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Pattern formation in reaction-diffusion systems with piecewise kinetic
modulation: An example study of heterogeneous kinetics
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The study of pattern emergence together with exploration of the exemplar Turing model is enjoying a
renaissance both from theoretical and experimental perspective. Here, we implement a stability analysis of
spatially dependent reaction kinetics by exploring the effect of a jump discontinuity within piecewise constant
kinetic parameters, using various methods to identify and confirm the diffusion-driven instability conditions.
Essentially, the presence of stability or instability in Turing models is a local property for piecewise constant
kinetic parameters and, as such, may be analyzed locally. In particular, a local assessment of whether parameters
are within the Turing space provides a strong indication that for a large enough region with these parameters, an
instability can be induced.
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I. INTRODUCTION

Understanding pattern formation is one of the major issues
not only in developmental biology but across many different
disciplines. A seminal mechanism for self-organization emer-
gence was proposed by Alan Turing in 1952 [1]. He con-
sidered two biochemicals (the so-called morphogens) which
diffuse and interact with each other via reaction terms and
demonstrated that a small fluctuation of their concentrations
around a steady state can be heterogeneously amplified for
suitable reaction kinetics coupled with diffusion. Therefore
spatially nonhomogeneous steady states, that is, patterns can
emerge. Mathematically, this symmetry breaking mechanism
was described as a diffusion-driven instability (DDI) of the
steady state in a reaction-diffusion system (RD system).
Comparing theoretical predictions and real patterns seen in
nature, it has been reported that Turing models may indeed
feature in, for example, the formation of wild cat skin patterns
[2], tumor vascularization [3], hair follicle localization [4,5],
pigmentation of zebrafish [6], rugae formation [7], and digit
patterning [8].

For many decades, one of the biggest issues for the plau-
sibility of a Turing system in biological development was
the lack of identification of morphogens and confirming the
molecular details match those required for patterning, though
recent studies show extensive promise [9–11]. Furthermore,
there is in addition the suggestion that the combination
of Wolpert’s positional information hypothesis [12,13] with
Turing’s mechanism may increase the applicability of both
[14,15].

Many Turing systems have been proposed and analyzed,
both analytically and using numerical experiments. The ma-
jority of these studies consider only two species. The exemplar
models are the Gierer-Meinhardt model [16] describing the
growth of hydra; the Schnakenberg model [17] describing
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a chemical reaction exhibiting limit-cycle behavior or the
Thomas model [18] describing chemical reaction of oxygen
and uric acid in the presence of the enzyme uricase; see
[19] for a review of these models. A standard question is to
find the Turing space, that is the set of parameters for which
Turing’s diffusion-driven instability occurs, whereby the sys-
tem’s steady state is stable to homogeneous perturbations but
unstable to heterogeneous perturbations assuming the domain
size is sufficiently large to support the growth of the unstable
perturbations.

The resulting patterns of the Turing model with constant
coefficients are typically highly periodic and hence fail to
capture key features of many real systems, where the patterns
significantly change in space. The reason is intuitive—the
model is too simplistic. The addition of spatial dependency
in model parameters is a natural way to extend the Turing
model and probably an intuitive way of potentially generating
wavelength variation [20]. The Gierer-Meinhardt model [16],
for example, is originally based on a source with a gradient;
even Turing in his paper [1] discussed that “Most of an
organism, most of the time, is developing from one pattern
into another, rather than from homogeneity into a pattern,”
suggesting significant spatial dependency may be initially
present before the impact of the Turing instability.

There are many examples of spatial irregularity in patterns
where wavelength variation is manifest, for example, a dis-
tribution of mouse or cat whiskers [21], alternating thin and
thick stripes of Lionfish [22], and emergence of fingers [15].
In these cases heterogeneous pattern modulation is a crucial
feature of the self-organization and, as a result, we would like
to capture this phenomena in a modeling framework for the
emergence of self-organization. Similarly, the heterogeneity
of the environment in landscape ecology [23] or the influence
of geometric confinement of human embryonic stem cells [24]
illustrate important and heterogeneous aspects of patterning
systems. Such ubiquitous examples emphasize the critical
importance of studying the impact of heterogeneity and its
effects on the properties of self-organizing systems.
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FIG. 1. Plot of the long-time (close to steady state) activator concentration u(x) from simulations of the system (1) with Schnakenberg
kinetics (4) on the domain [0,100] with zero-flux boundary conditions, and parameters as follows: d1 = 1, d2 = 100, s = 0.5, a = 0.1, and (a)
b = 0.01, (b) b = 0.25 (both outside the Turing space for s = 0), (c) b = 1, (d) b = 2 (both inside the Turing space for s = 0). These have
been solved by MATHEMATICA (for more details see below). Note the different vertical scales in the above plots.

However, the standard procedure of stability analysis is not
easily extendable to the case with spatially dependent coeffi-
cients as, for example, a homogeneous steady state does not
exist in general given spatially dependent kinetics. Probably
the most well-understood effect of heterogeneity comes from
the shadow limit in Gierer-Meinhardt kinetics using spike
solutions [25–27] but note that this requires the applicability
of the infinite or arbitrarily large diffusion coefficient in one
of the species. Further the case of a spatially dependent
diffusion coefficient was analyzed in [28] with a step function
representing the dependency. Heterogeneity in the reaction
kinetics was analyzed numerically [22] and limited analytical
progress in stability analysis has been established with spatial
dependency in the kinetics. Examples include asymptotically
small, spatially dependent, linear gradients of morphogen
source [29–31], a cosine spatial dependence in a coefficient
of the kinetics [32] and a step function, independent of
morphogen concentration, added to the kinetics [33]. Finally,
very recently a rather general stability analysis with spatial
heterogeneity in reaction kinetics was successfully proposed
including a transition from one pattern into another [34].
Essentially the only situation this approach using WKBJ
asymptotics does not cover is when the spatial oscillations are
rapid, which is a fundamental feature induced by the jump
discontinuity in the kinetics that we consider here.

This article deals with a system with a spatially depen-
dent coefficient in the linear term of the activator kinetics
which introduces very different challenges to the above de-
scribed cases. For analytical convenience, we assume a one-
dimensional space. We consider the following RD system:

∂t u = d1∂xxu + f1(u, v) + h(x)u, x ∈ (0, L),

∂tv = d2∂xxv + f2(u, v), x ∈ (0, L), (1)

with Neumann boundary conditions,

∂u

∂n
= 0, at x = 0, L,

∂v

∂n
= 0, at x = 0, L,

(2)

where h(x) is a step function defined as

h(x) =
{

0 x ∈ [0, ξ ),

s x ∈ [ξ, L].
(3)

First for reasons that shall become evident, we need to
assess what will be denoted as a pattern since the standard
definition is not sufficient because inhomogeneity is always
present due to the forced jump s at location ξ . We illustrate
the effect of the step function via numerical simulations,
considering system (1) with Schnakenberg kinetics,

f (u, v) = a − u + u2v,

g(u, v) = b − u2v,
(4)

where a, b are positive parameters. Let the step, with a size
s = 0.5, be located in the middle of the domain ξ = L/2 and
consider the remaining parameters d1, d2, a, b to be outside
(b ∈ {0.01, 0.25}) or inside (b ∈ {1, 2}) the Turing space for
s = 0.

As we can see in Fig. 1 (blue wavy line), a spatial inhomo-
geneity occurs in each of the solutions. Note (i) the different
amplitudes of the pattern in the two parts of the domain (as al-
ready observed, e.g., in [33]) and (ii) the different periods [see
Fig. 1(c)]. Characterizing such patterning behavior in Fig 1(c),
within the context of emergent Turing self-organization from
a linearized system with spatial heterogeneity in the form of
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FIG. 2. Plot of the long-time (close to steady state) activator concentration u(x) from simulations of the system (1) with the same values
as in Fig. 1 apart from L = 1000. The vertical axis is chosen equal for all plots. This figure illustrates the effect of larger L which is key for
discussion of what a “pattern” should mean in systems with heterogeneous kinetics.

a step function premultiplying a linear term, constitutes the
overarching aim of this study.

As mentioned above, not all the inhomogenous solutions
displayed in Fig. 1 correspond to a pattern, however. To rep-
resent genuine self-organization, rather than being passively
slave to the step function, such stationary solutions should
have spatial oscillations extending to the domain edge on at
least one side of the step even as the domain size is increased,
for sufficiently large domain sizes. This requirement follows
from an observation that a Turing pattern is characterized
by a finite number of frequencies that appear in the pattern.
Thus an increase in the domain size should result in pattern
repetition over the whole domain once a critical domain size
is surpassed. Therefore we plot stationary solutions to the
system with the same parameters except a larger domain size,
L = 1000, in Fig. 2 . By comparison, we can deduce that
Fig. 2(a) is not a pattern as the inhomogeneity is localized only
around the point of the step ξ while being of the order of the
step s. Hence we disregard such cases in the context of pattern.
On the contrary, in the other examples the inhomogeneity
perseveres on the whole domain; thus such cases are denoted
as a pattern.

Hence our detailed objectives are as follows: (i) to deter-
mine if a pattern emerges or not; (ii) to undertake a more
specific pattern classification examining the parameter spaces
for when the system will exhibit each prototype of a stationary
solution represented by the plots in Figs. 1(a) no pattern, 1(b)
right-sided pattern, 1(c) global pattern, and 1(d) left-sided
pattern1.

1Note the discrepancy between plots in Figs. 1(b) and 2(b): The
former case is denoted as a right-sided pattern whereas the latter

Let us further make the following interesting observation.
We consider step functions ū(x), v̄(x) defined as

ū(x) =
{

ūL x ∈ (0, ξ )

ūR x ∈ (ξ, L)
, v̄(x) =

{
v̄L x ∈ (0, ξ )

v̄R x ∈ (ξ, L)
, (5)

where

f (ūL, v̄L ) = 0 = g(ūL, v̄L ),

f (ūR, v̄R) + sūR = 0 = g(ūR, v̄R).

Note that in Turing-like problems the existence of a homo-
geneous steady state is assumed, guaranteeing existence of
the step functions (5). The long-time solution for the variable
u seems to be either approaching ū(x) in the case without
pattern, or oscillating around ū(x) in the case of pattern. This
leads us to a hypothesis that the behavior of the long-time
solution could be deduced from attracting properties of the
system around ū(x) and therefore the system characterizations
could be similar to the conditions of diffusion driven insta-
bility evaluated for the system (with a constant coefficient)
considered separately on intervals (0, ξ ) and (ξ, L). In par-
ticular, such prospects will be considered more precisely and
systematically below.

patterns globally. The only change is in the value of parameter L
and it seems, roughly speaking, L should be large enough and cases
where the pattern cannot form solely because of the domain are
generally classified as patterning systems nonetheless. Please note
that this is analogous to the classical Turing approach where a pattern
appears only once a certain minimal domain size is reached so that
the first eigenmode fits within the domain and can be excited.
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In Sec. II A, we consider system (1) with affine kinetics
f , g and linearize about the steady state. The system behaves
similarly to the original one, but where the propensity to pat-
tern is replaced by the existence of an unbounded solution as
time tends to infinity. Hence, we analyze the growth or decay
of perturbations in the linearized system, with the implicit
assumption that the eventual steady state of the full system
will inherit the same spatial frequency of heterogeneity of
one of the unstable, diffusively driven, growing solutions
exhibited by the linearized system. Such implicit assumptions
are standard in linear stability analysis [19]. Furthermore
when the linear system exhibits no growing solutions, even
for an arbitrarily large domain, the system does not exhibit
a Turing instability. Thus, in summary, we analytically solve
the stationary problem and proceed to analyze the linear
stability of the steady state via a spectral approach with the
results compared to extensive numerical simulations of the
full evolution problem.

We then complement this spectral approach by a boundary
layer analysis which further suggests that conditions for the
one-sided pattern are related to Turing conditions considered
separately on each subinterval. In addition, this boundary
layer analysis indicates that spatial frequency of the emerging
pattern is determined independently in the two subintervals
while the boundary layer highlights how the patterns match
in the interval around the step at x = ξ of the step functions.
Finally, the hypothesized local conditions for a Turing insta-
bility are verified by a sweep of numerical solutions to the
evolution problem with Schnakenberg kinetics before drawing
conclusions in Sec. IV.

II. ANALYTICAL APPROACH

A. Spectral theory

Let us consider system (1) with general kinetics. The
behavior of such a system is usually inferred from the be-
havior of the linearized system, which describes the evolution
around the steady state where the influence of linear kinetics
exceeds the influence of nonlinear parts of kinetics. Hence
characterizations via linear systems are generally true at least
for small enough initial perturbations of the steady state.

However, as mentioned in Sec. I, since s is nonzero, we
cannot expect the steady state to be homogeneous. Note
that resolving the steady state requires solving a system of
nonlinear elliptic partial differential equations. Further, if we
consider an expansion of the nonlinear kinetics around this
nonhomogeneous steady state, the resulting coefficients in
the linear terms would be strongly spatially dependent which
may prevent analytical tractability. Hence we focus on the
case of linear kinetics where the step occurs only in a single
linear kinetic term. Then, generalization to linear kinetics with
jumps in every kinetic term is implemented.

Consider the following RD system with affine kinetics and
the step function h(x) defined above (3),

∂t u = d1∂xxu + b10 + (b11 + h(x))u + b12v

∂tv = d2∂xxv + b20 + b21u + b22v,
x ∈ (0, L),

(6)
with Neumann boundary conditions (2).

The advantage of considering affine kinetics, even though
they are not standard, is that the system then in general
describes the dynamics not only around a trivial solution, but
also around a nontrivial one, as will be apparent below and in
particular in Appendix A 1.

1. Analytic solution to the stationary problem

Our first task is to find a stationary solution to the system
(6) explicitly. The following approach is not novel, moreover
the complexity and length of the steady-state solution is out of
proportion to the usefulness of explicitly stating it and hence
we highlight the important features only.

Since ū(x), v̄(x) defined in (5) and h(x) are step functions
at ξ , it is easier to consider the system (6) restricted to
the interval (0, ξ ) and (ξ, L) separately and to use appro-
priate connecting conditions at ξ . From now on the upper
index L corresponds to the system on (0, ξ ), while the index
R corresponds to the interval (ξ, L), respectively. For the
perturbations,

ũL = uL − ūL, ṽL = vL − v̄L,

ũR = uR − ūR, ṽR = vR − v̄R,

we obtain an equivalent steady system of the form,

0 = d1∂xxũL + b11ũL + b12ṽ
L,

0 = d2∂xxṽ
L + b21ũL + b22ṽ

L,
in (0, ξ ),

0 = d1∂xxũR + (b11 + s)ũR + b12ṽ
R,

0 = d2∂xxṽ
R + b21ũR + b22ṽ

R,
in (ξ, L),

(7)

with boundary and connecting conditions [C1(0, L) solutions
of the form u = uLh(ξ − x) + uRh(x − ξ ), v = vLh(ξ − x) +
vRh(x − ξ )],

∂ ũL

∂x
(0) = ∂ ṽL

∂x
(0) = 0,

∂ ũR

∂x
(L) = ∂ ṽR

∂x
(L) = 0,

∂ ũL

∂x
(ξ ) = ∂ ũR

∂x
(ξ ),

∂ ṽL

∂x
(ξ ) = ∂ ṽR

∂x
(ξ ),

ũR(ξ ) − ũL(ξ ) = ūL − ūR, ṽR(ξ ) − ṽL(ξ ) = v̄L − v̄R. (8)

Tildes will be omitted henceforth.
The simple way to solve such systems is to transform the

matrix B =
(

b11 b12

b21 b22

)
into its Jordan normal form on both

subsystems separately, considering the boundary conditions
but not the connecting ones, and completing the calculation
of the steady state by employing the connecting conditions, as
implemented in [33].

An interesting issue is that the resulting form of the so-
lution to each subsystem depends on the sign of (tr2 AL,R −
4 det AL,R), where AL,R denote matrices of coefficients readily
written in terms of normalized linear terms for both subsys-
tems, i.e.,

AL =
(

b11/d1 b12/d1

b21/d2 b22/d2

)
, AR =

(
(b11 + s)/d1 b12/d1

b21/d2 b22/d2

)
.
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Particularly, the signs of the following two terms are impor-
tant:

(d2b11 + d1b22)2 − 4d1d2 det B,

(d2(b11 + s) + d1b22)2 − 4d1d2(det B + sb22). (9)

These terms are remarkably similar to these appearing on one
of the conditions for classical Turing diffusion-driven instabil-
ity evaluated on both subsystems separately. This observation
supports our hypothesis at the end of Sec. I about the relation
between diffusion-driven instability in the studied case and
DDI conditions for patterns on (0, ξ ) and (ξ, L).

2. Linear stability

With the steady state of system (6), we can analyze its
stability. We focus only on the long-time behavior of the sys-
tem, which can be obtained from spectral analysis, assuming
that the transient behavior is not essential as shown for the
classical Turing instability [35].

Let us denote the (nonconstant) steady state as (û, v̂) and,
with a redefinition of ũ, ṽ to the time-dependent perturbed so-
lution, ũ = u − û, ṽ = v − v̂ expand the evolution equations
around the steady state to find

∂t ũ = d1∂xxũ + (b11 + h(x))ũ + b12ṽ,

∂t ṽ = d2∂xx ṽ + b21ũ + b22ṽ.
(10)

Since we consider Neumann boundary conditions, we have
a complete orthogonal basis yn(x), n ∈ N0 of L2(0, L) and
eigenvalues κn = (nπ/L)2 for the negative Laplacian (which
satisfy −�yn = κnyn). Now we rewrite functions ũ and ṽ in
terms of the series,

ũ(t, x) =
∞∑

n=0

An(t )yn(x), ṽ(t, x) =
∞∑

n=0

Bn(t )yn(x).

(11)
Thus system (10) can be rewritten into the form,

∞∑
n=0

(
∂t An

∂t Bn

)
yn(x) + D

(
An

Bn

)
κnyn(x) − J(x)

(
An

Bn

)
yn(x) = 0,

(12)
where we have introduced a standard notation,

D =
(

d1 0

0 d2

)

J(x) =
(

J11(x) J12

J21 J22

)
=
(

b11 + h(x) b12

b21 b22

)
. (13)

Problems of the type (12) can be solved using spectral
methods, i.e., using expansions in eigenfunctions of the neg-
ative Laplacian (see Appendix A 3 for details). However, the
system does not decouple into a straightforward collection of
coupled ordinary differential equations for amplitudes of the
eigenfunctions but rather a truncation has to be employed with
detailed calculations presented in Appendix A 3, with results
summarized in Appendix A 3 a. Note that extension to a
general linear case with jumps in every term is straightforward
(see Appendix A 4).

Note that the same qualitative behavior (with the same
long-time behavior) is obtained when studying a perturbation

of the piecewise constant solution (5) in a generalized function
sense (see Appendix A 2), or when instead of linearizing the
whole problem we linearize just the kinetics [see Appendix
A 1; in particular compare Eqs. (A1) and (A14) and also
compare Eqs. (A4) and (A6), noting Appendix A 4].

Although we show below that the analysis of Eq. (12) does
yields correct results (via comparison to numerical solutions),
this linear analysis does not allow the study of the most
interesting and pertinent phenomena (being also the main
motivation for this study), the influence of heterogeneity on
spatial frequency of a pattern and the one-sided patterns.

B. Boundary layer analysis

To proceed with the analysis for general kinetics and to fa-
cilitate a boundary layer analysis we regularize the Heaviside
replacing h(x) with

hδ (x) = s

2

[
1 + g

(
x − ξ

δ

)]
, with g ∈ C∞(R),

lim
x→±∞ g(x) = ±1, g′ � 0,

where one can think of, for example,

hδ (x) = s

2

[
1 + tanh

(
x − ξ

δ

)]
,

and consider small values of δ > 0. Then the steady state
(assuming it exists), (us, vs), satisfies

0 = d1∂xxus + f (us, vs) + hδ (x)us,

0 = d2∂xxvs + g(us, vs).
on (0, L). (14)

Expanding about the steady state that is not designated to
be a pattern, as described earlier, we have

u = us + ũ, v = vs + ṽ,

with

ũt = d1∂xxũ + J11(us, vs)ũ + J12(us, vs)ṽ + hδ (x)ũ,

ṽt = d2∂xx ṽ + J21(us, vs)ũ + J22(us, vs)ṽ, on (0, L), (15)

where J(us, vs) is the Jacobian of the kinetics about the steady
solution (us, vs).

We proceed with a boundary layer analysis. Based on the
continuity of solution on data we argue that for small enough
jump s the steady-state solution that does not correspond to a
pattern will be approximately (ūL, v̄L ) sufficiently to the left
of x = ξ and approximately (ūR, v̄R) sufficiently to the right,
where

f (ūL, v̄L ) = 0 = g(ūL, v̄L ),

f (ūR, v̄R) + sūR = 0 = g(ūR, v̄R).

Hence for x < ξ , |x − ξ | � δ we anticipate the approxima-
tion,

ũt = d1∂xxũ + J11(ūL, v̄L )ũ + J12(ūL, v̄L )ṽ,

ṽt = d2∂xxṽ + J21(ūL, v̄L )ũ + J22(ūL, v̄L )ṽ, (16)

and, similarly,

ũt = d1∂xxũ + J11(ūR, v̄R)ũ + J12(ūR, v̄R)ṽ + sũ,

ṽt = d2∂xx ṽ + J21(ūR, v̄R)ũ + J22(ūR, v̄R)ṽ, (17)
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for x > ξ , |x − ξ | � δ. These can be considered as the outer
problems for a leading order boundary layer approximation.

We proceed to consider the prospects of an internal bound-
ary layer near x ≈ ξ . Indeed noting the form of hδ (x), which
drives hetergeneous behavior near x = ξ , one can rescale the
spatial component via

X = (x − ξ )/δ.

This will lead to the absence of a dominant balance for
an inner expansion with ũ ∼ uin(X, t ) + o(1), which instead
yields d1∂XX uin = 0 at leading order, with an analogous obser-
vation for ṽ ∼ vin(X, t ) + o(1). The resulting linear solution
behavior is divergent as |X | → ∞ unless uin and vin are
constant, indicating no boundary layer, but instead a matching
of the left and right outer solutions, via a nominal but constant
inner layer solution. Given the kinetics are assumed to be
order unity as δ is decreased, a dominant balance at leading
order, and thus more complex dynamics, is only conceivable
with the concomitant temporal rescaling T = t/δ2. Then, at
leading order,

∂T uin = d1∂XX uin, ∂T vin = d2∂XX vin,

with the kinetics subdued by a factor of δ2. The resulting
dynamics is very fast and, more importantly, pure diffusion.
Thus it will not drive patterning within the inner region but
instead instigate diffusion on a very fast time scale, acting
to homogenize across the inner region, whereby for T �
1, i.e., t � δ2, one will expect an inner solution which is
approximately constant after transients have relaxed even if
the initial conditions are highly varying in the vicinity of
x ≈ ξ .

Hence, considering the impact of δ 	 1, with the limit of
zero δ corresponding to the Heaviside function of interest
in the kinetics, the evidence is that the inner solution of a
boundary layer analysis does not induce patterning but has
a rather trivial dynamics. Instead, the behavior of the outer
solutions, i.e. Eqs. (16) and (17), is indicated as governing
the propensity of system patterning. Proceeding, this allows
one to infer that if both outer solutions are unstable, then
instability on both sides of x = ξ is expected. In contrast, if
one outer solution is unstable and the other stable, we expect
an instability on one side of x = ξ . Analogous reasoning
suggests stability if the outer solution dynamics either side
of x = ξ is stable. Finally, due to this local nature of the result
we expect that the spatial frequency of the emerging patterns

is also related locally to the Turing conditions and hence with
the prospect of a change in spatial frequency of patterning
across the domain.

C. Summary and formulation
of DDI conditions

Spectral theory as detailed in the Appendixes yields a
plausible approach to stability analysis but its practical use
seems to be limited as the algebraic complexity even after
truncation requires a numerical approach and provides neither
information about one-sided patterns nor the effect of spatial
heterogeneity on the spatial frequency variation in the result-
ing pattern. The asymptotics, on the other hand, can be used
to estimate conditions for Turing pattern emergence and its
classification.

As a summary of all the above partial results suggests that
the conjectured conditions are of the form of conditions for
Turing’s diffusively driven instability evaluated for the system
with constant coefficients considered separately on intervals
(0, ξ ) and (ξ, L). Therefore let us denote the following condi-
tions for the latter interval:

T 1R := b11 + s + b22 < 0,

T 2R := (b11 + s)b22 − b12b21 > 0,

T 3R := (b11 + s)d2 + b22d1 > 0,

T 4R := ((b11 + s)d2 + b22d1)2 − 4d1d2((b11 + s)b22

− b12b21) > 0, (18)

and analogously for the former interval T 1L-T 4L (particularly
noting that TiL ≡ TiR, i ∈ {1, . . . , 4} with s = 0). These con-
ditions will be compared with results from a large number of
numerical solutions to the full model. Further, as we discuss
below, we obtain not only a very good approximation for
stability conditions in practice but we also observe a strong
indication that it provides a tool to distinguish among all
the one-sided patterns and both-sided patterns in the case of
nonlinear kinetics, which is clearly beyond the scope of the
spectral analysis in the Appendixes.

In particular assuming T 1L ∧ T 2L ∧ T 1R ∧ T 2R (we de-
note the logical and as ∧) it could be expected that a pattern on
the left will emerge only if T 3L ∧ T 4L holds and the pattern
on the right will emerge only if T 3R ∧ T 4R holds. Therefore
we propose and will subsequently numerically verify the
following conditions:

T 1L ∧ T 2L ∧ T 1R ∧ T 2R ∧ (T 3L ∧ T 4L ) ∧ (T 3R ∧ T 4R) pattern on both sides,

T 1L ∧ T 2L ∧ T 1R ∧ T 2R ∧ (T 3L ∧ T 4L ) ∧ ¬(T 3R ∧ T 4R) pattern on the left side,

T 1L ∧ T 2L ∧ T 1R ∧ T 2R ∧ ¬(T 3L ∧ T 4L ) ∧ (T 3R ∧ T 4R) pattern on the right side,

T 1L ∧ T 2L ∧ T 1R ∧ T 2R ∧ ¬(T 3L ∧ T 4L ) ∧ ¬(T 3R ∧ T 4R) no pattern,

(19)

and we shall use both the spectral approach of the Appendixes
and numerical solution of the full system to verify these
conditions. The former can be used just for the assessment

of (in)stability while the latter will be employed to check
these conditions for the existence of a one-sided pattern.
Note that a straightforward extension of these conditions
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TABLE I. The table summarizing the results for the regions, i.e., the sets of the parameters satisfying combinations of the conditions (18)
in the explored parameter space. All parameters in each region exhibit the same behavior. We impose the following designation: U and 0
denote unbounded and zero long-time solutions of the evolution problem; + and − denote signs of the largest real part of eigenvalues of the
matrix (A12).

T 1L ∧ T 1R ∧ T 2L ∧ T 2R

T 3L ∧ T 3R ¬T 3L ∧ T 3R T 3L ∧ ¬T 3R ¬T 3L ∧ ¬T 3R

T 4L ∧ T 4R (U,+) (U,+) (U,+) (0,−)
¬T 4L ∧ T 4R (U,+) (U,+) (0,−) (0,−)
T 4L ∧ ¬T 4R (U,+) (0,−) (U,+) (0,−)
¬T 4L ∧ ¬T 4R (0,−) (0,−) (0,−) (0,−)

¬(T 1L ∧ T 1R ∧ T 2L ∧ T 2R )
(U,+)

to the general case also be implemented, as discussed in
Appendix A 4.

III. NUMERICAL APPROACH. VERIFICATION OF
ESTIMATED DDI CONDITIONS

We shall first focus on the verification of the proposed DDI
conditions (18) in the linear case, where the only plausible
prediction and verification is whether a small perturbation
exponentially increases or decays in time. Then we proceed
to test the more detailed conditions (19) in the nonlinear case
where, in addition, we verify the prediction of a one-sided
pattern.

A. Linear case

We have eight conditions (18) and hence 256 combinations
to be analyzed. Since we are interested in a phenomenon
similar to Turing’s self-organization, we disregard the case
when the kinetics themselves induce instability. In classical
Turing patterning two of the DDI conditions are equivalent
to a requirement of a stable homogeneous steady state in
the absence of diffusion [36]. Therefore, in our case we
assume that T 1L ∧ T 2L ∧ T 1R ∧ T 2R holds [corresponding to
a stable homogeneous steady state on both parts of (0, L)] and
we focus on the remaining 16 combinations.

The sets corresponding to each combination are denoted
by distinct regions (see Table I). For all parameters in each
region we want to know if a pattern can emerge or not. This
crucially includes an assessment of whether one can assign
this property of pattern existence to every point in each region,
independent of further details. As it was noted in the previous
analysis of linear system stability, we will use two tools: (i)
calculating the largest real part of eigenvalues of the truncated
matrix in the Appendixes, Eq. (A12), using MATLAB and (ii)
solving the evolution problem (6) using MATHEMATICA (for
more details on computational approaches see Appendix A 5).

In both approaches we take large sets of parameter values
sampling each region. Other parameters are fixed for every
numerical experiment if it is not stated otherwise. The step
location is at ξ = 120, with L = 400, where the latter has been
chosen to be sufficiently large so as not to prevent a possible
pattern due to insufficient room in the domain (as checked by
confirming the results are unchanged with ξ = 300, L = 1000
and ξ = 30, L = 100, for example, not shown). Further, to

reduce the seven (not considering L) dimensional parameter
space we fix diffusion coefficients with a sufficiently large ra-
tio d1 = 1, d2 = 100 and also fix s ∈ (−1, 1). The remaining
parametric space was discretized and the comparison between
the identified conditions and computations was examined in
two-dimensional slices of this parameter space and the slices
with varying b11, b12 have been presented in Fig. 3.

Before we present the relation between conditions (18)
and pattern formation, we compare the numerical and spectral
approaches based on computational results. First, the results
from the spectral approach concur with those from solving the
evolution problem. In particular, with the possible exception
of the very near vicinity of the parameter space boundaries
between differing stability behaviors, the largest real part of
eigenvalues is negative if and only if the supremum norm of
the solution to the evolution problem is smaller than the initial
norm. Due to the conformity of the results from both methods
while being very different conceptually the conclusions from
either approximation are inferred to be generally accurate.

Second, the character of pattern emergence is indeed the
same within each region from Table I. Particularly, if two
regions express an opposite behavior, the change is located
exactly on the border of the regions (with negligible imperfec-
tion due to numerical imprecision). Hence, these observations
entail a justification of the chosen conditions (18).

The results are outlined in Table I and Fig. 3 which can be
summarized as follows: A Turing pattern will emerge for large
enough min(ξ, L − ξ ) with unstable eigenmodes that satisfy
the boundary conditions if and only if

(T 1L ∧ T 2L ∧ T 1R ∧ T 2R) ∧ ((T 3L ∧ T 4L ) ∨ (T 3R ∧ T 4R))
(20)

holds.
In short, the hypothetical conditions (18) have been ev-

idenced as well characterizing whether the system exhibits
a pattern or not. Even though we have implemented a de-
tailed numerical verification using two different approaches—
computing a spectrum of the truncated matrix (A12) and
solving the evolution problem (6)—and these conditions seem
to have an intuitive explanation, we are not able to validate
them nor relate them using a rigorous analytical approach,
as we indicated above. However, one should bear in mind
that the analysis outlined in the Appendixes via a spectral
analysis is lacking rigor “only” in the limit N → ∞ where
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FIG. 3. An illustration of the match between the identified Turing instability conditions for affine kinetics, Eq. (20), and the results from
the evolution of system (6) with b10 = 1, b20 = 3, b21 = −3, b22 = −2, L = 100, ξ = 30, d1 = 1, d2 = 100 and (a) s = 0.25, (b) s = −0.25.
The remaining two parameters, b11, b12, are considered as parameters for exploring stability properties and are on the x and y axes. In the
background the conditions (20) are plotted in the grayscale, which, in increasing grayscale intensity, highlight regions with an unbounded
solution indicating the existence of pattern (white), decaying solution indicating no pattern, and the region where T 1L ∧ T 2L ∧ T 1R ∧ T 2R

does not hold (the darkest gray). The spots denote the resulting pattern type based on numerical solution to the evolution problem: an unbounded
solution indicating a pattern (a red disk) and decaying solutions corresponding to no pattern (a blue cross).

N is the number of terms in the spectral expansion, while the
continuum approximation motivates a finite N cutoff.

B. Nonlinear case

Additionally, from (19) we have the prospect of (i) a tool to
distinguish a one-sided pattern from a both-sided pattern, (ii)
an indicative criterion for self-organization even for nonlinear
kinetics, that is how to find conditions determining pattern
emergence, and (iii) how to detect which type of the pattern it
should be. We proceed to test this, considering Schnakenberg
kinetics,

f (u, v) = a − u + u2v, g(u, v) = b − u2v, (21)

and Gierer-Meinhardt kinetics,

f (u, v) = a − bu + u2

v
, g(u, v) = u2 − v, (22)

with a, b positive constants as two exemplars for reaction
kinetics in Turing models.

Numerical experiments have been implemented using Wol-
fram MATHEMATICA as in the linear case (see Appendix A 5).
The terminal time is τ = 103. This choice was sufficient to
distinguish the nonexistence of pattern from its presence,
where in the latter case the convergence of a norm was clearly
observed suggesting a convergence of the long-time solutions
to stationary patterns. The initial condition was set to be small
random noise around the stationary solution ū(x), v̄(x). For
both choices of kinetics we take L = 400, ξ = 120, d1 = 1,
d2 = 100; this parameter selection follows the reasoning from
the linear case. Large sets of the remaining parameters a, b, s
are considered to capture the rich behavior sufficiently to
illustrate the legitimacy of the instability conditions (19).

In particular, the types of pattern resulting from simulations
agree well with the predictions given by conditions (19) as
depicted in Fig. 4. The degree of correspondence seems to

be very high at least in the tested scenarios (kinetics and
parameters selection) giving merit to the approach and the
resulting conditions, despite the absence of rigor.

IV. CONCLUSIONS

In this paper we considered a reaction-diffusion system
with a spatial dependence via a linear kinetic term with a co-
efficient in the form of a spatial step function and we analyzed
the resulting impact on conditions for pattern formation. First
we defined a pattern as a steady solution with an inhomogene-
ity persevering throughout a large enough domain. Using an
analytical-numerical approach we examined a case of affine
kinetics and deduced conditions for pattern emergence in a
very simple form, Eq. (18). For the case of nonlinear kinetics
we took conditions inherited from a suitable linearization,
generalizing the previous conditions to those stated in (19),
with a verification for two choices of kinetics and a range of
parameter values. Further, note that conditions (19) and their
agreement with numerics also match the intuition of at least
some experimentalists in the field, e.g., [20], and suggests
further analytical progress may be feasible at least for step
function behaviors in the kinetics.

If we compare our results with the previously studied
system with an additive spatial step function independent of
the morphogen concentrations [33], the patterns in our case
have not only different amplitudes on the two sides of the step
but also different frequencies. This highlights that patterning
with sharp changes in spatial frequency may be a signature
of kinetic heterogeneity characterized by rapid transitions in
kinetics.

One interesting point is whether there is any restriction on
the size of the step s. Although the final conditions (19) are
well defined for any value of s, a restriction arises from our
definition of a pattern in Sec. I. We need the eventual pattern
to be more significant in comparison to the inhomogeneity
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FIG. 4. An illustration of the match between the identified Turing instability conditions, Eq. (19), and the results from the evolution of
system (1) with Schnakenberg kinetics (a) s = 0.25, (b) s = 0.75, (c) s = −0.25; and Gierer-Meinhardt kinetics (d) s = 0.5. In the background
the conditions (19) are plotted in the grayscale, which, in increasing grayscale intensity, highlight regions with a both-sided pattern (white), a
right-sided pattern, left-sided pattern, no pattern, and the region where T 1L ∧ T 2L ∧ T 1R ∧ T 2R does not hold (the darkest gray). The spots
denote the resulting pattern type based on numerical solution to the evolution problem: a both-sided pattern (a red disk), a left-sided pattern (a
green square), a right-sided pattern (an orange circle), and no pattern (a blue cross).

localized around ξ , which is expected to be true for suf-
ficiently small s, by appeal to continuity with respect to
parameters. For larger s the localized inhomogeneity will also
be larger, which can be easily seen even in the linear case due
to the larger gap between ū(x) [respectively, v̄(x)] at the point
ξ and thus has every potential to invalidate our findings for
sufficiently large s.

The conditions (19) are necessary diffusion driven insta-
bility (DDI) conditions and depend directly on the diffusion
coefficients, kinetics, and the size of the step. As well as in
the classical Turing system, if DDI conditions hold, a large
enough domain is necessary for a pattern to emerge; thus the
intervals (0, ξ ) and (ξ, L) are also required to be sufficiently
large. Moreover, sufficiently large intervals are necessary for a
pattern to be correctly identifiable, as seen in the comparison
of Figs. 1(b) and 2(b) where both systems are predicted to
exhibit patterning on the left of the step, but only the latter
does, since the subdomain [0, ξ ) is smaller than the emergent
pattern period in Fig. 1(b). Finally, note that differences in

spatial frequencies are observed to be independent of both
interval lengths and hence independent of both ξ and L.
However, as the boundary layer analysis suggests, the spatial
frequency can be different in the two parts of the domain as it
is evaluated independently on the two subintervals.

This article is concerned with a special case of hetero-
geneity in the kinetics though this can be easily generalized
to a certain extent. First, it is easy to see that the particular
choice of a spatially dependent linear term in the kinetics is
not important for the analysis even in the case of nonlinear
kinetics. Further, the same approach as well as the results, will
be valid for a step function h(x) with finitely many steps. A
limitation arises, however, due to the note from the previous
paragraphs—the sizes of the steps should be small enough in
comparison to the surrounding intervals so that the localized
inhomogeneity due to the step does not exceed the emerging
pattern in magnitude and amplitude. Further, the discreteness
of eigenmodes results in a lower bound on the size of the
supporting intervals of each step.
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The question of a generalization to a spatial dependency
is expected for slowly varying function h(x). In such a case
we can take an approximation of h(x) using a simple function
and take the advantage of conclusions of this approximative
system. In the case of a more general dependency it may be
difficult to show similar conclusions. Actually, as a recent
study shows [37] even shallow gradients coupled to nonlinear
kinetics may lead to an unexpected and complex behavior but
finding a clear-cut distinction between these cases is beyond
the scope of this paper. Furthermore, how and where the
present intuitive analysis fails also remains to be explored as
do higher dimensional domains and curved geometries, which
may allow ready generalization.

We could also consider a higher-dimensional space. The
presented approach is easily extendable to domains in the
form of higher-dimensional rectangles. For example, one
might readily find conditions yielding the emergence of a
pattern with spots on one part and stripes on the other part
of a higher-dimensional domain.

Finally, let us finish with a summary of the identified hypo-
thetical DDI conditions: (In)stability in the Turing model ana-
lyzed here appears to be a local property and can be analyzed
as such, with the local assessment of whether parameters
are within Turing space providing a strong indication for an
unstable eigenmode excitation, at least on a sufficiently large
domain with concomitant spatial frequency heterogeneity.
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APPENDIX: FURTHER DETAILS OF
STABILITY ANALYSIS

In the main text, Sec. II A 2, we follow a rather standard
approach to linear stability analysis and simply adopt it for
a system with a jump in reaction kinetics. Here, for the sake
of completeness, we pursue other possible approaches and,
as we shall show, all entail the same qualitative behavior.
Namely, we expand the jump in a generalized function sense
(see Appendix A 2), and linearize just the kinetics instead of
linearization of the whole problem (see Appendix A 1).

These approaches lead to the problem of the type in
Eq. (12) which can be further analyzed using spectral meth-
ods, i.e., using expansions in eigenfunctions of negative
Laplacian (see Appendix A 3 for details). However, the system
does not decouple into a straightforward collection of coupled
ordinary differential equations for amplitudes of the eigen-
functions but rather a truncation has to be employed. Finally,
an extension to a general linear case with jumps in every term
is straightforward as noted in Appendix A 4. Note that all

computational results shown in this work were obtained via
two approaches which are described in Appendix A 5.

1. Alternative I. Linearization of kinetics only

An alternative approach is to linearize only the kinetics
around the piecewise constant naive steady state.

Assume the existence of a solution (ūL, v̄L ) and (ūR, v̄R)
satisfying

f (ūL, v̄L ) = 0 = g(ūL, v̄L ),

f (ūR, v̄R) + sūR = 0 = g(ūR, v̄R),

and take approximations of reaction kinetics as Taylor expan-
sions evaluated separately on both intervals (ũ = u − ū):

L : f (u, v) = f (ūL, v̄L ) + JL
11ũ + JL

12ṽ + . . .

g(u, v) = g(ūL, v̄L ) + JL
21ũ + JL

22ṽ + . . . ,

R : f (u, v) + su = f (ūR, v̄R) + sūR + JR
11ũ + JR

12ṽ + . . .

g(u, v) = g(ūR, v̄R) + JR
21ũ + JR

22ṽ + . . . ,

where JL
i j (respectively, JR

i j) denote the elements of the Ja-
cobian matrix of the map ( f , g) at (ūL, v̄L ) [respectively,
( f + su, g) at (ūR, v̄R)]. Using the following notation,

Ji j (x) =
{

JL
i j x ∈ (0, ξ )

JR
i j x ∈ (ξ, L)

, ū(x) =
{

ūL x ∈ (0, ξ )

ūR x ∈ (ξ, L)
,

v̄(x) =
{
v̄L x ∈ (0, ξ )

v̄R x ∈ (ξ, L)
,

we can write down an affine system describing evolution
around ū(x), v̄(x) while approximating the original system
with nonlinear kinetics as

∂t u = d1∂xxu + J11(x)u + J12(x)v + c1(x),

∂tv = d2∂xxv + J21(x)u + J22(x)v + c2(x),
on (0, L),

(A1)
with the step functions,

c1(x) = −J11(x)ū(x) − J12(x)v̄(x),

c2(x) = −J21(x)ū(x) − J22(x)v̄(x).

The analysis of such a system in the current framework is
discussed in Appendix A 4.

2. Alternative II. Linearization about a piecewise constant
steady state

The second option could be to linearize around step func-
tions (ū, v̄). If we try to proceed, we will obtain a linear
system, but with terms containing a derivative of the Dirac
delta function, which results from the nontrivial step in (ū, v̄).
Therefore, we are not able to obtain the linearized system
following the standard approach above.

However, it is instructive to proceed further as an expan-
sion (in generalized functions) of the delta function in the
eigenfunctions {yk} is available and hence we can rewrite the
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linearized system yet again in terms of a system of equations
for particular modes.

Linearization of the system (1) around step functions
(ū(x), v̄(x)) [defined in (5)] is well defined in the distribu-
tional sense and is of the form,

∂t ũ = du∂xxũ + b11ũ + b12ṽ + suduδ
′(x − ξ )

∂t ṽ = dv∂xx ṽ + b21ũ + b22ṽ + svdvδ
′(x − ξ ),

in (0, L),

(A2)
where (su, sv ) denotes the sizes of the step of (ū(x), v̄(x)) at
ξ , δ(x) denotes Dirac delta function and u(x) = ũ(x) − ū(x),
v(x) = ṽ(x) − v̄(x).

Since Neumann boundary conditions are considered,
we expand (ũ, ṽ) using orthonormal basis {yn}n∈{0,1,..} =

{ 1
L , 2

L cos ( nπ
L x)}∞

n=1 as the series,

ũ =
∞∑

n=0

Anyn, ṽ =
∞∑

n=0

Bnyn, (A3)

and rewrite system (A2) in the form of a system of equations
for each eigenmode. The Dirac delta function can be ex-
panded in terms of any eigenfunctions of the Laplacian on any
interval. Hence we use the following expansion of Dirac delta
function on (0, L):

δ(x − ξ ) = 2

L

∞∑
n=1

sin

(
nπξ

L

)
sin
(nπx

L

)
.

Therefore the linearized problem has the following eigenmode
expansion:

∞∑
n=1

yn

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(

Ȧn

Ḃn

)
+
[(

du 0
0 dv

)
κn − J(x)

](
An

Bn

)
− nπ

L
sin

(
nπξ

L

)(
dusu 0

0 dvsv

)(
An

Bn

)
︸ ︷︷ ︸

forcing

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 0, (A4)

where κn = ( nπ
L )2 and the matrix of linearized kinetics J(x)

is evaluated at the piecewise constant function (ū(x), v̄(x)).
As the δ′(x − ξ ) contribution translates only into a (constant)
forcing, it does not affect the (in)stability result. Then the gen-
eralized function approach yields exactly the same problem as
previously derived in Eq. (12).

3. Detailed analysis of the dispersion relation

The difference from the standard Turing system anal-
ysis for a homogeneous system emerges from the spatial

dependence of J(x) preventing the decoupling of individual
eigenmodes and hence preventing a straightforward solution.
However, we can take the advantage of the fact that J(x)
contains only constants and a step function, all satisfying
Neumann boundary conditions and hence within the span of
the eigenfunctions {yk},

J(x) =
∞∑

k=0

(
J (k)

11 J (k)
12

J (k)
21 J (k)

22

)
︸ ︷︷ ︸

J(k)

yk (x). (A5)

The system can be rewritten as

∞∑
n=0

⎡
⎢⎢⎢⎢⎣
(

∂t An

∂t Bn

)
yn(x) + D

(
An

Bn

)
κnyn(x) −

∞∑
k=0

(
J (k)

11 J (k)
12

J (k)
21 J (k)

22

)(
An

Bn

)
︸ ︷︷ ︸

=:Ck,n

yk (x)yn(x)

⎤
⎥⎥⎥⎥⎦ = 0. (A6)

The eigenfunctions of the negative Laplacian on a one-dimensional interval are of the well-known form yn(x) = cos (nπx/L)
and hence we have

yk (x)yn(x) = 1

2

(
cos

(n + k)πx

L
+ cos

(n − k)πx

L

)
= 1

2

(
cos

(n + k)πx

L
+ cos

|n − k|πx

L

)
= yn+k (x) + y|n−k|(x)

2
, (A7)

which are again functions from the orthogonal basis. To obtain the dispersion relation we need to reorder the second sum to
be able to factor out the function yn(x) and then invoke orthogonality of the orthogonal basis to transform the problem into
an infinite system of ordinary differential equations. Denoting the coefficients in the internal sum by Ck,n ∈ R2 we obtain the
following form of the system:

∞∑
m=0

(
∂t Am

∂t Bm

)
ym(x) + D

(
Am

Bm

)
κmym(x) = 1

2

∞∑
m=0

(
m∑

n=0

Cm−n,n +
∞∑

n=m

Cn−m,n

)
ym(x) + 1

2

∞∑
m=1

∞∑
n=0

Cn+m,nym(x). (A8)
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The coupled evolution equations for the eigenmodes are then of the form,

0 =
(

∂t Am

∂t Bm

)
+ D

(
Am

Bm

)
κm − 1

2

∞∑
n=0

C|m−n|,n − 1

2

∞∑
n=0

Cm+n,n − 1

2
C0,m, for m � 1,

0 =
(

∂t A0

∂t B0

)
+ D

(
A0

B0

)
κ0 − 1

2

∞∑
n=0

Cn,n − 1

2
C0,0. (A9)

In our case, the elements of matrices J(k) can be computed as

J(k) =
(

J (k)
11 J (k)

12

J (k)
21 J (k)

22

)
=

⎧⎪⎪⎨
⎪⎪⎩
(

Zk 0

0 0

)
k � 1(

Z0 b21

b21 b22

)
k = 0,

(A10)

where the spatial heterogeneity is represented by a step function and where

Zk = 〈h(x), yk (x)〉
‖yk (x)‖2

= 2

L

∫ L

ξ

s cos
kπx

L
dx = − 2s

kπ
sin

kπξ

L
,

Z0 = 〈h(x) + b11, y0(x)〉
‖y0(x)‖2

= b11 + 1

L
〈h(x), 1〉 = b11 + s(L − ξ )

L
. (A11)

While in the case of spatial homogeneity, the spectrum and dispersion relation for the system rate of growth in terms of the
wave number is given by the solvability condition for the eigenmodes, the analogous information is not analytically accessible
in this framework for spatially heterogeneous functions.

Nevertheless, the system (A9) is linear and hence the solution can be written in terms of an exponential of a linear operator.
Since we are not able to calculate the spectrum of the infinite matrix,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z0 − d1κ0 b12
Z1
2 0 Z2

2 0 . . .

b21 b22 − d2κ0 0 0 0 0 . . .

Z1 0 Z0 + Z2
2 − d1κ1 b12

Z1+Z3
2 0 . . .

0 0 b21 b22 − d2κ1 0 0 . . .

Z2 0 Z1+Z3
2 0 Z0 + Z4

2 − d1κ2 b12 . . .

0 0 0 0 b21 b22 − d2κ2 . . .

Z3 0 Z2+Z4
2 0 Z1+Z5

2 0 . . .

0 0 0 0 0 0 . . .

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A12)

we will use MATLAB to estimate it by calculating spectrum of its truncated principal submatrix Mn ∈ C2n,2n. First let us explore
some properties of the infinite matrix. It can be rewritten via the following synoptic sum of two matrices,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Z1
2

Z2
2

Z3
2

Z4
2 . . .

Z1
Z2
2

Z1+Z3
2

Z2+Z4
2

Z3+Z5
2 . . .

Z2
Z1+Z3

2
Z4
2

Z1+Z5
2

Z2+Z6
2 . . .

Z3
Z2+Z4

2
Z1+Z5

2
Z6
2

Z1+Z7
2 . . .

Z4
Z3+Z5

2
Z2+Z6

2
Z1+Z7

2
Z8
2 . . .

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗
(

1 0

0 0

)
+

∞⊕
i=0

(
Z0 − d1κi b12

b21 b22 − d2κi

)
, (A13)

where ⊗ stands for the Kronecker product and ⊕ denotes a direct sum.
Since Zi denotes a Fourier coefficient and its norm vanishes for i → ∞, the first matrix is bounded, compact, and has a high

degree of symmetry and therefore can be intuitively understood as a small perturbation of the second matrix which is unbounded
since κi grows to infinity as i → ∞. We will not be able to show that the spectrum of the infinite matrix is a limit of the spectrum
of the truncated matrices but we shall show that the stability of the truncated linear system is determined by spectrum of a matrix
of a relatively small dimension. Further we may justify truncating the matrix due to the continuum approximation, which is
behind the formulation of the model itself.
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a. Spectra of truncated matrices

We shall show that with σ (MN+1) denoting the spectrum of the truncated matrix MN+1,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z0 − d1κ0 b12
Z1
2 0 . . . ZN

2 0

b21 b22 − d2κ0 0 0 . . . 0 0

Z1 0 Z0 + Z2
2 − d1κ1 b12 . . .

ZN−1+ZN+1

2 0

0 0 b21 b22 − d2κ1 . . . 0 0

Z2 0 Z1+Z3
2 0 . . .

ZN−2+ZN+2

2 0

0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

ZN 0 ZN−1+ZN+1

2 0 . . . Z0 + Z2N
2 − d1κN b12

0 0 0 0 . . . b21 b22 − d2κN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

it holds that σ (MN+1) ≈ σ (MN ) ∪ {−d1κN + O(1),−d2κN + O(1)} as N → ∞.
In particular, we shall show that with N large enough, two eigenvalues are of the order κN (which grows to infinity as N → ∞).

With λ = μκN , μ = O(1) as N → ∞ we have that

det(MN+1 − λI) = κ2
N

{[
det(MN − λI)

(
1

κN
(Z0 + Z2N/2) − d1 − μ

)
+ O(κN )2N−1

](
b22

κN
− d2 − μ

)
+ b12

κN
O(κN )2N

}

= det(MN − λI)(b22 − κN (d2 + μ))

(
Z0 + Z2N

2
− κN (d1 + μ)

)
+ O(κN )2N+1,

where we note that the det(MN ) is a polynomial of 2N th
order. Therefore two eigenvalues are indeed of the order κN , in
particular λ1 = −d1κN + O(1) and λ = −d2κN + O(1), while
the remaining 2N eigenvalues are (in the leading order) the
eigenvalues of MN . Hence the information about the stability
associated with an arbitrarily large truncated matrix can be
deduced from a smaller matrix MN (in practice the choice of
N = 50 seems to be good enough). In addition, we anticipate
that this characteristic of the spectrum will translate even into
the arbitrarily large N case and which seems to be confirmed
by the numerical calculations in the main text.

4. Spatial dependence in other kinetics coefficients

We now consider the linear system (6) but with spatial
dependence in every kinetic coefficient. This dependence is in
the form of a step function with various step sizes but located
at the same point ξ . Thus consider

∂t u = d1∂xxu + b10(x) + b11(x)u + b12(x)v, in (0, L),

∂tv = d2∂xxv + b20(x) + b21(x)u + b22(x)v, in (0, L),

(A14)

with

bi j (x) =
{

bi j x ∈ [0, ξ )

bi j + si j x ∈ [ξ, L]
i ∈ {1, 2}, j ∈ {0, 1, 2},

and we assert that the procedure and conclusion are the same
as in the above. Indeed, let us briefly repeat the procedure.
The system (A14) has constant coefficients if considered sep-
arately on intervals (0, ξ ) and (ξ, L), therefore the steady state
can be expressed at least in principle. The stability analysis
proceeds in the same way, only the Fourier coefficients J(k),

Eq. (A10), are of the form,

J (k)
i j = 〈h(x), yk (x)〉

‖yk (x)‖2
= 2

L

∫ L

ξ

si j cos
kπx

L
dx=−2si j

kπ
sin

kπξ

L
,

J (0)
i j = 〈bi j (x), y0(x)〉

‖y0(x)‖2
= bi j + si j (L − ξ )

L
,

and the stability matrix,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 J(1)

2
J(2)

2
J(3)

2
J(4)

2 . . .

J(1) J(2)

2
J(1)+J(3)

2
J(2)+J(4)

2
J(3)+J(5)

2 . . .

J(2) J(1)+J(3)

2
J(4)

2
J(1)+J(5)

2
J(2)+J(6)

2 . . .

J(3) J(2)+J(4)

2
J(1)+J(5)

2
J(6)

2
J(1)+J(7)

2 . . .

J(4) J(3)+J(5)

2
J(2)+J(6)

2
J(1)+J(7)

2
J(8)

2 . . .

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∞⊕

i=0

(
J (0)

11 − d1κi J (0)
12

J (0)
21 J (0)

22 − d2κi

)
, (A15)

does not have zero elements in general (J(k) denotes 2 × 2
matrices), although analogous qualitative properties still hold.
The appropriate conditions are constructed following the same
idea:

T 1R := b11 + s11 + b22 + s22 < 0,

T 2R := (b11 + s11)(b22 + s22) − (b12 + s12)(b21 + s21) > 0,

T 3R := (b11 + s11)d2 + (b22 + s22)d1 > 0,

T 4R := ((b11 + s11)d2 + (b22 + s22)d1)2

− 4d1d2((b11 + s11)(b22 + s22)

− (b12 + s12)(b21 + s21)) > 0, (A16)
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with T 1L-T 4L of exactly the same form (i.e., T 1R-T 4R

with si j ≡ 0). The hypothesized conditions for pattern for-
mation are of the same form as in Eq. (20) and, as in
the former case, were verified using both numerical studies
of the model equations and by analyzing the eigenvalues
of truncated matrices from the spectral theory (results not
shown).

5. Computational approaches

The spectrum of the truncated matrix (A12) is computed
using the MATLAB inbuilt function eig. When denoting N
as a constant representing the size of matrix [(2N + 2) ×
(2N + 2)] our numerical results show that for N > 50 the
value of the largest real part of the eigenvalues does not
significantly change; larger matrices contribute to the spec-
trum by eigenvalues with larger negative part as we discussed
above. We choose N = 1000. With constant M represent-
ing the truncation in eigenmode expansion of h(x), i.e., we

approximate

h(x) ≈
M∑

k=0

Zkyk (x), where|Zk| � s

k
.

However, the length of numerical calculation does not
significantly increase with larger M, so we set M = N .

The solutions of the evolution system (6) are computed by
Wolfram MATHEMATICA 10 using NDSolve (via the method of
lines for the temporal discretization and finite differences for
space) up to time τ = 103 or until the supremum norm of the
solution exceeds 107. The initial condition is random noise,
uniformly distributed between (10−2, 102).

Both approaches to assess stability should yield the same
result as they describe the same process. However, both
methods are approximate and hence small differences might
occur especially close to the border of the parameter regions
due to different accuracy of the approximation (truncation of
the matrix versus numerical discretization when computing
the evolution problem).
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