo-
typical electrical pulses called action potentials or spikes.
After a neuron has generated a spike, this travels along the
axon and is transmitted to other neurons at synaptic contacts.
The electrical membrane potential of the receiving neuron
is then changed by an excitatory or inhibitory current pulse.
Sufficiently many excitatory inputs in turn lead to spike gener-
ation in a receiving neuron. Many biological neural networks
generate irregular and asynchronous spiking. This is likely
caused by a dynamically balanced network state, in which
the average inhibitory and excitatory input current to each
neuron sum to a value that is insufficient for frequent spike
generation [1-4]. Spikes are caused by fluctuations in the
inputs, and the resulting spiking dynamics appear random and
irregular.

Irregular dynamics are often chaotic, implying that the
dynamics are sensitive to perturbations: initially small ones
can strongly grow with time, which results in ultimately large
quantitative differences between perturbed and unperturbed
trajectories. A powerful tool to quantify this sensitivity and
therewith the local phase space structure are the Lyapunov
exponents (LEs) and associated with them the covariant
Lyapunov vectors (CLVs) [5,6]. The sign of the largest LE
indicates whether the system is chaotic, and its magnitude
equals the long-term average growth or decay rate of generic
infinitesimal perturbations. The spectrum of LEs describes
the long-term average evolution of volumes spanned by tan-
gent vectors and the change of infinitesimal perturbations
in nongeneric directions, which are specified by the CLVs.
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To each LE, there is a CLV. The size of a perturbation in
the CLV’s direction changes with an average rate of plus or
minus the corresponding LE for long-term forward or back-
ward time evolution, respectively. The CLVs thereby indicate
the directions of the unstable and stable manifolds along a
trajectory. Furthermore, the spectrum of LEs can be used to
derive dynamical quantities such as the Kaplan-Yorke fractal
dimension of a chaotic attractor [7].

In our study, we consider purely inhibitory networks of
current-based, oscillating integrate-and-fire-type neurons with
postsynaptic currents of infinitesimally short duration and
instantaneous reset. It has been shown numerically [8,9]
and analytically [10,11] that if such networks contain only
leaky integrate-and-fire (LIF) neurons, the networks’ irregular
balanced state dynamics are stable against infinitesimal and
small finite-size perturbations and are thus not chaotic but a
realization of stable chaos [12,13]. The dynamics ultimately
converge to a periodic orbit; the durations of the preceding
irregular transients, however, grow exponentially with system
size. The stability of the network dynamics is robust against
introducing excitatory connections and considering synaptic
currents of finite temporal extent [9,11], and there is a smooth
transition to chaos upon increasing the number of excitatory
connections and the duration of synaptic currents. The compu-
tational abilities of the stable precise spiking dynamics have
not yet been explored, even though the specific structure of
the phase space, which is composed of “flux tubes,” may be
beneficial and exploitable [14].

LIF neurons incorporate a leak current as found in bio-
logical neurons [15]. This increases linearly with increasing
membrane potential and leads to dissipation (contraction of
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phase space volume) in the subthreshold dynamics. When
driven by a constant depolarizing input current, the membrane
potential therefore has negative second derivative; the neuron
has a purely concave so-called rise function. In the considered
class of networks, this implies the stability of the microscopic
dynamics if only LIF neurons are present [10,11]. In bio-
logical neurons as well as in neuron models that explicitly
model spike generation, such as the quadratic and the expo-
nential integrate-and-fire neuron [16], the membrane potential
accelerates towards a spike for larger membrane potentials.
The rise function thus has a convex part. Reference [17]
showed that networks of quadratic integrate-and-fire neurons
that are otherwise similar to those considered in Refs. [9-11]
exhibit chaos. Furthermore, Ref. [17] computed the spectrum
of LEs and quantities that are derivable from them, as well as
the statistics of the first CLV, which points to the directions
to which a generic perturbation vector aligns in the long
term.

Motivated by the above results and by the fact that there are
many different types of cortical inhibitory interneurons [18],
in the present study we investigate the impact of inserting
a different type of neuron, with nonconcave rise function,
into inhibitory networks of LIF neurons. To be specific,
we insert “antileaky” integrate-and-fire (XIF) neurons with
purely convex rise function. We choose the letter “X” in the
abbreviation to highlight this convexity and the expansion of
phase space volume by the flow of the subthreshold dynamics.
XIF neurons may be interpreted as a model for a class of
biological neurons whose membrane potential lingers in a
region where it accelerates towards spiking. Simultaneously,
these neurons maintain similar analytical tractability as their
leaky counterparts because of their mostly linear subthreshold
dynamics. We describe our neuron and network models in
detail in the next section. Thereafter, self-consistent firing
rates and membrane potential probability distributions for
both types of neurons are analytically derived, assuming Pois-
son input with finite size spike impacts. We then consider the
dynamical stability properties and local phase space structures
of the network dynamics, computing the entire spectra of LEs
both numerically and analytically in a mean-field approxima-
tion. We also compute their CLVs to investigate how the stable
and unstable directions are related to the different neuron
types within the network.

Finally, we consider computations in pure and mixed net-
works of the considered types and show how the richer phase
space structure in mixed ones can be exploited. For this,
we propose a reservoir computer based entirely on precisely
timed spikes. Reservoir computing has been introduced sev-
eral times at different levels of elaborateness and in different
flavors, in machine learning, and in neuroscience [19-22]. A
reservoir computer consists of a high-dimensional, nonlinear
dynamical system, the reservoir or liquid, and a comparably
simple readout. The reservoir “echoes” the input in a compli-
cated, nonlinear way; it acts like a random filter bank with
finite memory as each of its units generates a nonlinearly
filtered version of the current input and its recent past while
forgetting more remote inputs [19,21-23]. The simple, often
linear readout can then be trained to extract the desired results,
while the reservoir is static. In our scheme, the output neuron
is spiking and thus nonlinear, and the desired outputs are

trains of precisely timed spikes. The learning thus requires
different approaches than learning of conventional continuous
targets; gradient-descent-based methods [24] fail due to the
discontinuity at the threshold as well as methods that require
errors to be small but finite [25]. A number of algorithms
have been suggested to learn precisely timed spikes [26-33],
mostly using heuristic approaches. For our readout neuron, we
can use the Finite Precision Learning scheme [30]. It has been
shown to generically converge if the input-output relation is
realizable at all, which explains its numerically found superior
learning abilities [31].

II. MIXED NETWORKS OF NEURONS WITH CONCAVE
AND CONVEX RISE FUNCTION

We consider a recurrent network with N neurons. The
kth spike of neuron j, which is sent at time ?j, generates
a postsynaptic current pulse 4;(V;”)C;;8(t — t;x) in neuron i.
Here C;; < 0 is the weight of the inhibitory connection and
hi(V,”) is a possible voltage-dependent modulation, which
depends on the membrane potential of neuron i just before
input arrival, given by the left-hand side limit V,” = V;(:7) =
limg o V;(t — €). We assume that all excitatory inputs to neu-
ron i can be gathered into a constant excitatory external input
current /7 > 0 and that the remaining explicitly modeled
recurrent inhibition is fast [10,14,34]. We further assume that
there is a leak term with prefactor y; # 0. Taken together,
we model the subthreshold membrane potential dynamics of
neuron i by

N
Vi —yVi H I+ (V) Y Gy Y 80— ). (1)
j=1 k

When V; reaches the spike threshold at time ¢, V;™ =V} > 0,
it is reset, V(t) = V.. = 0, and a spike is emitted. This, in
turn, generates in a postsynaptic neuron / a current pulse as
introduced above, which causes V; to decrease in jumplike
manner from V;~ to V,” + h;(V,7)Cy;. The rise function, i.e.,
the membrane potential dynamics with V;(0) = 0 in absence
of recurrent inhibitory input [35,36], reads

ext

Vi(t) = -

—[1 —exp(=yit)]. @
L
It is concave for y; > 0 and convex for y; < 0.

There are two types of neurons in our networks: LIF
neurons with dissipation and concave rise function, which
obey Eq. (1) with y; > 0, and antileaky XIF neurons with
convex rise function, which obey Eq. (1) with y; < O; see
Fig. 1. The membrane potential dynamics of an LIF neuron
has a globally attracting fixed point at V. ; = IF*/y;, if there
is no threshold for spike generation and no inhibitory input.
We assume V,; > Vi, so neurons without inhibitory input
periodically spike and reset. For our study it is sufficient to
endow the LIF neurons with a simple, current-based synapse
model, setting h;(V,”) = 1. A coarse approximation of the
membrane potential dynamics without threshold and neglect-
ing input fluctuations yields V; = —y;V; + I + [I"" where
Iiinh is the average inhibitory input current. In the balanced
state, its attractor at Vo ; = (I™ + I™)/y; is below or close
to the spike threshold, such that spikes are always or typically
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FIG. 1. LIF and XIF neuron dynamics with constant input. Blue
and red indicate LIF and XIF neurons, respectively. Solid curves in
panels (a)—(d) indicate excitatory constant input only, dashed lines
inclusion of an average inhibitory input current I'™ (the cutoff for
XIF inputs is neglected). (a), (c) Potential function U(V) of the
membrane potential (voltage) V; V follows the negative gradient
of U, V(1) = —=U’(V (1)), if there is no threshold. (a) U for an LIF
neuron is an upward parabola; V tends to the stable fixed point at
U’s minimum (at Vs or V), if there is no threshold. (¢c) U for
an XIF neuron is a downward parabola; V tends to —oo or +o00o
when starting left or right of U’s maximum (at V_o, or V_,), if
there is no threshold. A monotonically decreasing potential function
U between reset potential and threshold (left and right vertical
dashed lines) indicates mean driven periodic spiking [solid curves
in panels (a), (c)]. In the balanced state the spiking is fluctuation
driven with (a) U’s minimum below threshold for LIF neurons and
(¢) U’s maximum above reset for XIF neurons (dashed curves).
(b), (d) Example trajectories for LIF and XIF dynamics including
threshold and reset. Without inhibition, V is periodically driven over
the threshold and reset. Once averaged inhibition is included, the LIF
voltage (b) converges to the subthreshold fixed point at V., while
the XIF voltage (d) is repelled from V_,,. (e) Infinitesimal phase
response curves [37-39]. Inputs to LIF (XIF) neurons have a smaller
(larger) spike delaying effect, the lower V is. (f) Rates of free LIF and
XIF neurons at different strengths of the normalized external drive.
Neuron parameters and (if applicable) values for excitatory drive and
average inhibitory input are as in our network simulations.

generated by input fluctuations, more specifically by periods
of less than average inhibition.

In the absence of inhibitory input XIF neurons have an
unstable, repelling fixed point at V_o; = IF*'/y; < 0. If the
membrane potential starts above this separatrix, it increases
exponentially towards the threshold. When it reaches there,
the neuron spikes, its membrane potential resets to zero, in-
creases towards the threshold again, and so forth: XIF neurons
oscillate and spike periodically for any It > 0, if there is no
inhibitory input. If the membrane potential starts below the
separatrix, it decreases exponentially to —oo. Also in the pres-
ence of recurrent inhibitory inputs an XIF neuron is unrecov-
erably switched off once its membrane potential falls below
I /y;, since the inputs only decrease the membrane potential
further. Averaging over the inhibitory inputs as before yields
an effective separatrix at V_oo ; = (I™ + Iii“h) /vi - Membrane
potentials falling below it have a tendency to further decrease,
causing the neuron to effectively switch off. This can be also
seen from the phase response curve of XIF neurons, which
gets steeper for negative phases, in contrast to that of LIF
neurons, which becomes flatter; see Fig. 1(c). In other words,
in XIF neurons an incoming inhibitory input at a low potential
still above the separatrix (and thus at a low phase) has a larger
effect in the sense that it delays the next spiking more than the
same input arriving at a higher potential. As a consequence,
we observe in networks containing XIF neurons with purely
current-based input [A(V;) = 1] that many of these neurons
are first effectively and then unrecoverably switched off, if
the network dynamics are irregular, and the inhibitory inputs
are therefore strongly fluctuating. In order to prevent this
biologically implausible phenomenon, we introduce a voltage
dependence

h(V;") = OV, — Veucorr) 3)

of the input coupling strength, where ® is the Heaviside theta
function. Inhibitory inputs arriving at a membrane potential
lower than V o then do not induce a further decrease. This
provides a simple conductance-based model for the synapses,
where the driving force of the current vanishes below V; =
Veuorf and is constant above. We assume V_; < Voot +
C;; for all j to exclude unrecoverable switching off and
Veutoft < Vie. We exemplarily checked that the overall network
dynamics and their stability properties remain qualitatively
unchanged, if we also endow the LIF neurons with these
synapses.

For simplicity, we choose the parameters of all LIF and of
all XIF neurons identical, i.e., ; = yLr, I; = ILiF, etc., if neu-
ron i is an LIF neuron, and y; = yxir, I; = IxF, etc., if neuron
i is an XIF neuron. The spike threshold and reset potentials
are Vi = 1 and V. = 0, independent of the neuron type. We
set Veuorf = Vie to avoid any effective switching off of XIF
neurons. Coupling strengths are homogeneous, C;; = C, if the
coupling is present. To keep the number of relevant parameters
small, we further choose I3t/VLF = Voo LIF = —V_co.xIF =
—IZL /yxie. The additional choice yxip = —yLr leads already
in the absence of recurrent inhibition to a higher spike rate
prree x1F 10 XIF neurons, since

—VXIF
Voo xiF+Vin \ ’
In ( —V_oo,XIF )

“4)

Pfree XIF =
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FIG. 2. Mixed networks of LIF neurons with concave rise func-
tion and of XIF neurons with convex rise function can exhibit a
balanced state with asynchronous irregular activity in both types of
neurons. (a), (b) Spiking activity for a subset of the LIF (a) and the
XIF (b) neurons in a network with 75 LIF and 25 XIF neurons (N =
100). (c)—(e) Distribution of coefficients of variation of inter-spike
intervals for all neurons (c) and for LIF (d) and XIF (e) neurons sep-
arately. (f)—(h) Distribution of the average spike rates of all neurons
(f) and of LIF (g) and XIF (h) neurons separately. The analytically
derived rate p &~ 26.1 s~ [Eqgs. (18) and (19)] is indicated by a black
dashed vertical line. We use yxr = —0.1 ms™', y1r = 0.169 ms™,
VooiF = —=V_soxik = 2 and a randomly connected network with
fixed indegrees K = 50 and nonzero synaptic strength C;; =C =
—0.2.

whereas in LIF neurons,

YLIF
11‘1( Voo, LIF )

Voo,L1F—Vin

®)

Pfree, LIF —

As a consequence, we observe that in a mixed network the XIF
suppress the LIF neurons, which become quiescent. Using the
analytical results of the next section, we therefore rescale i 1p
such that the spike rates in both populations are identical.
Further, we fix the neurons’ indegree to the same number
K, implying that ), C;; is identical for each neuron i. This
reduces quenched noise [40] and avoids strong differences in
average spike rates and switched off neurons.

With the described network model setup, we observe bal-
anced states of asynchronous irregular spiking activity for any
ratio of neurons with concave and convex rise function; see
Fig. 2 for an illustration.

III. NETWORK FIRING RATE AND MEMBRANE
POTENTIAL DISTRIBUTIONS

Mean-field theories have been developed in statistical
physics [41] and are frequently used in computational neu-

roscience; see, for example, Refs. [40,42—44]. The basic idea
is to average the interactions in a high-dimensional system
to obtain for each element an effective action, which is not
influenced by this element anymore. One can thereby reduce
a high-dimensional problem to low-dimensional ones. In this
section we analytically determine the steady-state firing rate
and the voltage probability densities for LIF and XIF neurons
in mixed networks using a mean-field approximation. We
use the results to obtain neuron parameters that lead to the
same average firing rates for both neuron types and thus to
homogeneous firing rates in the entire network. In addition
we employ the firing rates to analytically approximate the
Lyapunov spectrum of the network dynamics using a mean-
field approach in Sec. IV A.

We approximate the superposed input spike trains to a
neuron by a Poisson spike train with a given rate; i.e., we
assume that all input spikes are sent independently of each
other. A common approach is to additionally consider the limit
of a large number of small inputs. The neuron dynamics can
then be approximated by a diffusion process, which allows us
to compute firing rates and membrane potential distributions
[45,46]. This diffusion approximation assumes that the inputs
have (infinitesimally) small amplitude and arrive at (infinitely)
high rate. Here we use a shot-noise approach, which accounts
for the finite input rate and size of individual inputs [45,46], in
the recent formulation of Refs. [34,47]. This allows us to more
accurately obtain the firing rates and membrane potential
distributions. In particular, the fact that in our networks the
voltage probability density does not go to zero at threshold
is reflected. We shortly review the approach for LIF neurons
[34,47,48] and then extend it to XIF neurons with the voltage-
dependent coupling (3).

The shot-noise approach (like the diffusion approximation)
is based on the continuity equation for the voltage probability
density p(V, t). For our neuron models it reads

op 0j

or VvV
where j(V,t) = V(V)p(V, t) is the drift probability current
with velocity V(V) = —yV + I oipn(V, 1) and opeee(V, 1)
are source terms incorporating the effects of inputs and resets
of the neuron’s membrane potential V.

For the LIF neuron without the voltage-dependent input,
inhibitory input spikes arriving when the considered neuron is
at a voltage V give rise to a sink at V, whereas spikes arriving
when the neuron is at a voltage V — C > V give rise to a
source at V. We therefore have a first source term

oim(V, 1) = r@)[p(V = C,1) = p(V,1)] N

with the rate r(¢) of input spikes. We note that Refs. [34,47,48]
include this term in the probability current. The second source
term is due to the spike and reset mechanism of the neuron
model. Its threshold and reset act as Dirac delta sink and
source at the corresponding discrete voltages,

Oreset(V, 1) = p(D[S(V — Vie) = 8(V — Vin)]. ®)

This term is proportional to the instantaneous firing rate
p(t) of the stochastic neuron dynamics or, in other words,
to the probability current through the threshold [p(?) =
JVn, 1) 2 0].

= Oinh + Oreset, (6)
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We investigate stationary network dynamics, which are
described by constant  and p and time-independent p(V'). For
these Eq. (6) reduces to the linear delay differential equation
(or differential-difference equation)

< V) (=yV +17)
de 14
=r[p(V =C) = p(V)I + p[8(V = Vie) = 8(V — Van)].
©))

Dividing Eq. (9) by p > 0 yields an equation for the rescaled
density g(V) = p(V)/p, which is independent of the un-
known steady-state firing rate p. This equation can be in-
tegrated, for example, with the method of steps [49]. The
integration starts with the “initial conditions” g(V) = 0 for
V > Vi and thus ¢(Viy) = 1/(—y Vi + I%") slightly below
Vin. The normalization of p(V') allows us to compute p via

l:f q(V)dv. (10)
o —00

To obtain an analytic expression for p, one applies a
bilateral Laplace transform f(s) = ffooo Ff(V)eVdV. We can
focus on s > 0; §(0) yields p~!. The Laplace transform of
the rescaled Eq. (9) results in a linear first-order ordinary
differential equation for g(s),

d _ I (e 1)
gy = [ 2D
N

Ve _ oVins

}7(5)+—. (1)
ys

It can be solved by variation of constants. The solution of the
homogeneous equation is

Zo(s) = Ae¥® (12)

with an arbitrary constant A and

Jext r s eCu -1
Y(s) = —s+ —/ du
14 YV Jo u

ext

— s+ L[Bi(Cs) — log(—Cs) = T].  (13)
vy

Here Ei(x) is the exponential integral Ei(x) = — f_oj et; dt
and I" is the Euler-Mascheroni constant. The solution of the
full equation then reads

N Vinu __ Vet
q(s):e‘m)[q(())— / ew(”)%du]. (14)
0

Since the support of g(V) is bounded from above by Vi,
G(s) = [ q(V)e"> dV < €'/ py. To balance the faster ex-
ponential growth ~exp(I®s/y) of its prefactor exp [W(s)],
the bracket on the right-hand side of Eq. (14) needs to vanish
for large s. We thus have

Vinu Viel

3(0) = / T er
0 vu

For an XIF neuron without voltage-dependent synapses
there is no stationary membrane potential probability density
p(V). This is because for any time ¢t > O there is a finite
probability that the membrane potential of a neuron jumps

1
du= —. (15)
P

below I°*'/y and thereafter tends to minus infinity. In contrast,
for an XIF neuron with the voltage dependence (3), p(V)
exists, and we may use the same approach as for the LIF
neuron to determine it together with the firing rate. Since
membrane potentials do not drop below Vyoir + C, we focus
on the interval [Veyofr + C, Vin], where p(V') can be nonzero.
The couplings’ voltage dependence enters the source term oy
in Eq. (6): If V is below Vs, incoming spikes have no effect
and the sink term due to them vanishes. Equation (7) therefore
changes to

oinm(V, 1) = r®)[p(V — C, 1) — h(V)p(V, 1)], (16)

where we used that V — C = Vit in the relevant voltage
range such that a modification of the source term is unnec-
essary. The stationary continuity equation becomes

d
Ty PV=rV + 1Y) =r[p(V — C) = h(V)p(V)]

+ p[8(V = Vie) = 8(V — Vi),
a7

which can be rescaled and integrated using the method of
steps to obtain g(V'), p and p(V) as before. The nonlinear
prefactor A(V'), however, impedes the derivation of p via the
Laplace transform.

We apply the above results to find mixed networks in
which LIF and XIF neurons have similar firing rates. Equation
(15) provides a map Gpr from the input to the output rate,
Grir(r) = p. Equation (17) implicitly defines such a map
Gxir for XIF neurons. The firing rate p of the LIF and XIF
neurons in the desired mixed network needs to solve both
self-consistency equations

GLir(Kp) = p, (18)
Gxir(Kp) = p, (19)

with the neurons’ indegree K. We employ Eq. (19) to compute
p for XIF neurons. Thereafter, we adapt the parameters of
Eq. (18) such that the same p becomes a solution. Specifically,
we solve for ypr, keeping the other parameters fixed.

Figure 3 compares the voltage densities p(V') and rates p
obtained from the shot-noise approach with those of an LIF
and an XIF neuron that receive input spike trains as they
are generated in the recurrent network of Fig. 2. There is a
pronounced discrepancy between the densities and rates for
an LIF neuron for K = 50 and small N, because both the
individual [see Figs. 2(a)-2(e)] and the superposed input spike
trains in these dense networks are more regular than Poisson
spike trains. Removing spatial correlations, for example, by
increasing N reduces the discrepancy; see Figs. 3(b)-3(d)
and Appendix A for further analysis. Such input spike trains
reduce the variance of the voltage and generate a p(V) that
is more concentrated around the value (I + Iii“h) /i, where
Iiinh is the average inhibitory input current as discussed in
Sec. II. For the XIF neuron, the input spike train statistics
has less impact on p(V). Presumably, this is because voltage
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FIG. 3. Analytically and numerically estimated voltage probabil-
ity densities and spike rates of LIF and XIF neurons. (a), (b) Voltage
probability densities for networks of (a) N =100 and (b) N =
10000 neurons. The dark blue and dark red curves show the ana-
lytical results (9) and (17) of p(V) for LIF and XIF neurons, where
p is obtained self-consistently from Eqs. (18) and (19). The light
blue and light red curves show representative numerically sampled
voltage densities of an LIF and an XIF neuron, where the input spike
trains are superpositions of simultaneous output spike trains of K
neurons in the recurrent network. (c), (d) Spike rates of neurons in
networks of (c) different sized N and indegree K = 50 and (d) size
N = 10000 and different indegree K. In panels (d) the presynaptic
weights are scaled with 1/K such that their sum is independent of K.
Numerically measured average spike rates of LIF and XIF neurons
in the different networks are shown by blue and red dots. Error bars
display the standard deviations of the rate distributions. Analytical
results obtained from Egs. (18) and (19) are displayed by dashed
black lines. Remaining parameters are as in Fig. 2.

excursions due to input fluctuations are suppressed by the
voltage dependence of the input strength (for potentials near
Veuorr) and by the drive towards threshold (for larger poten-
tials). We note that the assumption of Poisson input spike
trains is the only approximation in the chosen approach, such
that sampled membrane potential distributions of neurons
with Poisson input match the analytical ones up to the sam-
pling noise as shown in Appendix A.

IV. GROWTH OF DYNAMICAL PERTURBATIONS

A. Mean-field approach

After obtaining the spike rates and membrane potential
distributions using a statistical mean-field theory, we inves-
tigate the mixed network dynamics from a dynamical systems
perspective. We first analytically determine the Lyapunov
spectrum using again a mean-field approach. It focuses on
the evolution of perturbations to a single neuron and treats
the input from other neurons as external. Specifically, we
disregard perturbations of the rest of the network including
those generated by the considered neuron’s changed spiking.

oV
=)
[N}

\ ol

0.5+

'A%

0 5 10 15
t (ms)

FIG. 4. Evolution of perturbations during subthreshold evolution
and spiking in (a) an LIF and (b) an XIF neuron. During subthreshold
evolution the distance (perturbation) |5V (¢)| between two neighbor-
ing trajectories shrinks for LIF and grows for XIF neurons, while
spike generation partially resets it. Due to the receiving of inhibitory
spikes, the intervals between spike generations are generally longer
than for freely oscillating neurons. The impact of the subthresh-
old dynamics therefore dominates and overall the perturbation in
the LIF neuron decays while that in the XIF neuron grows. Here
we use Voorr = 1.33, Vogoxir = —1, yur = 0.5 ms™!, and yxr =
—0.3 ms~! for better illustration of the mechanism.

Inputs thus arrive at the same times in the perturbed and
in the unperturbed system and do not change the neuron’s
perturbation. Figure 4 illustrates this and compares the re-
sulting evolution of a perturbation of an XIF neuron and of
an LIF neuron: The perturbation of the XIF neuron gradually
increases as long as it is not spiking, while that of the LIF
neuron decreases. Conversely, in the XIF neuron spiking
and resetting reduces perturbations, while it increases them
in the LIF neuron; compare the values of the (finite-size)
distance |8V (¢)| = |V (t) — V(¢)| between two neighboring
trajectories V(¢) and V (¢) in Figs. 4(a) and 4(b) before and
after a spike event has taken place in both the perturbed
and the unperturbed dynamics. To assess the influence of
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these two processes, we first note that in a freely oscillating
neuron they need to cancel each other such that perturbations
persist on average and the LE is zero. We then note that the
inhibitory inputs do not affect perturbations but prolong the
subthreshold evolution between spikes. Its impact therefore
dominates, and perturbations in XIF neurons grow over time,
while they shrink in LIF neurons. This does not depend on
the specifics of the LIF and XIF dynamics but is a conse-
quence of the curvature of the rise function and the inhibitory
inputs.

In Appendix B we make the gained intuitive understanding
precise by quantifying the growth of perturbations and the re-
sulting LE. For this, we describe the dynamics by a sequence
of discrete maps from the state at a time (infinitesimally)
shortly after generation of a spike to the state at a time
shortly after generation of the next spike. The discrete time
dynamics of small perturbations are then given by the “single-
spike Jacobians” [14,17] J (k). For the effective single-neuron
dynamics here, they reduce to scalar factors

V)

0= =

|4
exp |:— AU tk):| (20
Pfree
with the free firing rate pgee [EqQ. (4) or (5)] of the neuron.
The growth rate of perturbations and thus the mean-field
LE are given by the long-term average of Eq. (20),
L1

o1 P
hant = lim =3 In [our(K)] = —y(l - ) Q1)
L—oo 1, k=0 Pfree

This expression confirms the intuitive understanding that
without perturbed inputs the growth rate depends (1) on
the growth rate during subthreshold evolution and (2) on
the prevalence of subthreshold evolution (p < pfee) OF spike
sending (p > psee) relative to the free neuron case. In par-
ticular, without input we have A,s = 0 and if the neuron is
silenced A = —y. In our inhibitory networks we have p <
Prree SUch that A > 0 for XIF and A, < O for LIF neurons.
In networks in the balanced state, the actual spike rate is
much smaller than the spike rate of a neuron if only excitation
is present. Since in our networks the latter equals the spike
rate of the freely oscillating neuron, we have p/pgee < 1.
Thus the mean-field approach indicates that the growth rate
of perturbations is mainly given by the subthreshold growth.
The mean-field approach further indicates that a single XIF
neuron renders the entire network dynamics unstable and that
the number of unstable directions equals the number of XIF
neurons in the network, while the number of stable directions
equals the number of LIF neurons. This, however, does not
give rise to a zero LE, which occurs in the full autonomous
network due to time-translation symmetry. The mean-field
spectrum and the rule for the number of stable and unstable
directions can thus be only an approximation to the exact
results.

Equation (21) together with the analytical results Egs. (18)
and (19) for p give a fully analytical estimate of the Lyapunov
spectrum. Since all LIF or XIF neurons have the same analyt-
ical rate estimates and leak strengths, the spectrum consists of
Nyir identical negative and Nxr identical positive exponents;
see Fig. 5. Due to quenched noise from random coupling, the
rates in the actual network are distributed. We can account for

this by inserting the numerically measured rates into Eq. (21);
see Fig. 5.

B. Network single-spike Jacobian

To derive exact Lyapunov spectra we need to take into ac-
count the spreading of perturbations in the network. For this,
we compute the full single-spike Jacobian J(k), which is a
map from tangent vectors at the point V(t,;‘r ) in phase space to
tangent vectors at V(t,j+1 ), where V() = [V1(¢), ..., VN(t)]T
is the state of the system at time 7. The resulting components
of J(k) read

Vit )

WO )

= 5 | 5;‘1& SitVin — Cill’li[vi(l]:+1)]’
| n T —vieh

(22)

for an LIF or an XIF neuron i, where [/ is the index of
the neuron sending the (k 4 1)th spike; see Appendix C for
details. We note that the mean-field theory accounts for the
diagonal terms of this Jacobian.

C. Volume contraction

Owing to the simple form of the single-spike Jacobians we
can find an analytical expression for the full network dynam-
ics’ expansion rate of infinitesimal phase space volumes or,
equivalently, for the sum of the LEs. The result in terms of
the neuronal spike rates in the network is exact. It allows us
to analytically compute the Lyapunov spectra for two-neuron
systems and offers a test for the accuracy of their numerical
estimates in larger networks.

The volume expansion and the sum of LEs are given by the
time-averaged logarithms of the determinants of the Jacobians
[5]. We thus have

N 1 L—1
;,\[ = lim - kz(;m |det J (k)| (23)

in terms of single-spike Jacobians [14]. In Appendix D we
exploit the specific form of J(k) to compute det J (k) with the
matrix determinant lemma. The subsequent time averaging
yields

N

N
Sh=-3n(1--2), 24
=1

i=1 Prfree, j

Notably, this shows that our mean-field theory yields an exact
expression for the volume contraction rate and the sum of LEs:
the estimate Z;V:l Ame with Eq. (21) agrees with the exact
expression (24).

D. Numerical computation of the Lyapunov spectrum

The single-spike Jacobians (22) allow us to iteratively com-
pute the largest LE and the full Lyapunov spectrum [5,17,50];
see also Appendix F. In short, for the largest LE, one iter-
ates an initial random perturbation vector by the single-spike
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FIG. 5. Lyapunov spectra of mixed networks. The numbers of LIF and XIF neurons in the networks are (a) Ny = 100 and Nxir = 0,
(b) NLIF =99 and NXIF = 1, (C) NLIF =75 and NXIF = 25, (d) NLIF = 50 and NXIF = 50, (e) NLIF =75 and NXIF = 25, (f) NLIF = 0and NXIF =
100. Blue circles display the numerically computed Lyapunov spectra using Eq. (22). Red diamonds display the mean-field result Eq. (21) with
numerically measured neuron rates, and black lines display the mean-field result Eq. (21) using the analytically obtained rates (18) and (19).

Insets show closeups of the positive and/or negative parts of the spectra.

Jacobians, stores its growth every few steps, and thereafter
renormalizes it to its initial magnitude. The long-term average
of the growth rate equals A,. For the full spectrum, one iterates
a system of NV orthogonal perturbation vectors with the single-
spike Jacobians. Every few steps, one records the growth of
the different vectors. Thereafter one reorthogonalizes, always
in the same order, and finally renormalizes the vectors. The
long-term average growth rate of the first vector then equals
A1, that of the second equals A, etc. Reference [50] suggested
an efficient method to compute the Lyapunov spectrum and
applied it to large networks; we use some of the ideas in our
implementation.

For networks consisting only of LIF neurons we find in
agreement with previous work [8—11] and our mean-field
theory that the largest nontrivial LE is negative; see Fig. 5(a).
However, we also find that already the presence of a single
XIF neuron renders the largest LE positive [see Fig. 5(b)],
indicating chaos, in agreement with the mean-field theory.
The computations also confirm that the destabilization of
a network by a single XIF neuron is a special case of a
general rule, namely, that each XIF neuron introduces about
one positive LE. This holds independently of N and K; see
Fig. 5 and Appendix E. The trivial (zero) exponent is an
exception to the rule. Our numerical results indicate that
it replaces a negative exponent if there are more LIF than
XIF neurons in the network and a positive exponent oth-
erwise. There is also good quantitative agreement with the
mean-field spectrum, in particular the exponents are close to

yur and yxip. However, also when inserting the measured
spike rates into Eq. (21) some discrepancy remains, showing
that the spread of perturbations in the network and their
transfer between neurons have a pronounced effect on their
growth.

V. STABLE AND UNSTABLE DIRECTIONS

A. Lyapunov vectors and perturbation growth

To further elucidate the local phase space structure, we
numerically investigate the characteristics of the perturbations
that grow according to the individual LEs, i.e., how they
are distributed across neurons and how they change during
evolution. This will, in particular, allow us to understand
why the mean-field theory works well. The directions of
the perturbations are given by the CLVs or, in other words,
by the stable and unstable manifolds along the trajectory
[5,6].

The ith CLV v;(Vy) at a point V in phase space is a
normalized tangent vector that grows with long-term average
rates A; and —A; when evolved forward and backward in
time. We call it a stable CLV if A; < 0 and an unstable
one if A; > 0. We assume for simplicity that all LEs are
different; the vector is then unique up to its orientation.
Consider a trajectory V(¢) that reaches shortly after the
spike time 7y the state V(z;) = V. Using the single-spike
Jacobians J(k), v;(V) may be defined as the tangent vector
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FIG. 6. Tracking the growth or shrinkage of finite perturbations. We consider the same network as in Figs. 2 and 5(c) and explicitly perturb
it in different directions. The semilogarithmic plots display the time evolution of distances between original and perturbed trajectories (blue)
and compare them to exponential functions with growth rates equal to the relevant LEs (yellow, red). Transient large perturbations due to
different event times in the two systems (cf. Fig. 4) are excluded. We perturb in panel (a) in a generic direction, in panel (b) in the direction of
the unstable CLV v,s corresponding to LE A,5 (closest to the trivial one), in panel (c) in the direction of the trivial CLV vy (in the direction of
the trajectory), and in panel (d) in the direction of the stable CLV vy. In (a) after a short equilibration time we have growth with the largest LE.
In panels (b), (c), and (d) the perturbation grows initially with the LE of the CLV. The small numerical error of the CLVs grows exponentially

with the largest LE and eventually dominates the evolution.

satisfying
L
[0 vivo)| ~ e, (25)
k=0
-1
[T 77 0vivo| ~ e, (26)
k=—M

where L and M are chosen sufficiently large. The definition
can be straightforwardly extended to states between spiking
events. Both of its parts are important: The first part alone
does not uniquely define the direction of v;(Vy), since adding
any vector with growth rate less than A; yields the same
asymptotics. The second part excludes such an addition,
since its shrinkage rate is slower than —A; and thus yields
a different dominant asymptotics of backward evolution. As
anticipated by the notation, the vector depends only on the
state but not on the time when V (¢) reaches it. Furthermore,
the definition ensures covariance, that is, the evolution of
infinitesimal perturbations (the tangent flow) maps CLVs to
CLVs. At subsequent spike times we thus have

J(Ryvi(V (55) oc vi(V (5,))). 27)

The extension to states between spike times is again straight-
forward: the covariance implies that we can obtain CLVs
v;(V(2)) at a state between spike times #;, and #;,; by prop-
agating v,‘(V(t,:r )) forward with the Jacobian f,-j(t — ) =
8;j exp[—y;(t — t)] of subthreshold evolution.

We compute the CLVs in a dynamical manner by forward
and restricted backward propagating sets of vectors, following
Refs. [5,51]. Appendix F provides a short description of the
method. We note that the dynamics of our system are not
invertible: given a state there is no unique way of propagating
it back in time. This is because an ambiguity can arise at
states where one neuron is at the reset potential; we generally
cannot tell whether it was reset or crossed the reset potential
from below (unless some postsynaptic neuron is too near
to threshold to be able to have just received a spike). It is,
however, still possible to compute the Lyapunov vectors by

backward propagating along the trajectory that was previously
taken for the forward propagation [51].

B. Stable and unstable directions in mixed networks

The CLVs yield the directions in which small but finite
perturbations evolve according to the different LEs as shown
in Fig. 6. We find that they generally contain perturbations
to a variety of neurons and that they strongly change their
direction during evolution. More specifically, we observe
that the stable and unstable CLVs stay approximately con-
fined to the subspaces of (strictly speaking: perturbations
to) LIF and XIF neurons, respectively. Figures 7(a)-7(d)

/2T w2 [V ()] and

illustrate this by displaying the lengths iz

\/ Z]JY:NUF 41 vl% ;IV(©)] of the projections of different CLVs

v; onto the subspaces of LIF and XIF neurons. Here and
in the following we assume that the LIF and XIF neurons
have the indices 1, ..., Ny and Nyjgy g, - - -, N, respectively.
Figures 7(e) and 7(f) further illustrate the confinement and
show the large temporal variability of single CLV components
v;,; that are not close to zero. The confinement does not
hold exactly since perturbations of LIF neurons usually also
give rise to perturbations of XIF neurons and vice versa.
In networks with inhomogeneous spike rates, we observe
that single neurons that are strongly suppressed by inhibition
have CLVs more aligned to them, because their perturbation
spreads less in the network due to their lack of spiking.

We further quantify the localization of the CLVs using an
inverse participation ratio (number) [51,52], which we define
for the ith CLV as

N
Pl = <Zv§%_i[V<rk>1>
j=1

Here (.), is an average over sufficiently many events and
we use that the CLVs are normalized, Z]Jyzl vf ,-[V(lk)] =1.
The participation ratio P, measures how many components
contribute to a vector. If, for example, the vector v;(V ()

(28)

k

042404-9



MANZ, GOEDEKE, AND MEMMESHEIMER

PHYSICAL REVIEW E 100, 042404 (2019)

(a) (b)
1 1
=1 =}
8 .8
< 0.8 < 0.8
2 R
% 0.6 | —LIF neurons % 0.6
= IF neurons =
=04 =04
+~ +~
2 2
g 0.2 | £ 0.2
0 o ook i
0 500 1000 1500 0 500 1000 1500
t (ms) t (ms)
e f
0.4 (e) 0.4 ( )
0-2 0.2
2 3
s 0 o
£ 2,
S S
-0.2
04 —LIF component
——XIF component
-0.6 -0.4
0 500 1000 1500 0 500 1000 1500
t (ms) t (ms)

(c) (d)
=] 1 — 1
g g SO
5 0.8 5 0.8
o o
206 5,0.6
: B
S 0.4 < 0.4
2 2
3 0.2 3 0.2
0 0
0 500 1000 1500 0 500 1000 1500
t (ms) t (ms)
h
1008 50 1)
. stable
80 f i ¢ unstable
20 t
60 . }
iy Ry i
40 +
10 t
20 :
Laporsn™a? * J
0 0
0 50 100 0 50 100
i Nrir

FIG. 7. Stable and unstable CLVs are mostly confined to the subspaces of (perturbations to) LIF or XIF neurons, respectively. (a)—(d) The
time evolution of the lengths of the projections of different CLVs onto the subspaces of LIF (blue) and XIF (red) neurons: (a) unstable CLV
v, (b) stable CLV wgg, (c) unstable CLV v,5 (corresponding to the LE closest to the trivial one), and (d) trivial CLV wvy. (e), (f) The time
evolutions of the projections of different CLVs onto the subspace of a single LIF neuron (neuron index n = 5, blue) and a single XIF neuron

(n = 95, red): (e) unstable vector (v;s), (f) stable vector (vgs). Values

are plotted at event times ¢ = f;. (g) The participation ratios P; of the

unstable (purple), trivial (black), and stable (yellow) CLVs averaged over 10 000 events. The network is the same as in Figs. 2, 5(c), and 6.
(h) The median P of the participation ratios of the stable (yellow) and unstable (purple) CLVs, in networks as in panels (a)-(g) with N = 100
neurons but with different fractions of LIF and XIF neurons. Bars indicate the first and third quartiles of the distribution.

always has only one nonzero component, P; = 1. If there
are always m nonzero components of equal size, P, = m. We
observe that the participation ratio of unstable CLVs increases
approximately linearly with the number of XIF neurons start-
ing with P; & 1 at Nxjr = 1, consistent with a delocalization
of these CLVs between the present XIF neurons; see Figs. 7(g)
and 7(h). P, for stable CLVs increases likewise with the
number of LIF neurons. The trivial CLV has a participation
ratio close to N, because the components of the tangential
vector dV;(t)/dt and thus the components of the CLV have
roughly similar size.

Our mean-field approach uses the assumption that each
LE is independently generated by the growth or shrinkage
of a single-neuron perturbation, with negligible influence of
the perturbation’s spread and backreaction in the network. Its
suitability can now be understood as follows: The approxi-
mately N ir stable CLVs are confined to the Ny p-dimensional
subspace of perturbations to LIF neurons. The stable CLVs
thus form a basis of the subspace of perturbations to LIF
neurons. Likewise the unstable CLVs form a basis of the sub-
space of perturbations to XIF neurons. At each time point, a
perturbation to a single LIF neuron can therefore be expressed
as a linear combination of stable CLVs, while a perturbation
to an XIF neuron can be expressed as a linear combination
of unstable CLVs. The stable CLVs have similar decay rates
(negative LEs), and the unstable CLVs have similar growth
rates (positive LEs); see Fig. 5. Any linear combination of

only stable or only unstable CLVs inherits this decay or
growth rate. This holds in particular for the perturbation of a
single neuron. At each time point the perturbation to a single
LIF or XIF neuron thus grows according to the negative or
according to the positive LEs, respectively. The mean-field
approach therefore yields good results.

VI. COMPUTATIONS WITH PRECISELY TIMED SPIKES
A. Network architecture and task design

In the following, we employ our networks for computa-
tions. In particular, we investigate how their different phase
space structures and CLVs may be exploited in specific tasks.
This requires a computational scheme based on precise spik-
ing, which is affected by the phase space structure. We design
a setup where one of our recurrent neural networks acts as a
kind of computational reservoir [14,21,22], in the sense that
it randomly nonlinearly filters its inputs. An output neuron
receives the generated spikes and learns to generate desired
outputs; see Fig. 8(a).

Inspired by experimental and computational neuroscience
paradigms [53,54], we assume that the networks receive in-
puts from context neurons, whose spiking defines the com-
putation to be executed in the specific trial and from input
neurons. Their synaptic weights as well as the recurrent
ones are static; only the output weights are learned. At the
beginning of each trial, all membrane potentials are reset to
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FIG. 8. Network for precise spike-based computations and solution of the XOR/AND task. (a) Network architecture. The recurrent network
(middle, blue and red for LIF and XIF neurons) receives input spikes from context (top, black) and from input neurons (gray). The output
neuron (bottom) changes its plastic weights (red) according to Finite Precision Learning to learn the task. (b) Spiking of the context and input
neurons (top), voltage traces of recurrent neurons (middle, LIF neurons 1-7, XIF neurons 76-78, spikes highlighted by vertical lines) and
voltage traces of the output neuron (bottom) after learning the XOR/AND task. Dashed lines indicate the times of possible context () and
input neuron (t, +, #in -) spiking as well as the possible desired output spike times (fou( 4, fou-). The output neuron sends its spike in the tolerance
window around the desired time of the specific trial (gray rectangle). (c) Output weights w; from LIF (blue) and XIF neurons (red), Vj, (black
line) and Vi, Lir (gray dashed line), before (left) and after (right) learning. The weights have overall decreased during learning, while Vi, (black
line) and V4 ¢ have increased. The specific weight pattern after learning is crucial for executing the task; random weight shuffling leads to
erroneous output spiking. (d) Overview of the eight spike patterns of the task after learning. In context 1, the system generates a temporal
XOR computation, in context 2 a temporal AND computation. The output spikes are in the desired tolerance windows (gray rectangles) for all
patterns.

zero. The recurrent network dynamics are therefore identical
in trials with the same context and input neuron spikes. To
keep the computational scheme consistent, we specify trains
of precisely timed spikes as desired outputs.

The output neuron is an LIF neuron as used in the recurrent
network. The subthreshold dynamics of its membrane poten-
tial Vou(¢) are thus given by

N
Vou(t) = Z w; Z E*VLIF(f*fjk) + Vth,out _ Z e*)qu(l*t.\\p)

j=1 k:[jk<[ tp <t
+ Voo,ou(1 — e_yuﬂ), (29)

where w; are the output weights, Vi ou; is the threshold, #,
the output spikes, Vo ou the asymptotic potential, and N the
number of spiking neurons in the recurrent network. Initially
Vinout = Vih» Vo,out = Voo, LiF, and the w; are are drawn ran-
domly from the uniform distribution over [2C, 0]. We use
Finite Precision Learning [30] to learn the input-output tasks.

The shapes of the postsynaptic potentials in our single-neuron
dynamics are different from those in Ref. [30], and there is
an additional constant driving term. The learning rule can be
readily adapted to this: We consider Vou(#) — Vih,our and cast
it into the form Vou(t) — Vih.ont = ZkN:IZ wix(1). Spikes are
generated when Vi, (f) — Vin,ont reaches zero. At each time ¢,
we thus have a kind of perceptron classification task, where
Wj, Vinou and Ve oue are the “weights” to be learned. The
“inputs” belonging to these weights are

xj() = Y e, (30)
tj<t

() = = ) e (31)
tsp<t

Xy (t) =1 —e 1, (32)

Following Ref. [30], we assume a tolerance window of size
& around each desired spike (we use ¢ = 1 ms throughout).
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There are now two kinds of errors: (1) undesired spikes, i.e.,
spikes out of a tolerance window or second spikes within a
tolerance window (Err = 1, the error time g, is the spike
time) and (2) missing spikes within a tolerance window (Err =
—1, g is the end of the tolerance window). The dynamics
are stopped at the first error, and w;, Vipour, and Vg out are
corrected according to the perceptron rule,

ij = —nErr Z e_VL]F(fErr_l/k)’ (33)
ket j <tge
AVipou = nErr| Y errtetol ) (34)
tsp <IEr
AV out = —nErr(1 — e_V”FtF‘"), 35

with learning rate n (we use n = 0.01). To focus on networks
with inhibitory neurons throughout the article, we restrict the
output weights to be inhibitory by clamping them at zero when
they would become excitatory during learning. We note that a
missed spike generates increases in w; and Vg o4 as well as
a decrease in Vi o to foster spiking. If an undesired spike
occurs, the signs are reversed.

B. Switchable temporal XOR/AND

We exemplarily consider two tasks. In the first, the network
of Fig. 8(a) learns to execute in context 1 a temporal XOR and
in context 2 a temporal AND computation; see Figs. 8(b)-8(d).
The weights from context and input neurons to the recurrent
network are drawn randomly from the uniform distribution
over [2C, 0]. At the beginning of a trial, at r = 0 ms, context
neuron 1 or 2 sends a spike, specifying the context. Thereafter
each input neuron sends a spike, either at time #, + = 5 ms
(“+”-input) or atti, . = 10 ms (“—"-input). The desired output
spike is at fou+ = 15 ms (“4-output) or at foy- = 20 ms
(“—"-output), depending on the context and the input spike
times.

The considered networks learn the task easily, whether the
reservoir consists of LIF or XIF neurons or of a mixture of
both. The example with a mixed network displayed in Fig. 8
[the same network as in Figs. 2, 5(c), 6, and 7] required 53
learning cycles, where in each cycle the four input-desired
output patterns of both contexts were presented. The networks
cannot learn the task, if the recurrent network dynamics at the
desired output times are too similar for different contexts and
input conditions. This happens for recurrent LIF networks, if
the context or input neurons have coupling strengths that are
so weak that the perturbations due to different input timing
are small. The states are then within the same flux tube and
the perturbation decays up to a time shift. In XIF and mixed
networks, the recurrent dynamics are too similar if there
is insufficient time for the perturbation to grow and spread
before the first desired output.

C. Detect or ignore input time differences

In the second task, the system has to ignore a difference in
input timing in context 1 and to detect it in context 2. The net-
work setup is as in Fig. 8(a), except that there is only one input

neuron. This sends a spike at#, + =, — At oratty, - =1 +
At (t; = 1 ms, At = 0.1 ms). The output neuron shall gen-
erate in context 1 for both input conditions the same output,
a burst of four spikes at + = 105 ms, 110 ms, 115 ms, and
120 ms. In context 2 it shall detect the difference and highlight
it by sending one spike at + = 100 ms (input at #, ;) or two
spikes at # = 130 ms and 135 ms (input at #;, _). For this task,
for simplicity we assume that the impacts of input neurons
do not depend on the membrane potential, i.e., for them
hi(V;,") = 1. Further, we allow context and input weights to
be excitatory and inhibitory.

We find that networks with the previously chosen random
parameters of external weights drawn from [2C, 0] usually
cannot solve the task (criterion: no convergence within 50 000
cycles). The reason is different for pure LIF reservoirs and for
reservoirs containing XIF neurons: In a pure LIF reservoir, the
small difference in input times leads to state perturbations that
are usually in the same flux tube. These decay to a temporal
shift until the time of the desired outputs. The readout neuron
thus cannot learn to generate two different output patterns
as required in context 2. In presence of XIF neurons, the
dynamics are locally unstable. The small input difference
is amplified in both contexts, and the reservoir spiking is
different for all four patterns at the times of the desired
output. The network therefore has to learn four input-output
relations with 11 output spikes and silence periods in between,
without being able to take advantage of the fact that two of
the four output patterns are identical. This typically exceeds
its learning capacity. We also observe for our parameters that
the dynamics of the pure LIF reservoir can leave its flux tube
due to the perturbation. If this happens only for context 2, the
system can often learn the task.

To solve the problem, we design the network such that,
reliably, in context 1 but not in context 2 the input differences
leave the reservoir spiking at the time of the desired outputs
largely unaffected. This can be achieved by choosing the
context and input couplings such that the input difference
generates a state perturbation along a stable CLV of the
reservoir dynamics in context 1. In contrast, for context 2 the
state perturbation should have a component in the direction of
an unstable CLV such that it is quickly amplified. The setup
requires mixed networks with both types of CLVs. We note
that an alternative approach might exploit the dichotomy of
large and small perturbations, which do and do not leave the
flux tubes of pure LIF networks.

To derive appropriate weights, we compute the state per-
turbations in the reservoir assuming that in the “unperturbed”
system the input arrives at #;. We there have

Vit = Vit;) + Cn, (36)

where C]i-" is the coupling strength from the input neuron
to neuron j. In the “perturbed” system, the input arrives
shifted by &t (here 6t = £Ar), such that we have in linear

approximation
Vj(tl +8tH) =Vt + Vj(tl’)& + C}“. 37

To compute a perturbation in the V;(z;") that corresponds
to the perturbation due to the temporal shift of input, we
propagate the perturbed potential in linear approximation

042404-12



DYNAMICS AND COMPUTATION IN MIXED NETWORKS ...

PHYSICAL REVIEW E 100, 042404 (2019)

from 7, + 81t to 1",
8V;() ~ Vit + 81) = Vit + 80981 = Vi)
~ Va8 = { vV + €7+ 17 o
= y;C"ot. 38)

A temporal input difference that should be ignored should be
proportional to a stable CLV v; at the state V (1,"),

yiC o v IV (@D 39)

We choose the same recurrent network as in Figs. 2, 5(c), 6,
and 7 and the same CLV as in Fig. 6(d) att = 0 ms, i.e.,i = 90
and

V) =V, (40)

where V is the state at which the vector was recorded.
Context input 1 determines the state at ¢, by fixing the
initial conditions of the dynamics. We choose as context input
weights

CH = Vi(07) = &7 (Vo — C') 4 Vio(1 — €"),  (41)

which lead to Eq. (40) after free propagation until #; and
receiving of the input C}“. To ensure that the perturbation in
context 2 has a component in the direction of an unstable
CLYV, it suffices to choose a random context weight vector,
such that V(tf) # Vo and v;(V) is typically not a stable
CLV or a linear combination of stable CLVs at the state
V(t}"). We randomly permute the entries of C**"! to obtain
Cctxt,2'

We find that the network constructed in this way can
reliably learn the task. The example displayed in Fig. 9 uses a
proportionality factor of 0.01 in Eq. (39); the output weights
converged after 146 cycles.

VII. DISCUSSION

In the present article we investigate the spiking and mem-
brane potential statistics, the stability properties, and the phase
space structure of mixed networks containing conventional
LIF neurons and XIF neurons with a convex rise function.
The recurrent connections are inhibitory, and the synaptic
currents have an infinitesimal temporal extent. We employ
two analytical mean-field approaches, one for the statistics
and one for the dynamical stability properties; numerical
simulations yield additional features of the dynamics and a
better understanding of the analytical approximations. Finally,
we apply the networks for computation with spikes, exploiting
our insights into the dynamics.

We investigate networks in the balanced state. To establish
it in our networks, we introduce a voltage dependence in the
XIF neuron inputs: below a certain potential, further input has
no impact. This simple model of a conductance-based synapse
prevents XIF neurons from switching off and provides a good-
natured nonlinearity, which leaves the dynamics analytically
tractable.

The balanced state is typically investigated using spiking
network models with an excitatory and an inhibitory neuron
population or with a single population of hybrid excitatory-
inhibitory or inhibitory neurons [3,4,17,42,55]. While detailed

(a) S | S
otct [} I (A
il [ 1 W,
out il : 6
ctxt [! 1t
in f| U
out [ n i
ctxt ‘ [
in | Lot
out | oo i
m ‘ 76 &
ctxt _“ i 11
in | I
out ! LN | 1 . 2 .
0 50 t¢(ms) 0.8 1.2 0 50 100 t(ms)

FIG. 9. Network trained to detect or ignore input time differ-
ences, after learning. (a) Overview of the four spike patterns of the
task. In context 1, the network ignores the small time difference in
the input (right subpanels: closeups around input times); in context
2 it detects and highlights it by generating different numbers and
timings of output spikes. After learning, the output spikes are in
the desired tolerance windows (gray rectangles, appearing as lines
at the displayed timescale) for all patterns. [(b), Top] The spiking
dynamics in the recurrent reservoir (green and yellow dots) are in
context 1 similar for both input times, due to the chosen context and
input weights. This generally fosters and here enables learning of the
same output. (Middle) The temporal differences 5t between reservoir
spikes display the typical pattern of first shrinkage then growth of
perturbations along stable CLVs; cf. Fig. 6(d). (Bottom) The different
spiking dynamics in the recurrent reservoir for different input times
in context 2 allow the generation of different output.

models of small circuits with specific abilities such as cen-
tral pattern generators commonly consider multiple neuron
types [56], studies on the impact of mixed populations of
multiple neuron types on the collective dynamics of larger
networks are rare. Reference [57] simulated networks with
excitatory and inhibitory populations containing resonator-
and integrator-type neurons. These mixed networks both per-
sistently generated activity and quickly changed their overall
rate in response to inputs, thereby combining abilities of their
pure counterparts. References [58,59] considered models for
working memory and visual processing with different types of
interneurons that were grouped into distinct populations with
different connectivities.

We characterize the balanced dynamics of inhibitory mixed
LIF and XIF networks first from a statistical perspective,
adopting a shot-noise approach, which accounts for the finite
input rate and finite size of individual inputs [34,45-47]. We
extend this approach to XIF neurons and derive their steady-
state firing rate and voltage probability density. In contrast to
the case of LIF neurons, the final continuity equation needs
to be integrated numerically, due to the nonlinearity in the
XIF input. We apply the results to obtain neuron parame-
ters that lead to homogeneous firing rates for our further
considered networks. We insert these rates into the mean-
field expressions of the Lyapunov exponents (LEs) and thus
analytically determine the dynamical stability properties of
the network.
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While networks of LIF neurons have stable dynamics
[8-11,14], we find that already one XIF neuron gives rise
to a positive largest LE indicating chaos, in contrast to the
robustness against introducing excitatory connections [9,11].
We give an analytical argument for this and expand it to a
mean-field estimate of the entire Lyapunov spectrum. Simply
put, the destabilizing effect of excitatory inputs will be com-
pensated by receiving inhibitory ones, if the latter dominate
and the period of spiking is overall increased compared to
the free neurons. If one introduces an XIF neuron, there is
nothing which could counteract the increase of its perturbation
through inhibitory input other than an unlikely network back-
reaction triggered by its perturbed output spikes. We note that
in the phase representation of LIF neurons used in Ref. [11],
in contrast to our voltage representation an excitatory input
explicitly increases a perturbation, while an inhibitory input
decreases it, unless the excitatory input is suprathreshold
[60,61].

While computing the largest LE is a standard procedure,
few studies have so far obtained a large part or the entire
spectrum of balanced spiking dynamics. They considered a
single homogeneous or an excitatory and an inhibitory neuron
population [14,17,50,62—-64]. We analytically and numerically
obtain the full spectrum for mixed networks of inhibitory
LIF and XIF neurons. Interestingly, we find that it separates
into two parts, in contrast to the ones reported previously,
including those of networks with separate excitatory and in-
hibitory populations. Furthermore, we compute the covariant
Lyapunov vectors (CLVs) of the dynamics [5,6]. They provide
us with further insight into the phase space structure and the
approximations underlying the mean-field analysis of LEs.
The stable (unstable) CLVs are approximately aligned to the
subspace of perturbations to LIF (XIF) neurons.

Our mean-field analysis predicts that the number of neg-
ative (positive) LEs is equal to the number of LIF (XIF)
neurons. Since the underlying arguments do not depend on
the neurons’ specifics, we expect this to hold for any types
of neurons with purely concave and convex rise functions.
The mean-field analysis further indicates that the size of the
LEs is approximately given by the strength of the leak and
the quotient of free and actual spike frequency. The LEs are
thus largely independent of the collective dynamics but rather
reflect properties of individual neurons. This implies in partic-
ular that the typical perturbation growth rate does not change
with network size. It further implies that in the balanced state,
where the ratio of actual and free spike rate is low, the LEs
are mainly determined by the single-neuron leak strengths;
see Ref. [14] for a similar finding in large networks of LIF
neurons with high indegree. The result is a consequence of
the linear subthreshold dynamics of the neurons, which imply
that the increase or decrease of a perturbation is independent
of the state of the neuron when receiving a spike. We note
that Ref. [65] defined the Lyapunov spectrum as consist-
ing of mean-field LEs in a numerical study on LIF neuron
networks.

Our numerical computations of the Lyapunov spectrum
show that the mean-field result is a good approximation. We
explain this by analyzing the CLVs. Furthermore, we derive an
exact expression for the change of phase space volume, which
agrees with the mean-field result.

The presence of discrete events and the possibly large
impact of changing their order could in principle render the
transfer of insights on infinitesimal perturbations to finite
ones difficult. References [10,11] studied the evolution of
finite-size perturbations in the pure LIF network model with
stable dynamics and showed that finite-size perturbations
decay exponentially fast, while the minimal perturbation lead-
ing to a change of event order decreases only algebraically.
Thus, for sufficiently small initial finite-size perturbations
the probability of a change of event order goes to zero and
no difficulties occur. For unstable dynamics, we may expect
generic interchanges of event order to be an additional source
of deviations between trajectories so that small finite-size
perturbations grow as fast and larger ones at least as fast as
their infinitesimal counterparts. We therefore focus mostly on
linear stability analysis in the present article. Our numerical
simulations employ finite-size perturbations and confirm the
results.

To illustrate the usefulness of our findings we apply the
considered networks to neural computations. We propose a
computing scheme based on precisely timed spikes where
details of the phase space structure matter. In particular, our
solution of the second task exploits details of the network’s
state space, the stability or instability of the spiking dynam-
ics against perturbations in the direction of different CLVs.
This may be especially relevant for neuromorphic computing,
where precise spike-based schemes receive increasing interest
[32,33,66—68]. In our setup, the inputs are fed into a random
recurrent network, whose neurons generate precisely timed
spike trains, which depend nonlinearly on the input. In this
sense, the recurrent network acts like a random filter bank
and computational reservoir. The spike trains are read out
by a spiking neuron. In contrast to previous spiking reservoir
computers [22,69-72], we use trains of precisely timed spikes
as targets. To train the readout neuron, we use Finite Precision
Learning [30]. It was introduced for neurons with temporally
extended input currents of either sign. In our study we adapt it
to a neuron with inhibitory, infinitesimally short input currents
and constant external drive. We note that the general phase
space structure implies that the considered networks do not
lend themselves to conventional reservoir computing: there is
no global fixed point, which could be reached by the spiking
dynamics such that sufficiently long past input is forgotten.
In other words, our networks do not have the so-called
echo state property [73]. We therefore introduce a forgetting
mechanism by resetting the network at the beginning of a
trial.

Our findings show that by choosing appropriate numbers
of LIF and XIF neurons, one can straightforwardly construct
spiking networks with a desired number of stable and unstable
directions. The obtained CLVs allow us to exploit them for
computation: one can choose the input weights such that
meaningless inputs and input perturbations happen along sta-
ble directions while meaningful ones have a component in an
unstable direction; the former ones are suppressed while the
latter ones are amplified. Our mixed networks thus combine
the computational capabilities of purely stable and purely un-
stable networks. It is tempting to speculate that in the brain as
well the combination of different neuron types might globally
change the phase space structure and lead to combinations of
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computational capabilities that can be selected with different
input vectors. While we have chosen the input weights by
hand, plasticity rules for spiking networks in the brain as
well as future artificial ones may allow finding them by
learning.
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APPENDIX A: VOLTAGE PROBABILITY DISTRIBUTION
OF LIF NEURONS

In the following, we further discuss the discrepancy be-
tween the voltage probability density of an LIF neuron ob-
tained by the shot-noise approach and the one observed if
the inputs are spike trains recorded in the network of Fig. 2;
cf. Figs. 3(a) and 10(a). The analytical density obtained by
the shot-noise approach, Eq. (9), with rate given by Eq. (18)
matches that of an LIF neuron receiving a Poisson spike train
with the same rate and spike impact strength; see Fig. 10(b).
Hence, we can attribute the observed discrepancy for LIF
neurons with network spike train input to deviations of the
spike trains’ rate and the assumed Poisson statistics.

We expect that the discrepancy is mainly caused by spatial
correlations that arise in a rather dense network of N = 100
neurons with an indegree of K = 50. To substantiate this we
reduce the correlations in two ways: First, we use spike trains
from a sparse network with N = 10000 and K = 50 to gener-
ate the neuron input. Second, we randomly shift the individual
spike trains of the original N = 100 network in time before
superposing them to generate the input; this eliminates spatial
correlations while keeping the temporal correlations of the
individual spike trains intact. Figures 10(c) and 10(d) show
that both manipulations strongly reduce the discrepancy to the
analytical density. Some of the remaining discrepancy is due
to the difference between the network spike rate and the result
of Eq. (18); see Fig. 10(d).

Finally we explore the impact of the reduced variability
of the interspike intervals. For this, we use Poisson and
Gamma process input spike trains. The latter are completely
characterized by their rate and the coefficient of variation of
the interspike-interval distribution, which we match to those
of the superposed spike trains of the network of Fig. 2. The
quality of approximation increases when taking into account
the reduced variability; see Fig. 10(e). Also if the input is
a superposition of shifted spike trains, accounting for it still
slightly improves the similarity between the resulting p(V');
compare Figs. 10(f) and 10(d) (which matches the result for
Poisson input).

(a) (b)
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%4 V

FIG. 10. Comparison of different numerically sampled and ana-
Iytical voltage probability densities p(V') of LIF neurons. (a) Ana-
lytical density from Egs. (9) and (18) (red) and numerically sampled
p(V) of three neurons receiving different sets of K = 50 spike trains
from the network of Fig. 2 (different shades of blue). (b) Analytical
estimate (red, mostly covered) and numerically sampled p(V) of
an LIF neuron receiving Poisson input with the same rate (gray).
(c) Similar plot as in panel (a) with a single numerically sampled
distribution of an LIF neuron receiving K = 50 spike trains from a
larger network of N = 10 000 neurons (dark green) and an additional
analytically estimated p(V) using Egs. (9) and (15) with input rate
r set to the rate of the superposed network spike trains (light red).
(d) p(V) of an LIF neuron receiving K = 50 time-shifted spike trains
from the network of Fig. 2 (light green), analytical estimate with the
same input rate (brown), and analytical estimate as in panel (a) (red).
(e) p(V) of LIF neurons receiving K = 50 spike trains from the
network of Fig. 2 (blue), Gamma process input with the same rate and
CV (orange) and Poisson input with the same rate (brown). (f) p(V)
of LIF neurons receiving shifted spike trains as in panel (d) (light
green) and Gamma process input with the same rate and CV (purple).

APPENDIX B: MEAN-FIELD LYAPUNOV EXPONENTS

In the following we compute the mean-field LEs. For this,
we describe the dynamics by a sequence of discrete maps
from the state at a time (strictly speaking: infinitesimally)
shortly after generation of a spike to the state at a time shortly
after generation of the next spike. We take a stroboscopic
map approach; i.e., the times remain unchanged if a small
perturbation is applied to the dynamics. The dynamics of
small perturbations are encoded in the Jacobian matrices at
each time point. Specifically, for our discrete description we
need the single-spike Jacobians [14,17] J(k). They generally
describe the linear evolution of infinitesimal perturbations
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from time 7" = + ¢ (with ¢ > 0 arbitrarily small) shortly
after the kth spike event in a network to time thCH shortly after
the next spike. For our effective single-neuron dynamics, they
reduce to scalar factors

WV (5,)
v’
where the relevant events are the spike generations of the

considered neuron. To compute J(k), we first recall that the
free evolution between spikes until time 7, , | = #;41 — ¢ yields

J(k) = (B1)

ext

I
V(tk+l) — V(t )e_y(’“‘ —) —|— [ e_y(tkﬂ_fk)]; (B2)
Y

see Eq. (1). At #; the neuron is reset,
V(t[;:,]) :V(tk_+1) - ‘/thv (B3)

and V(¢ 1) =V implies an implicit dependence of 7., on
V() via
Iex[

Vin ZV(t]j)e*V(tkH*tk) + 7[1 _ e*V(tkH*tk)]. (B4)
We now consider the evolution of an infinitesimal pertur-
bation of the membrane potential. According to Egs. (B2)
and (B3), the perturbation cSV(t,:r ) changes until 7, 41 by a
factor e~ 7+~ Further, it generates a perturbation 8t =
[0tk+1/0V (£)18V (1) of fi41. The different evaluation time
before the spike event results in an additional membrane
potential change V(tk’ 118041, which lets the neuron reach
the threshold at (f;4 + 8x+1) ™. Since we have a stroboscopic
description, we need to compensate the time shift to obtain the
state at 7%, . This is achieved by subtracting —V (;", | )8t441. A
perturbation 8V (#;") of the state at 7, thus generates at time
1, a perturbation

SV (L) =e 7Ty (1h)
k+l +
—08V( B5
e @)  (BS)

and the resulting mean-field Jacobian reads

+ IV ) = VD)o

— V=) 4 Ty (s liet1
Jm(k) = 77T L [V (1) — V(t"“)]aV(ﬁ)' (B6)
Application of the implicit function theorem,
Oty _ 1 8V(tk_+l) (B7)
v () Vt,) v’

and inserting Eqgs. (1), (B2), (B3), (B4), and (4), or (5) results
in
Y(tktrl ) e~V k1 —t)

Jmf(k) = V(tk_Jrl)

= exp |: - Y (trr1 — tk):|~
Pfree
(BY)

We note that another, equivalent derivation of J(k) first com-
putes the voltages at a fixed time ¢’ between ;4 and #;,,
in terms of the voltages at another fixed time ¢ between #;
and f;,. Taking derivatives leads to the Jacobian for the
dynamical evolution from ¢ to t’. The limits ¢ \ # and
t' \{ fxs1 then yield J (k).

The growth rate of perturbations and thus the mean-field
LE are given by the long-term average of Eq. (B8),

= lim ~ Zln | Tt (k)

li )4
= lim — -
L—oo 1, =0 Pfree
=—y<1— p ) (B9)
Pfree

APPENDIX C: NETWORK SINGLE-SPIKE JACOBIAN

The components of the single-spike Jacobian J(k) are
given by

Vit )

Jij(k) = )

(ChH
To compute them, as in our mean-field approach we need to
take into account the decay of perturbations between spikes
as well as the reset of the neuron sending the (k 4 1)th spike,
say, neuron [. V(1 +]) = Vi implies an implicit dependence
of the spike time #;,; on Vl(t,:r ) as in Eq. (B4). Additionally,
we now have to include the jumplike potential change by
Cihi[Vi(t 4 )] that the spike induces in neuron i, such that

[;xt
Vit ) = VilHe 7= 4 T e

i

—Vi(fk+1—fk)]

+ CuhilVi(t; )] = 8itVan. (C2)
The stroboscopic description yields a dependence
‘SVi(tktrl) — e*Vf(tk+17tk)5v(t+)

Tk+1

av(+)5‘/1(t ) (C3)

+ Vit ) = Vi)l
of the perturbation BV,-(t,j'H) on the perturbations at the state
at t,j . This is analogous to Eq. (BS), with the difference that
the neuron that sends the spike and determines the shift in 4
(neuron /) may be different from neuron i. The Jacobian thus
reads

k+l
8V(t )

(C4)

Jij(k) = 81je 7T + 83 Vit ) — Vil )]

Application of the implicit function theorem and inserting
Egs. (1), (C2), and (B4) results in

Vi 8V — CulilVi(t ;)]

J:/(k) =3 e—}/,(lul 1) +8; =
v = Vi)

(C5)

for an LIF or an XIF neuron i.

APPENDIX D: VOLUME CONTRACTION

The volume expansion and the sum of LEs are given by the
time-averaged logarithms of the determinants of the Jacobians
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[5]. We thus have

N 1 L—1
A= lim — In |det J (k
; Jim ; |det J (k)|

in terms of single-spike Jacobians [14]. The specific form of
our J (k) allows us to split it into a diagonal matrix J (k) cover-
ing the perturbation change during subthreshold evolution and
a rank one correction,

(D1)

J(k) = J (k) + u(k)v(k)", (D2)
where
jlj(k) — 8[je_7/f(’k+‘_’k), (D3)
vitk) =6, (D4)
8 Vin — Ciuhi[Vi(t,
(k) = Vz 1 lh[m 1hil (k+1)] (D5)
| L-vieh

The matrix determinant lemma now allows us to compute
det J (k) via

det J(k) = [1 4+ v(k)"J (k)" 'u(k)] det J (k). (D6)
Equation (B4) and the relation 1+ Vy,/ (Ile"‘/yz — Vi) =

exp(y1/ prree,1) for the free spike frequency pgee; of neuron /
[see Egs. (4) and (5)] lead to

detJ(k) = exp |:

(Z yz) (te1 — rk)] (D7)

Pftree,l

Time averaging yields

N
>ii=
i=1

L—oo

=
lim — Zln det J;
k=0

N
-2

j=1

——Zy,<1— ) (D8)
Pfree, j

where the index /(k) denotes the neuron that spikes at time #;
and p; is the spike rate of neuron j in the network.

~ fim L Z i
L—oo 1, Iofree (k)

APPENDIX E: DEPENDENCE OF THE LYAPUNOV
SPECTRUM ON INDEGREE AND NETWORK SIZE

The rule that the number of negative (positive) LEs ap-
proximately equals the number of LIF (XIF) neurons holds
independent of N and K; see Fig. 11. Figures 11(a)-11(c)
indicate that for large N and sufficiently large fixed indegree
the Lyapunov spectrum assumes a fixed shape, which differs
from the result of our mean-field approach. This is because the
mean-field approach neglects the nonzero off-diagonal entries
of the single-spike Jacobians, whose strength and average
number K do not depend on N; see Appendix C. The shape
of the Lyapunov spectrum varies with the indegree of the
network. For larger ratios K/N the positive and negative parts
of the Lyapunov spectrum become flatter; cf. Fig. 11(d). We

(a) (b)
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FIG. 11. Lyapunov spectra of networks with different sizes and
indegrees. (a) Lyapunov spectra for different network sizes N and
constant indegree K = 50 (numerical results: color coded dots; result
of the mean-field theory: horizontal black lines). (b), (c) Close-
ups of the positive and negative parts of the spectra in panel (a).
(d) Lyapunov spectra for different indegrees K and size N = 500
(numerical results: color coded dots; results of the mean-field theory:
color coded dashed lines). Remaining network parameters are as in
Fig. 2.

note, however, that also the spiking becomes more regular. We
observe for very sparse but still strongly connected networks
that the Lyapunov spectrum is no longer well approximated
by our mean-field theory; cf. Fig. 11(d).

APPENDIX F: COMPUTING COVARIANT
LYAPUNOV VECTORS

We compute the CLVs in a dynamical manner [5,51].
In short, if we want to compute them at ¢+ = 0, we start
sufficiently long before with an arbitrary set of N orthonormal
vectors g;(f), which forms a basis of the tangent space. We
evolve this basis forward until zero and further to a sufficiently
long time f;, using the single-spike Jacobians. Every few
steps, we reorthonormalize the basis. The orthogonalizations
leave the first vector ¢,(¢) unchanged. It thus evolves freely
(up to normalization) until it has aligned with the first co-
variant Lyapunov vector at ¢t =0 and thus also at t = 1.
The second vector, ¢,(¢), is kept orthogonal to ¢,(¢). Since
it otherwise evolves freely, g,(0) will lie in the subspace of
the first and the second CLV at ¢ = 0, which are in general not
orthogonal; the same holds for g,(t) at t = t;. Analogously
q5(0) will be in the subspace of v;(0), v»(0), and v3(0), and
so on. As noted in Sec. IV D, the growth rates of the vectors
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already yield the LEs. In order to find the CLVs one uses
the time reversal property: we evolve the vectors g,(t7) along
the previously taken forward trajectory back in time until
t = 0. During this, we keep them restricted to their respective
subspaces, which are known from the forward propagation.
The vectors will then align with the least expanding directions
of their subspaces, so the backpropagated g,(zy) will align

with v, the backpropagated g5 (¢;) with v3, and so on. We
concretely implemented the simple and efficient algorithm
derived in Ref. [51], which performs the backpropagation
by representing and mapping the vectors in terms of their
components in the bases g;(¢). After obtaining the CLVs at
t = 0, those in the not too distant future can be obtained using
Eq. (27).
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