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Characterization of fracture in topology-optimized bioinspired networks
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Designing strong and robust bioinspired structures requires an understanding of how function arises from the
architecture and geometry of materials found in nature. We draw from trabecular bone, a lightweight bone tissue
that exhibits a complex, anisotropic microarchitecture, to generate networked structures using multiobjective
topology optimization. Starting from an identical volume, we generate multiple different models by varying
the objective weights for compliance, surface area, and stability. We examine the relative effects of these
objectives on how resultant models respond to simulated mechanical loading and element failure. We adapt
a network-based method developed initially in the context of modeling trabecular bone to describe the topology-
optimized structures with a graph-theoretical framework, and we use community detection to characterize
locations of fracture. This complementary combination of computational methods can provide valuable insights
into the strength of bioinspired structures and mechanisms of fracture.
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I. INTRODUCTION

Understanding the relationships between architecture and
function in biological materials is key to engineering bioin-
spired structures for strength and resilience. Materials found
in nature must be spatially arranged to withstand repeated
loading while facilitating various biological functions. In this
paper, we use multiobjective topology optimization, finite-
element modeling, and network science methods to generate
and analyze a range of structures with varying emphases
placed on maximizing stiffness, perimeter, and stability. We
explore how differently weighting these objectives influences
robustness and resistance of these structures to failure.

The bioinspired structures we develop in this paper are
motivated by the challenge of reverse-engineering trabecular
bone, a type of bone tissue that consists of an interconnected
network of small struts called trabeculae. Its porous structure
allows it to be lightweight, though it is weaker than the other
type of bone tissue, cortical bone, which is hard, dense, and
shell-like. Trabecular bone has roughly ten times the surface
area of cortical bone. The pores in trabecular bone hold bone
marrow, nerves, and blood vessels, and the increased surface
area facilitates bone resorption and remodeling. This trade-off
between the pore distribution and strength drives our choice of
objectives in constructing structures guided by the emergent
properties of vertebral trabecular bone.

Continuum topology optimization is a method that, given
a set of objectives and constraints, optimizes the distribution
of material within a domain [1]. We are motivated to use
topology optimization to generate bone-inspired structures
by the premise of Wolff’s law [2]. Wolff’s law states that,
over time, trabecular bone remodels its architecture to adapt
to the loads it is regularly subjected to. That is, it will
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“self-optimize” itself into a structure that is more stiff along
the primary loading directions. Analogously, multiobjective
topology optimization starts from an initial density distribu-
tion, applies specified loads that in our case represent uniaxial
loading in vertebrae, and minimizes a weighted sum of ob-
jective functions to achieve a desired architecture. Here the
objective functions represent compliance (inverse stiffness),
perimeter [the two-dimensional (2D) analog of surface area],
and stability. Conceptually speaking, we assume that real
bone is the outcome of a biological optimization procedure,
but the quantities being optimized are unknown. While the
topology-optimized structures are not intended to mimic bone,
in isolating material properties associated with bone and
varying the weights of corresponding objective functions, we
examine how the relative weighting impacts overall toughness
and robustness to failure.

The topology-optimized structures are disordered planar
networks. We extract from them graph models consisting of
edges representing struts (trabeculae), joined together at nodes
that correspond to the branch points where the struts meet.
This allows us to extract topological metrics that quantify
the architecture of the network. This network-based method
adapts the modeling approach developed by Mondal et al.
[3] which modeled real human trabecular bone from micro-
computed tomography images.

We analyze the mechanical response of the topology-
optimized networks by converting the networks to finite-
element models in which each edge is represented by a
beam. We simulate compressive loading and failure in the
beam-element models, and we investigate mechanics at scales
ranging from individual beams to the entire network. In
combining these computational methods, many of which
have seen limited application to trabecular bone and bone-
inspired materials, we relate the mechanics of bonelike
structures to their architecture and identify how topology
informs fracture. Our results inform the development and
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design of bioinspired networked structures that are robust and
strong.

II. MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION

The topology optimization process begins by assuming an
initial two-dimensional density distribution on a discretized
uniform grid of elements and then iteratively (1) performs
a finite-element analysis step that simulates mechanical de-
formation, (2) carries out a gradient-based optimization step
that updates the density distribution, and (3) evaluates the
objective until convergence [4]. Three objectives were used:
compliance (inverse stiffness) minimization, perimeter maxi-
mization, and stability (critical buckling load) maximization.
The objective functions are combined as a weighted sum to
form a single objective function that is evaluated in the iter-
ative optimization procedure. Adjusting the weights of each
objective function can result in highly variable topologies.

Each element has a density that can take on any value
between 0 (void) and 1 (solid), but intermediate values are
penalized using the solid isotropic material with penalization
model (SIMP) [1] to ensure that the result contains binary den-
sity values. We include an area constraint in the optimization
problem so that the total area of each generated structure is
effectively constant. While the topology optimization method
developed here is limited to two-dimensional structures, it
can be generalized to three dimensions, albeit with a higher
computational cost.

The most basic topology optimization problem is that of
minimizing compliance (weights of perimeter and stability
functions are set to zero) with an area constraint. The topology
optimization problem for minimization of compliance C, with
a constraint on the area fraction, is conventionally defined as

min
ρ

C = uT Ku, s.t.
1

A�

N∑
e=1

ρeAe � A, (1)

where K is the material stiffness matrix, u is the vector of
displacements, A� is the total area of the domain, ρe is the
density of element e, Ae is the area of each element, and A is a
specified total area fraction. Here u is related to the vector of
applied loads, f , through the relation

Ku = f . (2)

Compliance is minimized, or, equivalently, stiffness maxi-
mized, to minimize the displacement undergone by the struc-
ture in response to loading. Minimizing compliance alone
produces a structure primarily consisting of thick rods aligned
with the principal direction of loading [Fig. 1(a)]. Hence, an
anisotropic architecture can give rise to increased stiffness
when the elements (trabeculae) are preferentially aligned with
the loading direction.

However, trabecular bone does not consist of thick parallel
rods. The surface of trabecular bone is necessary for its
remodeling cycle, which requires contact with surrounding
bone marrow for new osteoclasts to form [5]. Bone is resorbed
by osteoclasts, with new bone deposited on the surface by
osteoblasts. Trabecular bone also has a much higher surface
area compared to cortical bone and, consequently, a large
number of pores that hold marrow, nerves, and blood vessels.
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FIG. 1. Example 2D topology-optimized structures generated by
varying objective weights. The horizontal bar plot in the lower right
shows the relative weights assigned to the compliance, perimeter, and
stability objectives for each image. Weights sum to 1. Panels (a)–(g):
C99999P00001, C99P01, C92P08, C50S50, C65S35, C85P05S10,
and C88P01S11, respectively. A total of 12 structures were generated
for each of the seven parameter sets shown here; all structures for
each parameter set are shown in the Supplemental Material [9].

Reverse-engineering trabecular bone to produce a structure
of similar flexibility and lightness will require taking perime-
ter into account as in the objective function. Here we define
P, the perimeter (2D) or surface area (3D) of the structure, in
a dimension-agnostic form as

max
ρ

P =
∫

�ρ d�, (3)

where ρ is the material density or volume at any point in
the structure. Numerically, this translates to a sum of density
changes across all element boundaries. Setting the perimeter
function weight to a nonzero value and optimizing for both
compliance and perimeter, while keeping the same volume,
results in a structure with a greater number of thinner struts
rather than fewer, thicker ones. Most of these thin struts are
aligned in the principal loading direction, while a few are
transverse.

Previous studies applying topology optimization to explore
trabecular bone structure have considered only compliance
as an objective function and included a perimeter constraint
[6,7]. However, depending on the weights used, including
only compliance (and perimeter) objective functions can re-
sult in an unstable model, such as one that consists of long,
thin vertical rods. The stability of this model is represented
by its critical buckling load, Pcrit = maxi=1,...,Ndof Pi. The ob-
jective in this case is to maximize the critical buckling load,
and hence the stability, defined by the generalized eigenvalue
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equation [
G(u) − 1

Pi
K

]
�i = 0, i = 1, . . . , Ndof , (4)

where G(u) is the geometric stiffness matrix and �i is the
eigenvector associated with the ith buckling load. To avoid
degeneracy of the eigenvalues 1/Pi, which can result in poor
or incorrect convergence of the optimizer, we apply a bound
formulation [1] such that the stability optimization problem is
written as

min
ρ

β, s.t. αi

(
1

Pi

)
� β, i = 1, . . . , Ndof ,

[
G(u) − 1

Pi
K

]
�i = 0, i = 1, . . . , Ndof , (5)

where α is a number slightly less than 1, e.g., 0.95, which
ensures that each eigenvalue is slightly larger than the next.
Note that this bound formulation will only actively impact
eigenvalues near one end of the eigenvalue spectrum and
eigenvalues in the interior or near the other end of the spec-
trum will inherently satisfy the constraint. As a result, we
can safely truncate the series from Ndof (the total number of
degrees of freedom in the system) terms to a much smaller
number such as n = 10. Optimizing for stability as well as
compliance and perimeter further increases the number of
struts as well as those oriented at a nonzero angle to the
primary loading (vertical) direction.

The multiple objectives are combined as a weighted sum,
where the weights can be varied to change the relative impor-
tance of each objective [8]:

min
ρ

w1C0 − w2P0 + w3β0,

s.t. αi

(
1

Pi

)
� β, i = 1, . . . , Ndof ,

[
G(u) − 1

Pi
K

]
�i = 0, i = 1, . . . , Ndof ,

1

A�

N∑
e=1

ρeAe,

3∑
i=1

wi = 1, (6)

where wi are the respective weights on each of the objective
functions C0, P0, and β0, which refer to normalized compli-
ance, perimeter, and stability, respectively [Eqs. (1), (3), and
(6)]. Here we normalize by independently optimizing for each
of the objectives separately and then evaluating each objective
function on each optimized structure. The functions are then
normalized relative to the maximum and minimum values
across each of the structures.

Note that the purpose of normalization is to make the
magnitude of each function more consistent. As a result,
the actual values of the function weights for one system are
somewhat arbitrary in that they depend on the normalization
procedure used. As such, the weights are only truly meaning-
ful when compared relative to each other or across different
optimization problems. It is possible, once the optimization is
completed, to compute the actual contribution of each objec-
tive to the aggregate cost function; examples are included in
the Supplemental Material [9].

To load the material in the design domain we apply an
equal compressive force to the top and bottom of the domain
to simulate the loading condition of trabecular bone. Weak
springs are also attached to the nodes at the bottom of the
domain to eliminate rigid-body modes without significantly
affecting structural response. As the loading conditions and
design domain are perfectly symmetric, we also enforce
symmetry of the design to prevent small numerical errors
from introducing arbitrary asymmetry into the design. While
true trabecular bone is not symmetric, this asymmetry can
be attributed to more complex loading patterns and minor
material defects within the bone, the effects of which are not
considered here.

We generate topology-optimized structures for a total of
seven different sets of objective weights. One example struc-
ture for each parameter set is shown in Fig. 1; all remaining
structures are included in the Supplemental Material [9]. Each
set contains 12 different structures. Each structure is gener-
ated from the same initial density distribution, with a small
perturbation added to ensure that each optimization with the
same weights will converge to a different structure. We label
each set of structures with the letters C, P, or S, representing
compliance, perimeter, and stability objectives, respectively,
followed by the corresponding weight (times 100) of the
objective function used to generate the structures.

Figure 1(a) is an example structure from the set labeled
C99999P00001, which is representative of optimizing all but
entirely for compliance. The weight of the compliance func-
tion is 0.99999 rather than 1 even. If the compliance weight
were 1, for some initial conditions, then it is possible that
the result would be a contiguous piece of material with no
porosity. Hence, we assign a very small weight of 0.00001
to the perimeter objective; combined with the different initial
conditions, this promotes variation in topology. Stability is not
considered in this case.

Figures 1(b) and 1(c), labeled C99P01 and C92P08, re-
spectively, are generated by including weights for both com-
pliance and perimeter, resulting in an increased number of
thinner struts and consequently a greater number of pores.

Figures 1(d) and 1(e), labeled C50S50 and C65S35, re-
spectively, are generated by including weights for compliance
and stability but omitting the perimeter objective. The result-
ing structures consist of much thicker struts that are largely
oriented at an angle to the vertical. The structures are also
noticeably concave at each side.

Figures 1(f) and 1(g), labeled C85P05S10 and C88P01S11,
respectively, are generated from combining all three objec-
tives. These structures contain more struts and small pores
than the other sets, with a few longer vertical columns joined
by a number of shorter angled elements.

III. NETWORK MODELING AND MECHANICAL
SIMULATION

A. Skeletonization

From topology-optimized images, we generate graph mod-
els, following Ref. [3], that allow us to utilize existing graph
theoretical methods to efficiently analyze the topology of net-
worked structures. Converting a topology-optimized structure
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FIG. 2. Example beam element models. Color of beams represents spatial distribution of von Mises stress in example structures for
each parameter set. Each model is shown at the timestep immediately preceding the first element failure in each respective simulation.
(a) C99999P00001, (b) C99P01, (c) C92P08, (d) C50S50, (e) C65S35, (f) C85P05S10, and (g) C88P01S11.

to a graph begins with skeletonization: the “skeleton” of each
image is determined by progressively thinning the image until
its medial axis, a one-pixel-wide line running through the
center of the network, is found. This medial axis, or skeleton,
is then converted to a graph by setting nodes at branch points
where three or more struts meet, with edges corresponding
to struts themselves. The edges are weighted according to
the respective average thicknesses of corresponding struts.
Skeletonization and graph conversion are accomplished using
the Skeleton3D and Skel2Graph toolboxes for MATLAB [10].
Strut thicknesses are computed using the BoneJ plug-in [11]
for ImageJ (National Institutes of Health, Bethesda, MD).

B. Beam element models

To simulate mechanical loading and deformation, we trans-
late these graphs into streamlined finite-element models.
Rather than meshing the trabecular model, we generate beam-
element models from the graphs, where each link is repre-
sented by a Timoshenko beam with a uniform thickness cor-
responding to its weight (Fig. 2). Nodes in the beam-element
model correspond directly to nodes in the network. The beam
material is defined by an elastic modulus of 10 GPa and a
Poisson ratio of 0.16, following similar values as reported in
the literature for bone [12,13].

Mechanical loading is simulated with Abaqus FEA (Das-
sault Systèmes, Vélizy-Villacoublay, France). The beam-
element model is compressed from the top and bottom, rep-
resenting loading along the superior-inferior direction, the
primary loading axis in vertebrae. The von Mises stress at
each link is computed at each time step, along with the force
and displacement of each node.

We solve the models in the linear-elastic regime, where the
stress is linear as a function of strain. We also model failure by
setting von Mises stress as a failure criterion; when the stress
in a beam reaches the critical stress value, the beam is said to
have failed and is removed from the simulation. The system

continues to be loaded even as beams fail and are removed.
We arbitrarily set the failure criterion to be a von Mises stress
of 0.5 MPa; as the response is linear, this value can be scaled
up or down with no qualitative change in the overall behavior.

We note that the skeletonization and network conversion
process is limited by its inability to fully capture nonuniform
trabecular thicknesses or increased bulk at branch points
(nodes). This trade-off, however, greatly simplifies modeling
and provides a streamlined approach to relating topology with
mechanics. To improve the resolution of trabecular thickness
in beams with nonuniform widths, we divide longer beams
into five segments, such that each segment can have a different
thickness.

C. Bulk force-displacement response

Force-displacement curves for the seven beam-element
models generated from the topology-optimized structures
(Fig. 1) are compared in Fig. 3. We model the structures
in the linear-elastic regime with a von Mises stress failure
criterion. The force-displacement curves are hence linear until
the initialization of beam failure, whereupon they exhibit large
decreases until reaching zero, at which point the structure is
said to have failed completely. As the first few beams fail, the
system might be able to redistribute the load (and the force
increases) until sufficient beams have failed, resulting in an
overall softening trend where the force drops until it reaches
zero. The force-displacement response after reaching zero
exhibits fluctuations that are artifacts of wave propagation in
the simulation and are not considered in the analysis of the
results. The curves in Fig. 3 are truncated where the reaction
force reaches zero, and the full force-displacement curves for
each model are included in the Supplemental Material [9].

On average, stiffness (the slope of the force-displacement
curve in the initial linear regime) is greatest for
C99999P00001, the parameter set for which compliance
minimization was most highly weighted. However, C50S50
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FIG. 3. Force-displacement response. The force-displacement curve for each structure is indicated by a thin dashed line; the average curve
for each parameter set is shown as a thick solid line. Shaded areas represent the regions spanned by the highest and lowest reaction force for
each parameter set.

and C65S35 demonstrate slightly higher average stiffness
than C99P01 and C92P08, which have greater compliance
minimization weights. The models with lowest stiffness are
C85P05S10 and C88P01S11.

We use two additional metrics to quantify mechanical
response: the peak reaction force typically attained at the
onset of element failure, and the maximum displacement at
total system failure (when the reaction force reaches 0). The
peak force represents the strength of the model, while the
maximum displacement serves as a proxy for the ductility
of the structure as it undergoes fracture. A large maximum
displacement could indicate that stresses redistribute such that
the entire structure does not fail immediately when the first
failure occurs. The distributions of peak force and maximum
displacement are compared in an Ashby plot in Fig. 4(a).
The highest peak forces are given by C99999P00001, fol-
lowed by C99P01, while the peak force for the other pa-
rameter sets are comparable. The maximum displacement
varies greatly for some parameter sets, in particular C92P08,
C65S35, C85P05S10, and C88P01S11, while the variation in
displacement is considerably smaller for C99999P00001 and
C50S50.

We note that while C99999P00001 demonstrates the high-
est peak forces, it also has the largest variation in peak force.
Hence, slight variations in structure across models, despite
being generated under the same optimization criteria, can
result in significantly different mechanical response. To probe
robustness, we perturb each structure slightly and subject
them to the same loading conditions as the original models.
For each model, each node is shifted in both x and y coordi-
nates by a small random distance of order 1% of the length of
the structure.

For the purposes of this paper, we define robustness as the
relative change in peak force between the original and per-
turbed models: (Fpeak, original − Fpeak, perturbed)/Fpeak, original. Ro-
bustness is plotted against the stiffness of the original model
in Fig. 4. In some cases, the perturbed model can exhibit a

greater peak force than the original model, indicated by a
positive robustness score. We observe that C99999P00001,
which demonstrated the greatest variation in peak force
among original models, exhibits relatively low robustness,
with large spread in stiffness values. C65S35 exhibits the
greatest variation in robustness, with several instances in
which the perturbed model was stronger than the original
model. C50S50 shows slightly lower robustness than C65S35;
C50S50 and C65S35 exhibit roughly similar stiffness val-
ues and are the second stiffest models after C99999P00001.
C99P01, C92P08, C85P05S10, and C88P01S11 demonstrate
similar stiffness and robustness.

We note that the C50S50 structures lie on an approximately
45◦ line in the Ashby plot shown in Fig. 4. This suggests that
these structures achieve a delicate balance between strength
and ductility in which both mechanical markers increase hand
in hand. This property is similar to what has been reported for
some biological materials with superior mechanical properties
such as mollusk shell, spider silk, and bone [14,15].

Our results suggest that while assigning almost all weight
to compliance minimization can produce structures that are
on average stiffer and tougher, these structures can be prone
to small perturbations in geometry or objective weights.
Moreover, optimizing for compliance and perimeter without
accounting for stability can result in structures that are less
robust and less stiff than those generated by assigning con-
siderable weight to stability maximization. We observe that
some structures in the C50S50 and C35S65 families exhibit
positive robustness where geometric imperfections may lead
to an increase in their strength and stiffness. This suggests
that assigning significant weight to stability may enhance
mechanical response under uncertain conditions. However,
structures with small weights on both perimeter and stability
objectives remain weaker and less robust than those for which
perimeter is not considered.

We also include a set of “topological” Ashby plots (Fig. 5)
that compare the robustness with network properties of each
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FIG. 4. Ashby plots comparing properties of different optimization parameter sets. Panel (a) compares the maximum displacement before
complete failure with the peak reaction force attained. Panel (b) compares stiffness, the slope of the force-displacement curve in the linear
regime prior to failure, with robustness, measured as the relative change between the peak forces of the original and perturbed models. Shaded
ellipses represent 2σ confidence intervals.

model: average degree, average link thickness (corresponding
to the average link weight without normalization), modularity,
and the clustering coefficient. Modularity is a measure that
describes how easily a graph can be partitioned into modules,
or communities, where nodes within a community are densely
connected to each other but sparsely connected to other nodes
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FIG. 5. Ashby plots comparing robustness and network proper-
ties. Robustness is defined as the relative change between the peak
forces of the original and perturbed models. Panel (a) compares the
average degree of each model with its robustness; panel (b) plots the
mean link thickness (in arbitrary units); panel (c) plots the modularity
[see Eq. (7) with null model given in Eq. (9) and resolution parameter
γ = 1.6]; and panel (d) plots the clustering coefficient. Shaded
ellipses represent 2σ confidence intervals.

in the network. Modularity is defined in Eq. (7) in the context
of our application of community detection to characterizing
failure. The null model used is given in Eq. (9). The clustering
coefficient is defined as 3 times the number of triangles in
a network (a set of three nodes connected by three edges)
divided by the number of connected triples (three nodes
connected by at least two edges) [16].

We observe that C99999P00001 has the lowest average
degree, as would be expected due to the models consist-
ing primarily of vertical columns, while C85P05S10 and
C88P01S11, which have considerably more complicated ar-
chitecture, have higher average degree. We observe only a
weak correlation between degree and robustness (Pearson
correlation coefficient r = 0.23, p = 0.04). We also observe
a weak correlation between average link thickness and robust-
ness (r = 0.40, p < 0.001). While the models vary greatly
in modularity, with C99999P00001 the least modular and
C85P05S10 and C88P01S11 the most, they do not exhibit
large variation in clustering coefficient. We do not observe
significant (p < 0.05) correlations between robustness and
clustering coefficient and between robustness and modularity.
Despite this, we discuss in Sec. III E how modularity and com-
munity structure can inform failure locations in a network.

D. Stress distribution

The fragility of these structures may be linked to the spatial
distribution of stress: whether the stress is distributed rela-
tively evenly or concentrated in a few beams. The distribution
of (von Mises) stress across beams can vary greatly between
parameter sets, as visualized in Fig. 2. Figure 6 illustrates the
distribution of stress, normalized to the highest stress value
in one beam in each model, averaged over all models in a
set (histogram). In the models without stability objectives (top
row), a large area fraction exhibits no stress, demonstrated by
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FIG. 6. Stress distributions. (a) C99999P00001, (b) C99P01, (c) C92P08, (d) example cumulative stress distribution, (e) C50S50, (f)
C65S35, (g) C85P05S10, and (h) C88P01S11. Histograms represent the average distribution of normalized stress for each parameter set,
weighted by the thickness of each link. The shaded regions illustrate the variation in the cumulative distribution of normalized stress, expressed
in terms of the fraction of area occupied by the links (normalized by the area of the entire model). Dotted lines within the shaded regions
correspond to the distributions of each individual model. Red crosses represent average ζ0.001 and σ0.9 for each parameter set, as illustrated by
the example in panel (d).

a considerable peak at 0. The distribution for C99999P00001,
however, shows that in some models, a small fraction of links
bears almost all of the stress. In contrast, the models with
stability objectives (bottom row) demonstrate a peak at 0 with
relatively heavy tails.

Figure 6 also shows the cumulative fraction of beams that
bear normalized stress values between 0 and 1 (colored shaded
regions). For C99999P00001 and, to a lesser extent, C99P01,
a notable fraction of beams have normalized stress close
to 0. Their cumulative distributions rise sharply compared
to those with stability objectives before flattening out. To
quantify the stress distribution, we compute two metrics, ζ0.001

and σ0.9. ζ0.001 is the fraction of total area with normalized
stress less than or equal to 0.001, and σ0.9 is the normalized
stress value such that 90% of the total area bears stress less
than or equal to this value; similar metrics were previously
defined in the context of trabecular bone in Ref. [3]. Average
values for ζ0.001 and σ0.9 are shown in Table I. ζ0.001 is
highest for C99999P00001; approximately 61% of the total
area—corresponding to 67% of beams—bear almost no stress,
followed by C99P01 at 42% (52% of beams). For the re-
maining models, which all include stability weights except for
C92P08, ζ0.001 is lower, representing between 16% and 26%
of area that is unstressed, indicating that stress is distributed
more evenly for these models.

For σ0.9, the highest values are found for the three
models with the highest compliance weights. These mod-
els have relatively high ζ0.001 values as well, thus contain-
ing a larger percentage of low-stress area with the stress
more evenly distributed on the remaining elements. σ0.9 is
moreover relatively high for C50S50, which also has a low
ζ0.001 value, indicating that the stress distribution is less
skewed. Overall, σ0.9 ranges between 0.24 and 0.47 for all

models, implying that a small percentage of beams bear large
stresses.

The models with stability objectives are most similar in
visual resemblance to trabecular bone. The two models with
all three objective weights, C85P05S10 and C88P01S11, have
the highest degrees of all models. We also apply the met-
ric of z orientation previously defined in Ref. [3], a value
between 0 and 1 that describes the preferred orientation of
struts (where 0 is transverse to the vertical direction and 1
is parallel), as well as the weighted z orientation, where the
z orientation of each link is weighted proportionally to its
thickness. We observe that while the average z orientation
of the topology-optimized structures ranges between 0.64
and 0.83, much higher than the average values observed for
bone (close to 0.5), C85P05S10 and C88P01S11 have the
lowest weighted z orientation, indicating that less mass is
distributed in vertical columns compared to, for example,

TABLE I. Average ζ0.001 and σ0.9 values for each set. ζ0.001 gives
the fraction of beams with normalized stress less than or equal to
0.001, and σ0.9 gives the normalized stress value wherein 90% of
beams bear stress less than equal to this value. Stress is normalized to
the largest stress value in a single beam in each individual structure.

Set ζ0.001 σ0.9

C99999P00001 0.612 0.378
C99P01 0.421 0.397
C92P08 0.236 0.475
C50S50 0.199 0.391
C65S35 0.260 0.270
C85P05S10 0.187 0.241
C88P01S11 0.162 0.293
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the models with high compliance weights and no stability
objective. However, direct comparison between the topology-
optimized structures and bone are limited by the 2D nature
of the topology-optimized structures and the 3D nature of the
bone volumes, as well as the different sample sizes (the bone
volumes contain over an order of magnitude more elements
than the topology-optimized structures).

For the models with stability objectives, the shape of their
stress distributions is also the most similar to that of bone [3].
For the topology-optimized models, however, ζ0.001 remains
much lower than for bone, which is on average approximately
0.43 [3], while this value is surpassed for C99999P00001 and
C99P01. For bone, approximately 6.7% of the total volume
fraction bears less than 90% of the normalized stress [17],
indicating that the stress distributions are considerably less
skewed for the topology-optimized models than for bone—
note, however, that the topology-optimized structures gen-
erated here are two dimensional, while the bone volumes
analyzed previously are three dimensional.

E. Community detection

We use community detection to investigate whether the
topology of the network encodes information about likely
points of failure. We observe that locations of failure—i.e.,
the most stressed beams in the finite-element models—do not
generally correspond with the thinnest elements, and there
is no preferred orientation associated with the failed beams.
We hypothesize that elements corresponding to links that
connect two different communities—“boundary links”—are
more likely to fail than elements within a community.

Community detection is a method of determining clusters
(communities) that contain dense within-cluster connections,
with sparse connections to the rest of the network [16]. The
development of community detection algorithms and their ap-
plication as a beginning phase of network structure or function
diagnostics is a focus of network science [18]. Community
detection has been used to characterize social interactions,
brain function, and much more but most pertinently to char-
acterize force chains in granular materials [19,20]. Granular
packings have been described by assigning nodes to individual
particles and edges to contact forces between particles [21].
Community detection can extract information about force
chains, networks that typically resemble interconnected fila-
ments primarily aligned with the principal axes of loading.

Here we perform community detection to identify whether
failure locations reside in any particular locations within the
network topology. Community detection typically involves
maximizing a modularity function Q that identifies commu-
nity structure relative to a null model P [16,21]:

Q =
∑

i j

[Wi j − γ Pi j]δ(gi, g j ), (7)

where Wi j is the weight of the edge between nodes i and j,
γ is a resolution parameter that controls community size, Pi j

specifies the expected weight of the edge between nodes i and
j under the null model, gi is the community assignment of
node i, and δ(gi, g j ) is the Kronecker δ.

The null model is commonly chosen to be a random
rewiring of nodes with the degree distribution kept constant

(Newman-Girvan null model):

Pi j = sis j

2m
, (8)

where si is the weighted degree of node i and m is the sum
of all edge weights in the network (i.e., m = 1

2

∑
i j Wi j). This

null model assumes that connections between any pair of
nodes is possible. However, because the networks are spa-
tially embedded, and long-range connections that span large
spatial distances are impossible, we choose a geographical
null model, initially developed for use in the study of brain
networks and subsequently adapted for granular networks
[19]:

Pi j = ρBi j, (9)

where ρ is the mean edge weight of the network and B is the
binary adjacency matrix of the network (i.e., the adjacency
matrix where all nonzero edge weights have been set to 1).

The geographical null model produces communities that
are anisotropically aligned with the vertical direction and
thus reminiscent of force chains. The resolution parameter γ

modulates the size and number of communities. We set γ to
1.6. Examples of community structure are shown in Fig. 7.

We observe that failures tend to occur at the boundaries
between communities, i.e., in links that connect two different
communities. We note that our choice of γ is intended to
result in community structure that is most informative at
characterizing failure locations. If γ is too small, then the
community structure may contain too few communities, to the
limit of 1, and if γ is too large, each node can be considered
its own community. At both extremes, it will not be possible
to observe how the modularity of the network plays a role in
influencing failure.

We quantify statistical significance with the Bayes factor,
which represents the inverse of the ratio of probability of the
data given the null hypothesis—where the probability q of a
failure occurring at a boundary link is equal to the fraction of
boundary links in the network lbd/L—to the probability of the
data given the alternative hypothesis—where the probability q
of failure occurring at a boundary link is unknown and where
we assume a uniform prior on [0,1]. The Bayes factor is given
by

BF = P(Fbd = f |Ftot, q unknown)

P(Fbd = f |Ftot, q = lbd/L)
, (10)

where Fbd is the number of failures at boundaries, Ftot is the
total number of failures, lbd is the total number of boundary
links, and L is the total number of links. Furthermore,

P(Fbd = f |Ftot, q = lbd/L), (11)

=
(

Ftot

f

)
(lbd/L) f (1 − lbd/L)Ftot− f , (12)

and

P(Fbd = f |Ftot, q unknown), (13)

=
(

Ftot

f

) ∫ 1

0
q f (1 − q)Ftot− f , (14)

=
(

Ftot

f

)
B( f + 1, Ftot − f + 1), (15)
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(a)

(f) (g)(e)(d)

(c)(b)

FIG. 7. Example of community structure for each parameter set. (a) C99999P00001, (b) C99P01, (c) C92P08, (d) C50S50, (e) C65S35, (f)
C85P05S10, and (g) C88P01S11. Nodes are colored to distinguish between communities. Black nodes represent communities of one node.

where B is the beta function. Then the Bayes factor is given
by

BF = B( f + 1, Ftot − f + 1)

(lbd/L) f (1 − lbd/L)Ftot− f
. (16)

If BF > 102, or similarly ln BF > 5, then the evidence
strongly supports the alternative hypothesis over the null
hypothesis.

We find that the fraction of failures that occur at these
boundary links ranges between 0.58 and 0.73 for structures
in sets C50S50, C65S35, C85P05S10, and C88P01S11. The
fractions are smaller for the sets without stability objectives
and decrease as the compliance weight increases. In contrast,
the fraction of links in the networks that are boundary links
ranges between 0.25 and 0.32.

The average values of Fbd, lbd/L, and ln BF are shown
in Table II, while their distributions are illustrated in Fig. 8.
The Bayes factors are lowest for C99999P00001 and C92P08.
Moreover, the spread of Fbd values for C99999P00001 and
C92P08 are the largest, with some structures having very
few failures at boundaries in the case of C99999P00001. We

TABLE II. Fraction of failures that occur at boundaries between
communities (Fbd) and overall fraction of edges that join two differ-
ent communities (lbd/L). Logarithm of Bayes factor > 5 indicates
statistical significance.

Set Fbd lbd/L ln BF

C99999P00001 0.359 0.255 12.6
C99P01 0.469 0.264 25.9
C92P08 0.517 0.265 19.6
C50S50 0.724 0.321 43.0
C65S35 0.733 0.324 43.6
C85P05S10 0.576 0.279 49.6
C88P01S11 0.722 0.283 96.0

observe that models with high compliance weights and no
stability objective contain a greater number of vertical beams
and are less disordered in structure, which can result in com-
munity detection being less useful at characterizing failure
locations. Overall, the Bayes factors indicate that failures are
significantly more likely to occur at a boundary link (to about
70% of links) compared to the fraction of links that form
boundaries (about 30% of links). This suggests that failure
locations are not randomly distributed across a network but
are likely to be associated with the underlying topology.

IV. DISCUSSION

We use multiobjective topology optimization to generate
networked structures inspired by trabecular bone. An analysis
of the stress distribution and fracture patterns in these struc-
tures reveals the contribution of compliance, perimeter, and
stability objectives to strength and resilience. We observe that
in structures with the greatest weight maximizing stiffness,
with little to no consideration given to optimizing for stability,
mechanical response is sensitive to small geometric perturba-
tions. In comparison, structures generated with greater weight
given to the stability objective are more robust.

Each topology-optimized structure analyzed in this paper
is constrained to have the same area fraction, but mechanical
response can vary widely among structures that otherwise
have the same objective weights. This corroborates previous
findings that bone mass density is an incomplete predictor of
fracture resistance in trabecular bone [22–26]. Moreover, this
variation is most notable for structures optimized primarily
for compliance. Prior studies of topology-optimized struc-
tures inspired by trabecular bone involve solely compliance
minimization with perimeter constraints [6,7]. Here we find
that when perimeter and stability weights are taken into
account, the reaction force and displacement maxima shift
significantly. This may suggest that compliance minimization
alone overestimates the behavior of a realistic biological
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FIG. 8. Variation in fraction of failures that occur at boundaries between communities (Fbd) and overall fraction of edges that join two
different communities (lbd/L).

material. Since these materials are typically multifunctional,
introducing multiple objectives beyond compliance in topol-
ogy optimization will provide more flexiblity in balancing var-
ious trade-offs without greatly compromising the mechanical
response. When considered on its own as a design principle,
Wolff’s law, which states that bone adapts itself to resist the
loads under which it is placed, and hence typically results in
increased bone mass along principal loading axes, may result
in structures that are less robust. In real biological tissues,
Wolff’s law is likely not the sole factor governing remodeling
processes, and it may hence be important to use robustness as
an objective for bioinspired design.

The topology optimization algorithm used here is not a
remodeling algorithm that takes into account either strain-
signaled or constant resorption-deposition behavior (e.g.,
Refs. [27,28]), but future work can consider the remodeling
processes that depend on local considerations and influence
how bone changes as it ages. While we do use global objec-
tive functions to more efficiently generate the structures, the
optimizer still makes the decision to add or remove material
from a given location on a semilocal basis. Specifically, the
global compliance function can be rewritten as a sum of
strain energies for each element in the mesh. To minimize
this, it has been our experience that the optimizer will seek
a structure that reduces strain consistently across all elements.
This does not necessarily preclude the development of a small
number of local stress concentrations, but it does mean that the
developed structure will have a minimal average strain across
all elements when subjected to the prescribed load. Moreover,
other objective functions or constraints that seek to minimize
or bound a local measure of stress, such as von Mises stress
or the maximum principal stress, may be considered in future
work.

It will be valuable to draw further biological inspiration
from the changes in bone structure that occur due to aging.
As bone ages, trabecular architecture increases in anisotropy;
trabeculae that are transverse to the principal loading direction
are preferentially resorbed, and those that are parallel become
thicker [22,29]. Currently, our topology-optimization results
are static and the objectives used are not chosen with regard
to a material that undergoes age-related geometric changes.
Additional insight into aging processes can be achieved by
extending the modeling procedure to begin with our original
topology-optimized structures as initial conditions, followed

by an optimization process that reflects the conditions of aging
bone.

Our mechanical simulations in this paper are linearly
elastic, followed by brittle failure initiated by a stress-based
criterion. An entire beam fails at once when the stress in
the beam reaches a specified threshold, but in bone, the
nonuniform thicknesses of trabeculae would result in beams
that fail progressively. Our division of each beam into five
segments serves to mitigate this discrepancy. Moreover, tak-
ing into account inelasticity and subscale energy dissipa-
tion mechanisms can improve realistic modeling of bonelike
structures.

Our observation of substantial variation in the distribution
of stress across different models suggests an investigation
into the extent to which topology optimization can engineer
redundancy in structures. A structure with redundant or sacri-
ficial beams may have higher toughness as the failure of some
beams might not immediately result in catastrophic system
failure, and stress can be redistributed through remaining
beams.

In this paper, we introduce a community detection ap-
proach for characterizing fracture locations which is inspired
by prior studies of force chains in networks derived from
granular packings. We observe that, for an appropriate choice
of resolution parameter, the fraction of failures occurring at
links which connect different communities are significantly
greater than the fraction of links that are boundaries. This
suggests an association between boundaries and failure loca-
tions, and our results are consistent with the observations of
Berthier et al., who have used edge betweenness centrality
to predict locations of failure in experimental 2D disordered
networks [30]. Edge betweenness centrality is a measure
that describes the frequency at which an edge lies on the
shortest path between pairs of nodes in a network. Indeed,
edge betweenness centrality as a failure marker is akin to
our use of boundary links in characterizing failure locations
as calculating edge betweenness can be used for determin-
ing community structure as per the Girvan-Newman method
[31]. Edges connecting different communities have high edge
betweenness centrality.

Future work will aim to potentially incorporate other
factors alongside community structure to accurately predict
locations of failure in a wide range of networked structures.
In doing so, our methods are likely to be applicable across
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domains and can be incorporated into a more comprehensive
diagnostic tool for fracture susceptibility.

Overall, the modeling framework developed in this paper
has wide-ranging applications for the design of materials and
networked structures inspired by nature. While we focus on
macroscale architecture in this work, engineering additional
architecture at micro- and nanoscales can lead to improved
function as bone, along with other naturally occurring ma-
terials, exhibits structure and mechanisms of strength at a
range of scales [32,33]. At the microscale, bone tissue is
composed of mineralized collagen fibrils embedded in an
organic matrix, and the fibrils themselves comprise mineral-
ized platelets staggered in a regular pattern within a collagen
matrix [34]. Other naturally occurring materials such as nacre
contain a similar architecture of elongated platelets organized
periodically in a matrix [14]. Characterizing the contribution
of multiscale organization to emergent strength can further
inform the development of bioinspired materials.
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