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Evolution of cooperation driven by self-recommendation
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Cooperators increase the fitness of others at a cost to themselves. Thus cooperation should not be favored by
natural selection in a well-mixed population. It challenges the evolutionists since cooperation is widespread.
Information spreading has been revealed to play a key role in the emergence of cooperation. Individuals,
however, are typically assumed to be passive in the information spreading. Here we assume that individuals
self-recommend themselves to those that are about to have new neighbors. Individuals with higher tendencies
of self-recommendation are likely to have more neighbors. In this way, individuals are active to spread the
information. We analytically obtain a critical cost-to-benefit ratio, below which cooperation emerges. It reveals
quantitatively how eloquent cooperators have to be compared with defectors to ensure that cooperation takes
over the population. It also indicates that individuals need to be open enough to the self-recommendation to
enhance cooperation level. In addition, the critical cost-to-benefit ratio represents the viscosity of the population,
measuring how close cooperators are to each other. Our results highlight the role self-recommendation plays in
cooperation.
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I. INTRODUCTION

Cooperators forgo their interest to benefit others. Thus
it cannot be favored based on evolutionary theory in the
well-mixed population. Cooperation, however, is ubiquitous,
ranging from genes to multicellularities in biology. In ad-
dition, human society is based upon cooperation as well. It
has taken decades to fill the gap between evolutionary theory
and widespread cooperation [1–3]. It provides a convenient
paradigm to study the evolution of cooperation [4]. In par-
ticular, the Prisoners’ Dilemma (PD) has been extensively
adopted as a metaphor to study the emergence of cooper-
ation [5,6]. In the simplified PD game, a cooperator offers
its opponent a benefit b at a personal cost of c (b > c > 0),
whereas a defector offers nothing. As a result, it is best to
defect irrespective of the coplayer’s decision. Beyond the
analysis on the static PD, evolutionary game theory takes
natural selection into account as the driving force of evolution.
The replicator equation [7], which describes the dynamics of
cooperation level in the well-mixed population, shows that
defection is the only evolutionary stable strategy (ESS) [8,9]
of the PD game. Therefore, both static and dynamic analyses
show that cooperation cannot be achieved, even though mu-
tual cooperation is optimal for the group interest. Thus, the
PD game captures the conflict between group and individual
interests, the so-called social dilemma.

To resolve this social dilemma, many mechanisms have
been proposed, and one of the key factors is information.
Information plays an important role in the evolution of coop-
eration. The decision making processes are based on a variety
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of information, such as the historical behaviors and payoffs
of partners [10]. For example, individuals with imitation rule
not only make use of the information of their own payoffs, but
also take the opponents’ payoffs into account when making
decisions [11]. In contrast, individuals with aspiration rule
only make use of the information of their own payoffs to
make decisions. Due to this difference, a strategy favored
by an imitation rule can be disfavored by an aspiration-
based one [12]. Thus, it is of importance what information
individuals possess in decision making. Once the information
is available, the processes of information transmission and
acquisition determine who obtains the true information. This
process is highly complex in the real world, and it is still
unclear how the processes of information transmission and
acquisition reshape the evolutionary dynamics.

For information transmission, people commonly self-
recommend to actively spread information. In human soci-
eties, commercial advertisement is of self-recommendation
[13]. Enterprises make advertisements on the mass me-
dia including TV, newspapers, and internet to recommend
their products to potential consumers. In the animal world,
courtship display is also of self-recommendation, that animals
attract mates by showing off their beauty or strength [14,15].
For example, peacocks spread their beautiful tails to attract
peahens [16]. Individuals self-recommending themselves are
essentially active to deliver information and draw attention
from others.

For information acquisition, it is of great importance how
individuals respond to the self-recommendation. In fact, it
can be even more difficult to figure out who the cooperator
is, if exaggerated or even false advertising is present. For
example, the products or services can be not as good as stated
in advertisements, and consumers can be cheated.
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These motivate us to examine how self-recommendation
affects the emergence of cooperation. We assume that both
cooperators and defectors are able to recommend them-
selves when an individual decides to have a new neigh-
bor. Their capabilities of self-recommendation are character-
ized by self-recommendation tendencies. The larger the self-
recommendation tendency is, the more eloquent the individual
is, and the more likely it is connected. On the other hand,
we introduce stubbornness to capture how convincible an
individual is. The individual with larger stubbornness value
is less likely to accept the self-recommendation.

Our results show that cooperation is more likely to pre-
vail, provided that (i) cooperators are more eloquent than
defectors and (ii) individuals who are making decisions to
alter social partners are more convincible. The results show
that the self-recommendation reshapes the evolutionary fate
of cooperation.

II. MODEL

We consider a structured population of N individuals.
Initially the population is located on a regular network, in
which nodes represent individuals and links represent social
ties between individuals. We assume that the population size
N is much larger than the average degree 〈d〉 of the network
(N � 〈d〉). In other words, each individual’s neighborhood
has a limited size. Each individual is either a cooperator (C),
denoted by a unit column vector s = (1, 0)T , or a defector (D),
denoted by s = (0, 1)T , where T indicates the transpose. The
payoff matrix Q is given by

C D
C
D

(
b − c −c

b 0

)
,

(1)

where b > c > 0, and c/b is the cost-to-benefit ratio.
At each time step, either the strategy of an individual or

the structure of the network is updated [17–19]. Let ω be the
probability of strategy update, then 1 − ω corresponds to the
probability of network update. The probability ω captures the
relative time scales of the two processes.

A. Strategy update

We adopt the Fermi updating rule [20,21]. At each step
of strategy update, a focal individual F is randomly se-
lected from the population, and its accumulated payoff is
calculated as �F = ∑

i∈�F
sT

F Qsi, where �F represents the
neighborhood of individual F , and Q is the payoff matrix. The
strategies of individuals F and i are represented by sF and si,
respectively. Then another individual G is randomly selected
among the neighborhood of F . The accumulated payoff of G
is given by �G = ∑

i∈�G
sT

GQsi. The focal individual F com-
pares its accumulated payoff �F with �G and switches to the
strategy of G with probability {1 + exp [−β(�G − �F )]}−1.
Non-negative β controls the intensity of selection, which cor-
responds to an inverse temperature in statistical physics [21].
Small β implies weak selection. In this case, individuals
imitate others’ strategies with probability approximately 1/2,
even when the opponent gains much more than the focal
individual. In particular, zero selection intensity corresponds
to the neutral drift [22]. Large β means strong selection. In

this case, individual F is almost sure to adopt the strategy
of individual G, provided individual G gains even slightly
more than individual F . The infinitely large selection intensity
mirrors the perfect rationality in economics [23].

B. Network update

At each step of network update, a link is randomly selected
from the network and the link breaks off with probability
k. If it is broken, an individual between the two end points
of the link is picked randomly as an active individual. The
active individual is to reform a new link, i.e., rewire to a new
individual who is not in its current neighborhood. On the one
hand, we assume that all the individuals in the population are
informed that the active individual is searching for a new part-
ner. And all the qualified potential neighbors, who are not in
the active individual’s neighborhood, recommend themselves
to the active individual based on their tendencies of recom-
mendation. For simplicity, we assume positive constants RC

and RD to capture the tendencies of self-recommendation for
cooperators and defectors, respectively. On the other hand, we
also assume the stubbornness p of an active individual. With
probability p, the active individual does not take account of
others’ self-recommendation [24]. In this case, a new neigh-
bor is randomly chosen regardless of self-recommendation.
Otherwise, the active individual does respond to the self-
recommendation with probability 1 − p. The active individual
rewires to an individual with a probability proportional to its
tendency of self-recommendation. Consequently, the active
individual is likely to be attracted by eloquent individuals,
those with large tendencies of recommendation.

The network update captures the process of information
transmission and its acquisition. For the information trans-
mission and acquisition, self-recommendation is adopted.
And the self-recommendation process is similar to the clas-
sic Moran process [25]: The Moran process assumes that
(i) individuals with higher fitness are more likely to re-
produce; (ii) individuals with large fitness are very likely
to reproduce only if the selection intensity is strong; and
(iii) the population size is constant. The self-recommendation
process assumes that (i) individuals with higher recommen-
dation tendency are more likely to be rewired; (ii) indi-
viduals with high recommendation tendency are very likely
to be rewired only if the probability to react to the self-
recommendation is high; and (iii) the number of links keeps
constant. In this way, the tendency of the self-recommendation
mirrors the fitness of an individual, and links mirror the off-
springs. The probability to react to the self-recommendation
mirrors the selection intensity. Therefore, individuals are com-
peting for having neighbors in the self-recommendation pro-
cess as individuals are competing for reproducing offsprings
in the Moran process.

III. ANALYSIS

In this section, we make use of mean-field analysis to
show how cooperative behavior is reshaped by the self-
recommendation, which drives the topology to evolve. Note-
worthy, both the strategy and network structure evolve. It
gives rise to a coupled dynamics, which is typically challeng-
ing to solve [26]. We overcome this by assuming ω � 1, i.e.,
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the network update is much more frequent than the strategy
update (see Appendix A). Thus, the network structure keeps
evolving, and reaches its stationary regime before individuals
update their strategies. In this case, the linking dynamics is
captured by a Markov chain. The resulting stationary distri-
bution of the Markov chain �π0 quantitatively indicates the
fraction of CC, CD, and DD links of the network, respectively.
The stationary distribution is given by

�π0 = (πCC, πCD, πDD) = χ−1(γ3γ4, γ1γ4, γ1γ2), (2)

where

γ1 = pkxD(xCRC + xDRD) + (1 − p)kxDRD,

γ2 = 1
2 kxD p(xCRC + xDRD) + 1

2 (1 − p)kxDRD,

γ3 = 1
2 kxC p(xCRC + xDRD) + 1

2 (1 − p)kxCRC,

γ4 = pkxC (xCRC + xDRD) + (1 − p)kxCRC, (3)

and χ = (γ3γ4 + γ1γ4 + γ1γ2) is the normalization factor (see
Appendix A).

If the active individuals are stubborn, i.e., p = 1, the sta-
tionary distribution becomes (x2

C, 2xCxD, x2
D). This is the same

as that in the well-mixed population. If the active individuals
are not stubborn at all, i.e., p = 0, the stationary distribu-
tion �π0 is given by (α2

C, 2αCαD, α2
D) with αs = Rsxs(RCxC +

RDxD)−1, s ∈ {C, D}. It implies that the self-recommendation
reshapes the population structure. It acts like the well-mixed
population with a rescaled frequency of cooperators, i.e., from
xC to αC . To be precise, it implies that (i) πCC is a monoton-
ically increasing function of RC/RD, that is, the fraction of
CC links increases with RC/RD; (ii) πDD is a monotonically
decreasing function of RC/RD, and the fraction of DD links
decreases with RC/RD; and (iii) πCD, i.e., the fraction of CD
links increases at first and then decreases with RC/RD. Note
that there are few CD links, provided RC/RD is large enough.

The stationary regime of the network structure allows us to
estimate the average accumulated payoff of both cooperators
and defectors [Eqs. (B1) and (B2)]. For large populations, the
model can be approximately captured by a stochastic differ-
ential equation [see Eq. (B3)]. In the limit of population size
N → +∞, the stochastic term of the stochastic differential
equation vanishes and the mean-field equation for the fraction
of cooperation is given by

ẋC = xC (1 − xC ){(RC − RD)[(1 − p)b − c]xC − RDc} (4)

(see Appendix B for the detailed calculation).
On the other hand, given a two-strategy pairwise game

payoff matrix (ai j )2×2, the corresponding replicator equation
is given by ẋ = x(1 − x)[(a11 − a12 − a21 + a22)x + (a12 −
a22)]. Letting a11 − a12 − a21 + a22 = (RC − RD)[(1 − p)b −
c] and a12 − a22 = −RDc would transform Eq. (4) into a
replicator equation with a 2 × 2 game (ai j ). The two equations
give rise to a linear equation of ai j , i, j ∈ {1, 2}. Standard
algebra analysis shows that there is a solution for the linear
equation. We additionally assume that a12 = −RDc and a22 =
0. The solution is unique. In this way, we transform Eq. (4)
to the replicator dynamics ẋC = xC (1 − xC )( f̃C − f̃D) [7], in
which f̃C and f̃D are determined by the transformed payoff

matrix Q̃:

C D
C
D

(
RC (1 − p)(b − c) −RDc

RD(1 − p)b + RC pc 0

)
,

(5)

In other words, self-recommendation essentially changes the
interaction between cooperators and defectors [4]. The trans-
formed payoff matrix Eq. (5) captures the interaction between
cooperators and defectors shifted by self-recommendation.

IV. RESULTS

In this section, we make use of the replicator equation
with the transformed game Eq. (5) to investigate how self-
recommendation tendencies (RC and RD) and stubbornness (p)
affect the evolutionary dynamics of cooperation. Additionally,
we investigate the robustness of the results with respect to the
parameters which are absent in the transformed game Eq. (5)
via simulations.

A. More eloquent cooperators and less stubborn individuals
promote cooperation

We resort to the transformed matrix Eq. (5) to shed light
on the evolutionary fate of cooperation. If the opponent is a
defector, then the effective payoff of a defector, i.e., zero, must
be greater than that of a cooperator, i.e., −RDc < 0. If the
opponent is a cooperator, a cooperator is better off than a de-
fector if and only if RC (1 − p)(b − c) > RD(1 − p)b + RC pc
holds. In other words, cooperation is a strict Nash equilibrium
of the transformed matrix, provided that both

RC > RD and p < 1 − c

b

1

1 − RD
RC

(6)

hold, which is equivalent to the inequality RC (1 − p)(b −
c) > RD(1 − p)b + RC pc. In this case, the transformed matrix
is a coordination game, in which individuals are better off to
do what others do. Both x∗

C = 1 and 0 are stable fixed points
for Eq. (4), separated by the unstable internal fixed point

x∗
C = cRD

(RC − RD)[(1 − p)b − c]
. (7)

Therefore, if Eq. (6) is fulfilled, cooperation dominates the
population provided that the initial fraction of cooperators
exceeds the critical value x∗

C by Eq. (7). Otherwise, defection
takes over the population. The critical value x∗

C via simulation
is in good agreement with the theoretical prediction (Fig. 1).
It should be pointed out that our model has two homogeneous
absorbing states (all C and all D). For each realization of our
simulations, the running time is long enough for the process to
end up with homogeneous populations. The average final fre-
quency of cooperators (in Fig. 1) is the estimation of fixation
probability of cooperation starting from a given initial fraction
of cooperators. It does not reflect the fixation probability ratio
between cooperators and defectors, although it is commonly
used to characterize whether cooperation is favored in finite
populations. In addition, it is quite unlikely to observe the co-
existence of two strategies in the final state in our simulation,
which could be explained by the structure of the transformed
payoff matrix in Eq. (5). The matrix corresponds to either
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FIG. 1. The final fraction of cooperators as a function of initial
fraction of cooperators. The symbols indicate the simulation results
and the dashed lines represent the internal unstable fixed point x∗

C

given by Eq. (7). The simulation results are in agreement with our
theoretical predictions. If the initial value is smaller than the criti-
cal fraction of cooperators x∗

C , defection dominates the population.
Otherwise, cooperation is taking over the population. This mirrors
a coordination game with cooperation a stable Nash equilibrium.
Each data point in this figure is averaged over 500 independent runs.
In each simulation, we run time up to 106 generations. We have
checked that all realizations end up with homogeneous populations.
The final fraction of cooperators (in the simulation) is the estimation
of fixation probability of cooperation starting from a given initial
fraction of cooperators. Parameters: Prisoners’ Dilemma with b = 3
and c = 1; the tendencies of self-recommendation of cooperators
and defectors, RC = 3 and RD = 1, respectively; population size
N = 1000; average degree 〈d〉 = 20; probability of a strategy update
ω = 10−3; link-breaking probability k = 1; and selection intensity
β = 10.

a dominant game or a coordination-like game. In both cases
the fixation time is of order N ln N provided large population
size N [27]. That is, our running time is long enough for the
simulation to get fixation.

Based on Eq. (6), two conditions are required to pro-
mote cooperation: (i) the cooperators should be better than
defectors at self-recommendation, i.e., RC > RD; and (ii) in-
dividuals should be less stubborn and more open to self-
recommendation, i.e., p < 1 − c

b
1

1− RD
RC

.

For (i), it indicates that cooperation emerges only if coop-
erators are more eloquent than defectors. On the one hand, if
RC > RD cooperators are more active and are more likely to
be selected as a new neighbor. This would make cooperators
clustered together. The clustered cooperators interact more
often with each other and gain higher payoffs. Thus they
would outperform defector neighbors in payoff, and even-
tually take over the population [17]. Noteworthy, eloquent
cooperators are taking risks because they would attach to
defectors from time to time. However, the resulting clustered
cooperators expand so quickly that the risk is under control.
On the other hand, let us consider the situation that RC > RD

does not hold. We focus on a special case RC = RD, i.e.,
cooperators and defectors are equally eloquent. In this case,
all the potential new neighbors of the active individual have
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FIG. 2. The final fraction of cooperators as a function of RC/RD

and stubbornness p. It is shown that cooperation prevails if the
cooperators are more eloquent, i.e., RC/RD is sufficiently large, and
if individuals are open to accept the self-recommendation, i.e., p
is small. The simulation, i.e., the heat map, is in agreement with
our theoretical prediction, i.e., the black line determined by Eq (7).
Parameters: Prisoner’s Dilemma with b = 3 and c = 1, N = 1000,
〈d〉 = 20, ω = 10−3, k = 1, and β = 10; the initial fraction of coop-
erators is 0.5.

the same likelihood to be selected. In other words, there is
no preferential attachment in the linking dynamics. The sta-
tionary population regime ends up with π0 = (x2

C, 2xCxD, x2
D),

which is the same as that in the well-mixed population. The
resulting replicator equation is ẋC = −cxC (1 − xC ), which is
exactly the replicator dynamics of the original PD game. As
a result, defection dominates the population regardless of
the stubbornness p. Therefore RC > RD is necessary for the
emergence of cooperation.

For (ii), individuals should be open and less stubborn,
i.e., p < 1 − c

b
1

1− RD
RC

(see Fig. 2). To illustrate this, let us

consider two extreme cases: p = 1 and 0. When p = 1, i.e.,
the active individual is so stubborn that it does not react to
the self-recommendation by anybody, the active individual
randomly chooses new neighbors. The self-recommendation
does not work. The resulting stationary population regime
is the same as that of the well-mixed population. Thus the
approximated replicator equation is ẋC = −cxC (1 − xC ), as
in the well-mixed population. Therefore, defection dominates
the population. Let us resort to the other extreme case p = 0,
i.e., individuals are not stubborn at all, and take into account
the self-recommendation. The transformed payoff matrix be-
comes (

RC (b − c) −RDc
RDb 0

)
. (8)

The transformed payoff matrix Eq. (8) shows that (a) when a
defector meets a defector, the effective payoff of each defector
is still zero as in the original PD game Eq. (1); (b) when a
defector meets a cooperator, both individuals obtain RD times
the payoff of the original PD game; and (c) when a cooperator
meets a cooperator, each cooperator gets RC times the payoff
of the original PD game. Noteworthy, the group interest of two
cooperators 2RC (b − c) outperforms that of a cooperator and
a defector RD(b − c), provided 2RC > RD. Thus cooperation
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FIG. 3. The final fraction of cooperators as a function of RC/RD

and cost-to-benefit ratio c/b. The heat map represents the simu-
lation result and the black line indicates the theoretical boundary
predicted by x∗ = cRD/[(b − c)(RC − RD )] = 0.5. We can see that
the simulation is in agreement with our theoretical prediction. It is
shown that a small cost-to-benefit ratio facilitates the cooperation.
Parameters: N = 1000, 〈d〉 = 20, ω = 10−3, k = 1, and β = 10; the
initial fraction of cooperators is 0.5 and the stubbornness p = 0.

could still be a social optimum as in the original PD game
Eq. (1). For the emergence of cooperation, it is essential to
compare RC (b − c) and RDb. In the original PD game, b − c
is less than b, whereas RC (b − c) can be larger than RDb as
long as RC is sufficiently larger than RD. To be precise, if

c

b
< 1 − RD

RC
, (9)

cooperators take over the whole population as long as the ini-
tial fraction of cooperators exceeds x∗

C = cRD/[(b − c)(RC −
RD)]. The cost-to-benefit ratio c/b is smaller than 1, thus
RC > RD is necessary if Eq. (9) holds, or cooperation prevails
only if cooperators are much more eloquent than defectors
(see Fig. 3). For p between zero and one, the interaction
between cooperators and defectors can be captured by Eq. (5).
As p increases, the effective game moves from Eq. (1), in
which cooperation is not a Nash equilibrium, to Eq. (8), in
which cooperation becomes an ESS.

B. Robustness of theoretical predictions

All the above results are based on the replicator equation
of the transformed matrix Eq. (5). Equation (5) is deter-
mined by the cost-to-benefit ratio, the tendencies of self-
recommendation, and the probability to react to the self-
recommendation. However, the population size N , average
degree 〈d〉, as well as the frequency of the strategy updates
ω are absent in the transformed matrix. Here we investigate
the robustness of our theoretical predictions with respect to
these parameters via simulations.

First, we find that the larger the population size is, the
better the agreement is shown between simulation results and
theoretical prediction [Fig. 4(a)]. Noteworthy, our theoretical
prediction is based on the mean-field analysis assuming that
the population size is large enough. Therefore, it is not sur-
prising to see the disagreement when the population size is
small. Note that the critical value is shifted to the right with the
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FIG. 4. Illustration of the robustness of our theoretical result.
(a) Simulation results for different population sizes; the critical
transition from all defection to all cooperation is shifted to the
right with the decrease of N . (b) Simulation results for different
average degrees; the case with smaller average degree shows more
fluctuations than the one with larger average degree. (c) Simulation
results are quite sensitive to the frequency of the strategy updates ω;
the critical transition is shifted to the right with the increase of ω; the
default parameters are the same as in Fig. 1.

decrease of N [Fig. 4(a)]. Actually, given the average degree
[〈d〉 = 20 in Fig. 4(a)], smaller population size corresponds
to denser network structure, which could suppress the assort-
ment of cooperators during the network update.

Second, we investigate the average degree 〈d〉 [Fig. 4(b)].
We can see that the smaller 〈d〉 is, the more fluctuated the
simulation result is. In other words, the transition region from
all defection to all cooperation becomes less sharp as 〈d〉
decreases. This phenomenon seems a little bit counterintu-
itive because our theoretical approximation is based on the
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assumption that the whole population size is much larger than
the average degree of the network. It means that, given the
same population size, the case with smaller average degree
should better agree with the theoretical prediction. However,
it should be noted that smaller average degree increases the
stochastic of the linking dynamics, because smaller 〈d〉 results
in less number of total links (L = N〈d〉/2) in the system. In
this way, properly increasing the value of 〈d〉 can reduce the
fluctuations around the expected numbers of CC, CD, and DD
links in the stationary regime, making the simulation results
agree with our theoretical prediction better.

Finally, let us discuss the parameter ω, i.e., the frequency
of the strategy updates [Fig. 4(c)]. We find that the sim-
ulation results are sensitive to ω. In particular, the critical
transition from all defectors to all cooperators increases with
the increase of ω. Noteworthy, our method assumes that the
network update is much faster than the strategy update (ω �
1); it thus makes sense that the simulation with smaller ω

shows better agreement with our theoretical prediction. As ω

becomes larger, the strategy will update more frequently, and
it is not long enough for the network to reach the stationary
regime. Therefore, the population structure reshaped by the
self-recommendation would be of less benefit for cooperators
to form clusters, and then would inhibit the emergence of
cooperation.

V. CONCLUSIONS AND DISCUSSIONS

Active information spreading is ubiquitous, ranging from
commercial advertisements [13] to election campaigns [28].
Those with high tendencies of self-recommendation are likely
to convince others. It is similar to reputation, where coop-
erators are typically assumed to have a high score of repu-
tation [10,29–32]. Both self-recommendation and reputation
play their role in communication. Neither can work unless the
observers recognize. However, they remarkably differ from
each other. Individuals take the initiative to attract others when
they recommend themselves. Those who self-recommend are
active. Reputation is at work in a passive way. Individuals with
a high score of reputation could be too shy to be recognized.

Based on our model, we find that eloquent cooperators
are necessary to promote cooperation. The intuition is not
straightforward, because an eloquent cooperator does not im-
ply that cooperation is at an advantage: If the active individual
is a cooperator, an eloquent cooperator with high RC would be
more likely to become the active cooperator’s potential new
neighbor. Once the new link is established, it benefits both the
active cooperator and the eloquent cooperator. If the active
individual is a defector, however, an eloquent cooperator once
again would be more likely to connect with the active defector.
This new link would only benefit the active defector rather
than the cooperator. In fact, the eloquent cooperators can
form clusters, although they occasionally attach to defectors.
The clustered cooperators gain much more than their defector
neighbors. Thus the occasional attached defector would open
an avenue for the cooperator cluster to spread. Eventually
cooperation takes over the whole population [33]. Therefore,
our results echo the so-called network reciprocity that cooper-
ators can prevail by forming cooperative clusters [4]. Figure 5
illustrates how the degree distributions of cooperators and
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FIG. 5. Degree distributions of the network. From the initial
to final states during the coevolutionary dynamics of network and
strategy, the degree distributions change and strongly depend on the
cooperator frequency. We measure the degree distributions whenever
the level of cooperation (xC) reaches certain levels (xC = 0.3, 0.5,
and 0.8). In each panel, the degree distributions of both cooperators
(blue) and defectors (red) are shown. The degree distribution of the
whole population (black line) shows a mixture distribution of red
and blue. The distributions for 500 realizations at each given level
of cooperation are averaged. The default parameters are the same as
in Fig. 1 with the stubbornness p = 0.3 and initial state of xC = 0.4.
The average degree is 20 which keeps constant during the simulation.

defectors change with the evolution of strategy. It is shown
that both degree distributions of cooperators and defectors
behave like Poisson distributions, yet the average degree of
cooperators is larger than that of defectors at different levels
of cooperation xC , revealing the cluster of cooperators induced
by self-recommendation.

In addition, we find that the observers should be
not too stubborn, and they should be open to the self-
recommendation. In particular, if individuals are 100% open
to the self-recommendation, cooperation becomes the stable
Nash equilibrium, provided c

b < 1 − RD
RC

. The larger RC is, the

larger 1 − RD
RC

is, and the more likely it is to form a cooperative

cluster. In other words, 1 − RD
RC

represents the social viscosity,
which is similar to [17,18,34].

Our model is a simple start to investigate how the rec-
ommendation reshapes the evolutionary dynamics. For sim-
plicity, we assume that tendency of self-recommendation is
determined by its trait (cooperation or not) in this paper. The
disentanglement between tendency of self-recommendation
and its trait should be taken into account for a more sophis-
ticated model. Research along this line is in progress.
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APPENDIX A: MARKOV LINKING DYNAMICS AND ITS
STATIONARY DISTRIBUTION

For the linking dynamics, there are three different types of
social ties: cooperator-cooperator (CC), cooperator-defector
(CD), and defector-defector (DD) links. Based on the pre-
sented rewiring rule with self-recommendation, the network
updating process can be modeled as a discrete-time Markov
chain in the state space of {CC,CD, DD} [35,36]. Let us de-
note xC and xD to be the fraction of cooperators and defectors
in the population.

We take the transition from CD to DD as an example.
This transition happens only when a CD link is broken off
(with probability k) and the D individual is selected as the
active individual (with probability 1/2), and then rewire to
another defector (with probability xD if D does not respond
or with probability αD if it does respond). As a result, the
transition probability is either k 1

2 xD or k 1
2αD, depending on

whether or not the active individual responds to the self-
recommendation by others. According to the Law of Total
Probability, the transition probability from CD to DD is given
by pk 1

2 xD + (1 − p)k 1
2αD. All the rest of the entries of the

transition matrix M0 are obtained in the same argument.
We thus end up with the transition matrix

M0 = pM1 + (1 − p)M2, (A1)

where

M1 =
CC CD DD

CC
CD
DD

⎛
⎝1 − kxD kxD 0

kxC/2 1 − (k/2) kxD/2
0 kxC 1 − kxC

⎞
⎠ (A2)

and

M2 =
CC CD DD

CC
CD
DD

⎛
⎝1 − kαD kαD 0

kαC/2 1 − (k/2) kαD/2
0 kαC 1 − kαC

⎞
⎠ (A3)

with αC = xCRC/(xCRC + xDRD) and αD = xDRD/(xCRC +
xDRD).

Actually, M1 and M2 are the transition probability ma-
trices conditional on the response and nonresponse cases,
respectively. M0 is the convex combination of them due to
the Law of Total Probability. The resulting Markov chain is
aperiodic and irreducible, provided xCxD �= 0. And there is a
unique stationary distribution. By solving the linear equation
�π0M0 = �π0, we obtain the stationary distribution �π0 which is
given by

�π0 = (πCC, πCD, πDD) = χ−1(γ3γ4, γ1γ4, γ1γ2), (A4)

where

γ1 = pkxD(xCRC + xDRD) + (1 − p)kxDRD,

γ2 = 1
2 kxD p(xCRC + xDRD) + 1

2 (1 − p)kxDRD,
(A5)

γ3 = 1
2 kxC p(xCRC + xDRD) + 1

2 (1 − p)kxCRC,

γ4 = pkxC (xCRC + xDRD) + (1 − p)kxCRC,

and χ = (γ3γ4 + γ1γ4 + γ1γ2) is the normalization factor.
�π0 characterizes the relative frequencies of different types

of links when the network structure is in the stationary regime.

APPENDIX B: REPLICATOR-LIKE EQUATION OF THE
COOPERATION DYNAMICS

Normally it is quite challenging to analyze the entangled
dynamics of strategy update and social relationship adjust-
ment [26]. Here we overcome this challenge by assuming that
the network update is much faster than the strategy update
(ω � 1). In this case, the network structure reaches its station-
ary regime before a strategy update happens. This assumption
allows us to obtain a more tractable model approximation. In
light of this, the idea of time-scale separation has been fre-
quently used in a variety of complex dynamics [17–19,37,38].

Note that there are three types of social ties. Let NCC , NCD,
and NDD be the numbers of CC, CD, and DD links. In the
stationary regime we have

NCC = LπCC, NCD = LπCD, NDD = LπDD.

L = N〈d〉/2 is the total number of links, which remains un-
changed during the network updates. �π0 = (πCC, πCD, πDD)
represents the stationary distribution given by Eq. (A4). We
then calculate the average payoffs of cooperators and defec-
tors, respectively, as follows:

fC = (2(b − c)NCC − cNCD)/NxC

= (2(b − c)πCC − cπCD)L/NxC (B1)

and

fD = bNCD/NxD = bLπCD/NxD. (B2)

For large populations, the model with Fermi updating rule
can be approximately captured by the a stochastic differential
equation as follows [11,18]:

ẋC = xC (1 − xC ) tanh[β( fC − fD)/2] +
√

xC (1 − xC )

N
ξ,

(B3)

where ξ is a Gaussian white noise with variance 1. In the limit
of large populations (N → +∞), the stochastic term vanishes
and we obtain

ẋC = xC (1 − xC ) tanh[β( fC − fD)/2]. (B4)

Let

G0(xC ) = ( fC − fD)−1 tanh[β( fC − fD)/2], (B5)

then Eq. (B4) can be rewritten as

ẋC = G0(xC )xC (1 − xC )( fC − fD). (B6)

Note that G0(xC ) is positive; Eqs. (B6) and (B4) have the
same fixed points and stability properties. In other words, they
are equivalent to each other in terms of evolutionary stability.
Therefore, Eq. (B6) captures the evolution of cooperation in
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our model. Substituting Eqs. (B1), (B2), (A4), and (A5) into
Eq. (B6) leads to

ẋC = Q(xC )xC (1 − xC ){(RC − RD)[(1 − p)b − c]xC − RDc},
(B7)

where

Q(xC ) = Lk2

Nχ
[p(xCRC + xDRD) + (1 − p)RC] (B8)

is a positive rescaling factor. Therefore, we simplify (B7) as

ẋC = xC (1 − xC ){(RC − RD)[(1 − p)b − c]xC − RDc}
(B9)

without changing its evolutionary stability.
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