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Resonance-assisted tunneling in deformed optical microdisks with a mixed phase space
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The lifetimes of optical modes in whispering-gallery cavities depend crucially on the underlying classical ray
dynamics, and they may be spoiled by the presence of classical nonlinear resonances due to resonance-assisted
tunneling. Here we present an intuitive semiclassical picture that allows for an accurate prediction of decay rates
of optical modes in systems with a mixed phase space. We also extend the perturbative description from near-
integrable systems to systems with a mixed phase space, and we find equally good agreement. Both approaches
are based on the approximation of the actual ray dynamics by an integrable Hamiltonian, which enables us to
perform a semiclassical quantization of the system and to introduce a ray-based description of the decay of
optical modes. The coupling between them is determined either perturbatively or semiclassically in terms of
complex paths.
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I. INTRODUCTION

Optical microcavities allow for a wide range of applica-
tions [1,2] in, for instance, sensors [3] and lasing devices [4].
Optical modes with long lifetimes and directional emission
properties are desired. Long lifetimes, and thus also large
quality factors, are realized by whispering-gallery cavities
in which light is confined by almost total internal reflec-
tion. This is achieved by a circular or spherical cavity de-
sign for which the classical ray dynamics is integrable. In
contrast, directional emission is achieved by deforming the
cavities’ boundary from the perfectly circular or spherical
shape and thus rendering the classical ray dynamics non-
integrable [5,6]. In quasi-two-dimensional cavities, classical
whispering-gallery trajectories persist under sufficiently small
and smooth deformations. This, in general, gives rise to the
coexistence of regular and chaotic ray dynamics in a mixed
phase space [7]. While the associated whispering-gallery
modes are still present in the deformed cavity, their quality
factors get spoiled, i.e., their lifetimes decrease.

One major mechanism causing this enhanced decay is
the wave effect of dynamical tunneling, which was first
observed and studied extensively in quantum systems [8,9].
More recently, it has been studied both theoretically and
experimentally in microwave resonators [10–13] and opti-
cal microcavities [14–25]. Dynamical tunneling allows for
coupling of optical modes associated with dynamically sep-
arated classical phase-space regions. Specifically, long-lived
whispering-gallery modes may couple to faster decaying
modes via dynamical tunneling. In particular, classical non-
linear resonances in the ray dynamics may drastically enhance
tunneling effects via the mechanism of resonance-assisted
tunneling [26]. Again the majority of theoretical understand-
ing has been obtained in quantum systems, e.g., quantum
maps [26–30]. Recent experiments, however, have impres-
sively demonstrated the effect also in microwave resonators
[13] and in two-dimensional optical microcavities [20]. While

the latter qualitatively follows the theoretical description of
resonance-assisted tunneling obtained in quantum maps, a
quantitative description of resonance assisted tunneling in
optical microcavities has been given only recently for systems
with near-integrable ray dynamics [24,25]. For this, the clas-
sical ray dynamics has been approximated by a pendulum-
like Hamiltonian, which subsequently allows for the pertur-
bative expansion of optical modes and their quality factors
as predicted by resonance-assisted tunneling. Moreover, this
description has been shown to capture the enhanced decay of
optical modes correctly in situations when the perturbative
scheme developed in Ref. [31] fails. Nevertheless, the pre-
diction based on resonance-assisted tunneling has two major
limitations. On the one hand, it depends on the circular cavity
yielding a good approximation of the actual ray dynamics in
order to construct the approximating pendulum Hamiltonian.
This will not be accurate for larger deformations of the cavity
boundary. On the other hand, for larger deformations also the
optical modes of the circular cavity will no longer provide a
suitable unperturbed basis for the perturbative treatment.

In this paper, we extend the perturbative description of
resonance-assisted tunneling in optical microcavities to sys-
tems with a mixed phase space. In addition, we apply
the semiclassical description of resonance-assisted tunneling,
which leads to a simple and intuitive picture. To this end,
based on an idea presented in Ref. [32], we introduce a
suitable coordinate system and subsequently construct the
approximating pendulum Hamiltonian. These coordinates fur-
ther allow for semiclassical Einstein-Brillouin-Keller (EBK)
quantization of the system [33–35]. This enables us to com-
pute wave numbers as well as their associated classical phase-
space structures. Moreover, this provides the unperturbed
basis necessary for the perturbative treatment and thus allows
for the construction of couplings between modes due to
resonance-assisted tunneling. We further use both the approx-
imating pendulum Hamiltonian and the semiclassical EBK
quantization scheme to obtain a semiclassical description of
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these couplings. Combining the coupling of different modes
with a ray-based model for their decay finally allows us
to accurately describe the complex wave numbers and thus
the decay of optical modes in the presence of resonance-
assisted tunneling. Both the semiclassical and perturbative
descriptions agree well with numerical solutions of the mode
equation.

This paper is organized as follows: In Sec. II we introduce
deformed optical microdisks. We study their classical ray
dynamics in Sec. II A and introduce the full wave picture
in terms of the mode equation in Sec. II B. In Sec. II C we
discuss numerical solutions to the mode equations, and we
briefly review a perturbative approach and its applicability to
resonance-assisted tunneling in Sec. II D. Section III intro-
duces the basic concepts of our description. This includes the
introduction of adiabatic action angle coordinates in Sec. III A
and the subsequent construction of an approximating pendu-
lum Hamiltonian in Sec. III B. The semiclassical quantization
scheme is discussed in Sec. III C and a ray-based model for
the decay of optical modes is introduced in Sec. III D. Finally,
Sec. III E contains the perturbative description of resonance-
assisted tunneling, while the semiclassical picture is presented
in Sec. III F. A summary and outlook are given in Sec. IV.

II. DEFORMED OPTICAL MICRODISKS

In this section, we introduce deformed optical microdisks
and present the model systems studied in this paper. We dis-
cuss their classical ray dynamics as well as solving Maxwell’s
equations to obtain the optical modes and their decay rates.

A. Ray dynamics

The classical ray dynamics of a cavity is given by light
rays traveling on straight lines inside the cavity and specular
reflections at the boundary. Thus the dynamics is completely
determined by the positions of the bounces on the boundary
and the angle χ of the reflected ray with the inward nor-
mal vector of the boundary. Therefore, the dynamics can be
completely described in Birkhoff coordinates (s, p), where s
denotes the arc length along the boundary ranging from 0 to
the full boundary length L, and p = sin(χ ) is the canonically
conjugate momentum. In Birkhoff coordinates, the dynam-
ics is conveniently represented in the phase space (s, p) ∈
[0,L] × [−1, 1] by a symplectic map (s, p) �→ (s′, p′) given
by successive bounces and the corresponding momenta.

Typically, the dynamics generated by this map will be
nonintegrable, as the full system has two degrees of freedom
while there is no second conserved quantity besides energy.
In fact, there are only a few cavities with integrable ray
dynamics and a smooth boundary. Among them, the circular
cavity is the most simple case. However, a generic defor-
mation of a circular boundary will render the ray dynamics
nonintegrable. Typically, with growing deformation the dy-
namics will change from near-integrable for small deforma-
tions to a mixed phase space for larger deformations. For
even larger deformations, the dynamics can become fully
chaotic. An important exception is the elliptic cavity, in which
the eccentricity can be seen as a deformation parameter.
There, the ray dynamics remains integrable independent of the
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FIG. 1. (a) Phase space of the near-integrable system and
(b) phase space of the mixed system with parameters given in the
text. Regular tori are depicted by lines, while dots correspond to
chaotic orbits.

eccentricity and thus even for large deformations. The bound-
ary of a deformed circular cavity can be described by its radial
coordinate r as a function of the polar angle ϕ. For cavities
with reflection symmetry with respect to an axis and with
smooth boundaries, this function can be written as a Fourier
series, r(ϕ) = R(1 + ∑

j�1 d j cos( jϕ)), with mean radius R.
As concrete examples, we will consider cases in which only
one of the coefficients dN := ε is nonzero, i.e.,

r(ϕ) = R[1 + ε cos(Nϕ)]. (1)

In particular, we choose R = 1, ε = 0.0025, and N = 4 as
an example of a weakly deformed cavity with near-integrable
ray dynamics, which was also considered in Ref. [24]. Its
phase space, shown in Fig. 1(a), is predominantly foliated by
invariant tori. At p = 0 there are two stable and two unstable
period-2 orbits, which correspond to trajectories along the
diameter of the cavity. In phase space, this periodic motion
leads to orbits consisting of only two points each. It can be
characterized by a frequency ω = L/2, by which the arc-
length coordinate advances in between successive bounces.
The periodicity of these orbits is reflected by the fact that this
frequency fulfills a resonance condition, i.e., it is a rational
multiple of L. Therefore, one has

ω = ωa:b = bL/a (2)
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for integers a and b. The period of the orbits is given by the
numerator of a/b after fully reducing this fraction. In phase
space this gives rise to a chain of a eyelike structures, called
a nonlinear resonance. The frequency ωa:b is such that the
central periodic orbits within these resonance eyes advance by
b eyes in between successive bounces. Thus, for the two pairs
of stable and unstable period-2 orbits, an a : b = 4 : 2 reso-
nance chain arises in phase space. It is bounded by a very thin
chaotic layer, which cannot be distinguished from regular tori
at the shown scale. In addition, a large 4 : 1 resonance occurs
around p4:1 = cos(π/4) = 1/

√
2. For larger momenta p → 1,

again motion along regular tori dominates the phase-space
portrait. In configuration space, the corresponding trajectories
closely follow the boundary of the cavity and are therefore
called whispering-gallery trajectories. Their existence is guar-
anteed by a theorem of Lazutkin [7] if the curvature of a
smooth boundary is bounded from below and above by some
positive constants. As the deformation parameter ε is small,
the shape of the boundary does not deviate much from the
circular cavity. Thus the regular dynamics of the circular
cavity approximates well the motion along regular tori of the
weakly deformed system.

Another example we consider is given by R = 1, ε = 0.08,
and N = 2. This deformation is called quadrupole deforma-
tion, and although the deformation parameter ε is again small
compared to unity, it gives rise to a mixed phase space as
is shown in Fig. 1(b). Hence, in the following we will use
the shorthand notion of a mixed system for this example.
For small momenta, the phase space is governed by the
regular islands around the stable period-2 orbit and the chaotic
regions around the unstable period-2 orbit at p = 0. For large
momenta, |p| close to 1, again Lazutkin’s theorem implies
the existence of regular motion along invariant tori, which
correspond to whispering-gallery trajectories in configuration
space. Below the last invariant torus, a large 4 : 1 resonance
occurs around p4:1 = 1/

√
2. More precisely, the unstable

period-4 orbit has constant momentum p4:1, while its stable
counterpart oscillates around this value. This 4 : 1 nonlinear
resonance chain is surrounded by a partial barrier as mani-
fested by different densities of points in the chaotic region
in Fig. 1(b). Inside the chaotic regions, smaller nonlinear
resonances of order proportional to N = 2 can be found.

The quadrupole deformation agrees in the lowest order of
the deformation parameter with the elliptical cavity. That is,
the boundary of the elliptic cavity with eccentricity εecc in
polar coordinates can be written as

r(ϕ) = R 4
√

1 − ε2
ecc√

1 − ε2
ecc cos2(ϕ)

, (3)

which for small εecc can be expanded as [25]

r(ϕ) ≈ R[1 + ε cos(2ϕ)]. (4)

Here ε and the eccentricity εecc are related via

εecc =
√

1 − (1 − ε)4. (5)

Thus the motion along regular tori corresponding to
whispering-gallery trajectories in the mixed system can be
approximated by the regular dynamics of the elliptic cavity
with eccentricity given by Eq. (5).

As the billiard-like dynamics inside a cavity corresponds
to the classical ray picture of optics, it is expected to be valid
only in the limit of vanishing wavelength or equivalently large
wave numbers k. For smaller wave numbers, semiclassical
corrections to the classical ray picture may become relevant.
Most famous among these corrections is the so-called Goos-
Hänchen shift [36,37]. It describes the displacement between
the center of an incoming light beam and the center of
the reflected beam. In particular, this causes the position of
periodic orbits and the associated nonlinear resonance chain
to undergo a shift in momentum [38]. This periodic-orbit shift
is given by [24,38]

�pPOS(k) = pa:b

RcRe k
√

n2 p2
a:b − 1

, (6)

where pa:b = cos(bπ/a) for an a : b resonance. Here, n de-
notes the refractive index inside the cavity, and Rc is the
average of the radii of curvature of the boundary taken over
all points of the stable and unstable periodic orbit. Equation
(6) will be used in the following when comparing classical
phase-space structures with solutions of Maxwell’s equations.

B. Mode equation

While the classical dynamics inside the cavity is governed
by light rays traveling along straight lines and undergoing
specular reflections at the boundary, the electromagnetic field
is described by Maxwell’s equations in full space. Solutions to
Maxwell’s equations with harmonic time dependence ∝eiωt in
a quasi-two-dimensional cavity fulfill the mode equation

�ψ (r) + n(r)2k2ψ (r) = 0 (7)

in combination with appropriate boundary conditions. Here,
k = ω/c denotes the wave number while c is the speed of
light in vacuum. The effective refractive index n(r) in Eq. (7)
is considered to be constant, n(r) = n, inside the cavity and
is set to unity on the outside in the following. For numerical
calculations we use n = 2. Depending on the polarization,
the optical mode ψ (r) corresponds to either the component
perpendicular to the cavity plane of the electric field, which
is called transversal magnetic (TM) polarization, or to the
component perpendicular to the cavity plane of the magnetic
field, called transversal electric (TE) polarization. For TM
polarization, ψ and its normal derivatives are continuous at
the cavities’ boundary. While we will focus on TM polarized
light, we expect the results of this paper to be applicable also
in the TE case when the appropriate boundary conditions are
applied. Requiring also outgoing wave boundary conditions
at infinity, i.e., an asymptotic behavior eikr/

√
r for large r,

Eq. (7) has solutions only for discrete complex wave numbers
with a negative imaginary part. If the boundary of the cavity
exhibits reflection symmetry along an axis, the optical modes
reflect that symmetry, i.e., they fulfill either Dirichlet or
Neumann boundary conditions on that symmetry axis. Thus
in the cavities under consideration, which are symmetric with
respect to both the horizontal and vertical axes, the optical
modes are grouped into four symmetry classes.

By means of semiclassical quantization in classically in-
tegrable or mixed systems, at least some of the possible
modes and their mode numbers k = kml are labeled by
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an angular mode number m and a radial mode number l .
In particular, modes with a small radial mode number l
are associated with whispering-gallery trajectories and thus
are called whispering-gallery modes. As the wave numbers
are complex, the intensity of the optical mode inside the cavity
decays as e−	m,l t with a decay rate 	m,l = −2c Im km,l , which
is exponentially small for whispering-gallery modes and thus
corresponds to large lifetimes τm,l = 1/	m,l . This is often also
quantified by the quality factor Qm,l = −Re km,l/(2 Im km,l ).
As for both decay rates and quality factors, it is sufficient to
determine the wave numbers km,l upon which we will focus
in the following. In particular, we study whispering-gallery
modes with fixed radial quantum number l = 0.

C. Numerical results

An analytical solution to Eq. (7) and for the wave numbers
km,l is only known for the circular cavity. Therefore, in general
numerical or approximate schemes have to be used. A stan-
dard numerical approach both for closed billiards and cavities
is the boundary element method (BEM) [39,40], which we
combine with the ideas of Ref. [41] to gain the required
accuracy for the exponentially small imaginary wave num-
bers. We use this approach to determine the dimensionless
wave numbers Rkm,l for whispering gallery modes with mode
numbers (m, l = 0) in the near-integrable system and the
mixed system. They are shown as black stars in Fig. 2 for the
(a) near-integrable and (b) mixed system. There, −Im km,l R
is depicted semilogarithmically as a function of Re km,l R.
This representation is usually employed for decay rates in
quantum maps plotted against the inverse semiclassical pa-
rameter, whose role is played by Re km,l R in our case, and
it is well suited to study resonance-assisted tunneling. We
focus on modes that fulfill Dirichlet boundary conditions on
the horizontal symmetry axis. Modes with even angular mode
number m additionally fulfill Dirichlet boundary conditions
along the vertical symmetry axis, while for odd m they fulfill
Neumann boundary conditions. The wave numbers of modes
belonging to other symmetry classes show qualitatively the
same behavior and cannot be distinguished from the depicted
data on the shown scale. For small Re km,l R, the imaginary
parts follow an exponential decay, which is equal to the wave
numbers of its integrable counterpart, i.e., the circular and
elliptic cavity, respectively. Their wave numbers are shown as
gray triangles and are computed analytically for the circular
cavity and numerically using the BEM for the elliptic cavity.
Note that for the elliptic cavity, the imaginary parts of the
wave numbers do not show a pure exponential decay as there
are deviations around Re km,l R = 13. This is expected to be
due to the open boundary condition of optical cavities [25].
However, for both the near-integrable and the mixed system,
at some point the imaginary parts of the wave numbers
deviate from the integrable case due to resonance-assisted
tunneling induced by the 4 : 1 resonance. There is still an
overall exponential decay that is similar to the exponential
decay observed in the integrable case. This overall decay is
accompanied by peaks, at which the negative imaginary part
of the wave number is enhanced by roughly two orders of
magnitude. While showing qualitatively similar behavior, the
overall exponential decay is slower in the case of the mixed

10−14

10−11

10−8

10−5

10−2

101

0 5 10 15 20 25 30

(a)

−Im kR

Re kR

10−9

10−6

10−3

100

0 5 10 15 20 25 30

(b)

−Im kR

Re kR

FIG. 2. Wave numbers for whispering-gallery modes with l = 0
(a) for the near-integrable system starting from m = 1 and (b) for the
mixed system starting from m = 4 shown as black stars. The wave
numbers of the integrable counterpart, i.e., (a) the circular cavity and
(b) the elliptic cavity, are shown as gray triangles. The perturbative
prediction, Eq. (9), is depicted by open magenta diamonds.

system. In the mixed system, the overall exponential decay
and the peak structure are present only up to wave numbers
with Re km,l R = 25. For larger real parts of the wave numbers,
their imaginary parts start to form a plateau and even increase
toward Re km,l R = 30. Similar effects have been observed in
the studies on resonance-assisted tunneling in quantum maps
if additional smaller resonances become important [29]. In the
near-integrable system, this plateau formation is not observed
in the investigated regime of wave numbers.

A qualitative idea of the mechanism causing the peaks
for specific values of Re km,l R can be obtained from the
intensity |ψ (r)|2 of the optical modes shown in Fig. 3. Here
the intensity is shown for the mode with m = 27 for the
near-integrable system in Fig. 3(a) and with m = 28 for the
mixed system in Fig. 3(b), which corresponds to modes in
between the first two peaks. In both cases, the region of
largest intensity basically follows the boundary of the cavity
resembling classical whispering-gallery trajectories. Closer
inspection reveals that the shape of the rectangular stable
period-4 orbit also influences the morphology of the intensity
patterns. In contrast, the modes corresponding to the first peak
are shown in Fig. 3(c) for the near-integrable system with
m = 22, and in Fig. 3(d) for the mixed system with m = 23.
Both appear as a superposition of modes with different radial
mode numbers. In the near-integrable system, the admixture
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FIG. 3. The intensity patterns with the respective maximum in-
tensity normalized to unity for the modes with (a) m = 27 and
(c) m = 22 for the near-integrable systems and (b) m = 28 and
(d) m = 23 for the mixed system are shown. The black line represents
the boundary of the respective cavity.

of modes with larger radial mode number l > 0 is well seen in
the regions where the stable period-4 orbit hits the boundary.
In the mixed system, a similar pattern emerges where the
unstable period-4 orbit hits the boundary.

The above observations are also reflected in the phase-
space representation of the modes. To this end, we also
show the incident Husimi function [42] on the inside of the
boundary in Fig. 3 superimposed on the classical phase space.
The Husimi functions are obtained from the overlap of ψ and
its normal derivative with Gaussian coherent states defined
on the boundary. We choose the ratio of their uncertainties
in s and p to be equal to the boundary length L in order
to increase the resolution in the p direction and to take the
extent of phase space in both s and p into account. Doing so,
we find the mode with m = 27 in the near-integrable system
to localize well above the 4 : 1 resonance and to match the
shape of the regular tori as shown in Fig. 4(a). Similarly, in
the mixed system the mode with m = 28 shown in Fig. 4(b)
localizes above the 4 : 1 resonance, where it follows the shape
of adiabatically invariant curves; see Fig. 5(a).

The localization properties of the modes with m = 22 in
the near-integrable system and with m = 23 in the mixed
system shown in Figs. 4(c) and 4(d), respectively, exhibit
a different morphology. They predominantly localize on the
s-coordinates of either the stable period-4 orbit in the near-
integrable system or of the unstable period-4 orbit in the
mixed system. However, in the p direction the modes are
shifted upward compared to the p coordinates of the respec-
tive period-4 orbits. This is due to the periodic-orbit shift,
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FIG. 4. The incident Husimi representation of the modes with
(a) m = 27 and (c) m = 22 for the near-integrable systems and
(b) m = 28 and (d) m = 23 for the mixed system are superimposed
on the classical phase space shown in gray.

Eq. (6). Incorporating this shift would lead to the modes
localizing predominantly on the stable periodic orbit in the
near-integrable system and on the unstable periodic orbit in
the mixed system, respectively (not shown). In addition to the
regions of maximal intensity along the periodic orbits, there
are additional phase-space regions with significant intensity.
This is most clearly seen in Fig. 4(c) for the near-integrable
system. In this case, these regions correspond to two regular
tori located above and below the, according to Eq. (6) appro-
priately shifted, 4 : 1 resonance. Taking again the periodic-
orbit shift into account would result in those tori being located
symmetrical with respect to the resonance. Thus the mode
with m = 23 may be interpreted as a superposition of modes
localizing on these two different classical tori. In the mixed
system, the regions with additional intensity are located on
either side of the 4 : 1 resonance as well. Above the resonance
chain, this contribution shows a similar morphology to the
mode with mode number m = 28. In contrast, the contribution
below the resonance chain resembles the shape of the partial
barrier associated with the 4 : 1 resonance. Note that this
contribution looks quite regular despite the absence of regular
tori in this phase-space region.

D. Perturbation theory

In addition to the numerical solutions of the mode equation
(7), approximate solutions can also be obtained. In particular,
the perturbative expansion of optical modes and wave num-
bers km,l in the deformation parameter ε has proven to yield
good agreement with numerical results for sufficiently small
deformation [31]. For this approach, the modes and wave
numbers k̃m,l of the circular cavity provide the unperturbed
basis. For TM polarized light and angular mode number m,
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FIG. 5. In (a) the phase space of the mixed system (gray dots
and lines) is superimposed by the adiabatically invariant curves
in black in Birkhoff coordinates. The thick red line corresponds
to the adiabatically invariant action Pa:b. In (b) the same orbits
and adiabatically invariant curves are shown in adiabatic action-
angle coordinates. The phase space of the pendulum Hamiltonian
is shown by black lines in (c) on top of the actual ray dynamics
depicted in gray. The same scenario for the near-integrable system
is shown in (d). In (c) and (d) an example of the torus P̃m,l (thick
green line) and its symmetric counterpart P̃rat (thick blue line) is
shown.

the latter are computed as the roots of [31]

Sm(k̃R) = n
J ′

m(nk̃R)

Jm(nk̃R)
− H ′

m(k̃R)

Hm(k̃R)
. (8)

Here, Jm and J ′
m as well as Hm and H ′

m denote Bessel and
Hankel functions of the first kind and of order m and their
derivative, respectively. The radial mode number l corre-
sponds to the lth root of Sm when ordered by ascending real
part. The wave numbers in second-order perturbation theory
for deformations of the type of Eq. (1) are given by [24,31]

km,l = k̃m,l − ε2

4
k̃m,l

(
1 + 2k̃m,l

H ′
m

Hm

)

− ε2

4
(n2 − 1)k̃2

m,l

(
1

Sm+N
+ 1

Sm−N

)
(9)

if m > N . Here, Sm±N , Hm, and H ′
m are evaluated at k̃m,l R.

Only the last term contains the coupling of modes with
different angular mode numbers differing from m by ±N . The
contribution to the imaginary part Im δk(±N )

m,l caused by these
mode couplings is given by [31]

Im δk(±N )
m,l = −ε2 (n2 − 1)Re k̃m,l

2π |Sm±N Hm±N |2 . (10)

Therefore, in the perturbative framework, enhancement of the
negative imaginary part may occur if Sm±N (k̃m,l R) becomes
small. This, however, corresponds to k̃m,l being almost de-
generate with a mode of angular quantum number m ± N .
As we study modes with l = 0, and as Re km,0 < Re km+N,0

holds, this degeneracy is only possible between modes with
mode numbers (m, 0) and (m − N, l̃ ) for some l̃ > 0. Thus
Im δk(−N )

m,l may cause the peaks seen in Fig. 2 in the nu-
merically obtained wave numbers. There the perturbatively
obtained wave numbers for both the near-integrable and
the mixed system are shown as open magenta diamonds in
Figs. 2(a) and 2(b), respectively. In both cases, they give rise
to the correct initial exponential decay of Im km,l R. In the near-
integrable system, perturbation theory accurately predicts the
first peak but fails to describe the second peak. In contrast, for
the mixed system the perturbative description fails to describe
even the first peak. This failure can be traced back to coupling
between modes whose angular mode numbers differ by ±N .
In the following sections, we will argue that the relevant cou-
plings occur between modes whose angular mode numbers
differ by multiples of the order a = 4 of the relevant 4 : 1
resonance. In the near-integrable system, we have a = N , and
thus second-order perturbation theory resolves the first peak.
In contrast, in the mixed system we have a = 2N and thus
second-order perturbation theory fails to explain the first peak.
Additional couplings appear in higher orders of perturbation
theory only. Whether they give rise to additional peaks is still
an open question, which will not be discussed here.

III. RESONANCE-ASSISTED TUNNELING

In the following, we derive the framework that allows
for a perturbative as well as a semiclassical description of
complex wave numbers in optical microcavities. To this end,
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we construct a canonical transformation from Birkhoff coor-
dinates (s, p) to adiabatic action-angle coordinates (S, P). In
these coordinates, the dynamics in the vicinity of the relevant
nonlinear resonance can be approximated by an integrable
pendulum-like Hamiltonian. In addition, the adiabatic action
coordinates allow for EBK quantization of the full system,
which establishes a connection between wave numbers km,l

and quantizing adiabatic actions Pm,l . This correspondence
enables us to use quantum perturbation theory and to give
an accurate description of decay rates under the influence of
resonance-assisted tunneling, which extends the results from
Ref. [24] to systems with a mixed phase space. However,
this approach is limited to cases in which the cavity under
consideration can be approximated by a classical integrable
cavity. Using a ray-based description of the decay of optical
modes, we also overcome this limitation making the pertur-
bation theory applicable for arbitrary smooth deformations.
Furthermore, we apply semiclassical methods developed for
quantum maps to compute the coupling between whispering-
gallery modes and faster decaying modes mediated by the
nonlinear resonance. Using the ray-based model of decay for
both contributing modes allows for an intuitive description of
complex wave numbers of optical modes based on classical
properties.

A. Adiabatic action-angle coordinates

The basis of our construction is adiabatically invariant
curves [5,32],

p(s, P) =
√

1 − (1 − P2)[Rκ (s)]2/3, (11)

derived in the limit of whispering-gallery trajectories, i.e.,
p → 1, and parametrized by P ∈ [0, 1], where κ (s) denotes
the curvature of the boundary. Here, we restrict the discussion
to positive momenta. The term “adiabatically invariant” is
justified as the dynamics along the curve is much faster than
in the perpendicular direction. The parameter P describes
the average momentum around which p(s, P) oscillates. For
boundaries described by Eq. (1), the adiabatically invariant
curves Eq. (11) can be expanded in ε to first order if the polar
angle φ is approximated by 2πRs/L. This yields

p(s, P) = P − ε
1 − P2

3P
(N2 − 1) cos

(
2πN

L s

)
. (12)

For several values of P, these adiabatic curves are superim-
posed on the original phase space for the mixed system in
Fig. 5(a). Note that on the one hand, the adiabatically invariant
curves smoothly interpolate through nonlinear resonances.
On the other hand, they provide a good approximation for
whispering-gallery trajectories associated with the modes of
interest in this paper. Thus we wish to describe the dynamics
in terms of P. To this end, we interpret Eq. (11) as derivative
of a type-two generating function F2(s, P) with respect to the
arc-length coordinate s. We obtain this generating function by
integrating

F2(s, P) =
∫ s

0
p(s′, P)ds′ (13)

= sP − ε
1 − P2

3P

L(N2 − 1)

2πN
sin

(
2πN

L s

)
(14)

and setting the undetermined P-dependent constant of inte-
gration zero. The associated canonical transformation is then
implicitly given by Eq. (11) or (12) and

S(s, P) = ∂F2(s, P)

∂P
(15)

= s + ε
1 + P2

3P2

L(N2 − 1)

2πN
sin

(
2πN

L s

)
, (16)

which has to be solved for (s, p) ∈ [0,L) × [0, 1] given
(S, P) ∈ [0,L) × [0, 1] and vice versa. Note that the transfor-
mation is not global, as there is a minimal P for which the
adiabatically invariant curve Eq. (11) is real-valued for all s.
The phase space of the mixed system in adiabatic action-angle
coordinates is depicted in Fig. 5(b) as dots superimposed by
the adiabatic curves P = const. Geometrically, the canonical
transformation straightens the overall curvature of phase-
space structures caused by the dynamics in the vicinity of the
minimal length periodic orbits at p = 0.

B. Pendulum Hamiltonian

We continue with the construction of a pendulum Hamilto-
nian using the adiabatic action-angle coordinates introduced
above. Such a Hamiltonian is known to describe the dynamics
in the vicinity of a nonlinear resonance and to capture the
essential features of resonance-assisted tunneling [26]. In the
case of optical microcavities or billiards, the Hamiltonian is
given by [26,43]

Ha:b(S, P) = H0(P) + 2Va:b cos

(
2π

L aS + φa:b

)
, (17)

where H0(P) as well as the parameters Va:b and φa:b have to be
determined by the dynamics of the original system.

In particular, H0(P) encodes the frequencies ω(P) of mo-
tion along adiabatically invariant curves given by P. Neglect-
ing the effects of the boundary deformation, these frequencies
are given by the frequencies of a circular cavity,

ω(P) = L
π

arccos(P). (18)

A more rigorous argument leading to this equation can be
made using averaging [44] for the effective map derived in
Refs. [32,35]. In particular, Eq. (18) guarantees the correct
limit of whispering-gallery trajectories almost tangential to
the boundary, i.e., P = 1 corresponds to a line of fixed points
as ω(1) = 0. On the other hand, as ω(0) = L/2, for the
trajectory bouncing along the symmetry line of the billiard
the arc-length coordinate s advances by L/2 between suc-
cessive bounces. In between these extreme cases, Eq. (18)
follows the frequencies of the circular cavity up to rescaling
by L/(2πR).

Given the frequency relation Eq. (18), an a : b resonance
occurs for ωa:b = bL/a, i.e., for

Pa:b = cos

(
π

b

a

)
. (19)

This momentum Pa:b corresponds to the adiabatically invariant
curve which interpolates through the nonlinear resonance, i.e.,
on which the periodic orbits are located. For the relevant
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a : b = 4 : 1 resonance, the adiabatic curve corresponding to
Pa:b is shown as a thick red line in Figs. 5(a) and 5(b).

To obtain the same frequencies as Eq. (18) relative to the
resonant frequency, we require H ′

0(P) = ω(P) − ωa:b, which
yields [24]

H0(P) = L
π

(
P arccos(P) −

√
1 − P2 +

√
1 − P2

a:b

) − ωa:bP.

(20)

The quadratic expansion of Eq. (20) around Pa:b then leads to

H0(P) = 1

2Ma:b
(P − Pa:b)2 (21)

with

Ma:b = −
(

2π

L

)
1

2

√
1 − P2

a:b. (22)

Having fixed Ma:b, the parameter Va:b controls the width
of the nonlinear resonance in phase space. For near-integrable
systems, it is related to the area Aa:b enclosed by the separatrix
of the unstable periodic points by [28]

Va:b =
(

2π

L

)2 A2
a:b

512Ma:b
. (23)

Further away from integrability, e.g., for the considered mixed
system, this naturally generalizes to the area enclosed by
the invariant manifolds of the unstable periodic points up to
their first heteroclinic intersection. In contrast, for the near-
integrable case Va:b is determined by the linearized dynamics
around the stable periodic orbit in terms of its monodromy
matrix Ma:b, which is known analytically for billiard systems
[45]. This yields

Va:b =
( L

2π

)2 Ma:b

2a4

[
arccos

(
TrMa:b

2

)]2

(24)

and is used for the near-integrable system investigated in this
paper.

Finally, φa:b is fixed by matching the S-coordinate of the
equilibria of the resonance in the Hamiltonian (17) with
the periodic orbits of equal stability. The phase space of
the resulting Hamiltonian for the mixed system and for the
near-integrable system is shown in Figs. 5(c) and 5(d), respec-
tively. Note that in the near-integrable system, good agreement
between ray dynamics and the pendulum Hamiltonian is
already achieved if all ε-dependent corrections are neglected.
However, we keep these corrections to study both the near-
integrable and mixed system within the same framework.

C. EBK quantization of adiabatic actions

As both the perturbative and the semiclassical description
of resonance-assisted tunneling depend crucially on the pen-
dulum Hamiltonian (17) defined on the boundary, a connec-
tion between the actual modes of the cavity and the adiabatic
invariants has to be established. In integrable systems, this
correspondence is given by means of EBK quantization of
invariant tori of the full ray dynamics. In systems with two
degrees of freedom, the existence of such invariant tori implies
the existence of a second conserved quantity besides energy.

For the integrable elliptic cavity, which includes circular
cavities as a special case, this quantity is given by the adiabatic
invariant P, i.e., P is an actual invariant of the dynamics
for all times. In contrast, for generic systems P changes
adiabatically. However, if this change is slow enough, the
corresponding adiabatically invariant, two-dimensional tori
may still be used for EBK quantization. However, good agree-
ment with numerically determined wave numbers can only
be expected if the actual ray dynamics follows the adiabatic
invariant curves for a sufficiently long time. This assumption
is expected to be fulfilled when these curves are located in the
regular part of phase space. In particular, this is the case for
whispering-gallery trajectories.

Following Refs. [33–35], the real part of the wave number
associated with a quantizing, adiabatic invariant Pm,l corre-
sponding to a whispering-gallery mode with angular mode
number m and radial mode number l is given by

Re km,l = 2πm

n

(∫ L

0
p(s, Pm,l )ds

)−1

. (25)

Here, the adiabatic invariant Pm,l is required to fulfill the
quantization condition [35]

m

(
L(0, s∗) −

∫ s∗

0
p(s, Pm,l )ds

)
= (l + α)

∫ L

0
p(s, Pm,l )ds,

(26)

where s∗ denotes the arc-length coordinate of the first collision
of a ray started with initial conditions (0, p(0, Pm,l )) on the
boundary, and L(0, s∗) denotes the geometric length of the
ray segment in between the boundary points labeled by s = 0
and s = s∗, respectively. The parameter α represents the phase
shift that an incoming wave undergoes when it is reflected at
the cavity boundary. Thus α takes the openness of the system
and the corresponding boundary conditions into account. As
there is no analytical result for α in the case of open cavities,
we fix its value at zero deformation where the wave numbers
km,l are known. Specifically, in the circular case Eq. (25)
reduces to p(s, Pm,l ) = Pm,l = m/(n Re km,l ), which allows us
to fix α in Eq. (26). We further assume that α remains constant
under deformation of the boundary. This allows us to solve
Eq. (26) numerically for Pm,l . For this purpose, we use the
exact expression (11) for p(s, Pm,l ). Note that Eq. (26) does
not necessarily permit a solution for arbitrary m and l . For
instance, in the case of the mixed system studied in this
paper, we obtain 2l + 1 < m as a necessary condition for the
existence of solutions.

The accuracy of this approach has been demonstrated
in Ref. [34]. When applied to the near-integrable and the
mixed system, the quantization scheme presented above yields
good agreement with numerically computed wave numbers, as
Fig. 6 shows. There, the normalized error

�Re km,l =
∣∣Re k(EBK)

m,l − Re k(BEM)
m,l

∣∣
Re k(BEM)

m,l

(27)

between numerical (BEM) and semiclassical (EBK) obtained
wave numbers is depicted as a function of the real part of
the wave number. For both the near-integrable system and

042219-8



RESONANCE-ASSISTED TUNNELING IN DEFORMED … PHYSICAL REVIEW E 100, 042219 (2019)

10−5

10−4

10−3

10−2

0 5 10 15 20 25 30

ΔRe kR

Re kR

FIG. 6. Relative errors of EBK wave numbers given by Eq. (27)
for the near-integrable system (orange triangles) and for the mixed
system (blue diamonds). The lines connecting the symbols are a
guide to the eye.

the mixed system, represented by the orange triangles and
blue diamonds, respectively, the error becomes smaller with
the increasing real part of the wave number. In both cases,
larger deviations occur around the wave number with m = 23,
where the peak in the negative imaginary parts was observed.
This can be traced back to the fact that the EBK quantization
scheme neglects the coupling of modes associated with differ-
ent quantizing adiabatic invariants while such mode coupling
may cause a shift in the real part of the wave number. Overall,
the relative error made by EBK quantization is slightly smaller
in the near-integrable system.

D. Ray-based decay

While EBK quantization yields accurate real parts of the
wave numbers, a ray-based quantitative description of their
imaginary parts is available only for fully chaotic systems or
the special case of the integrable circular cavity. However, in
the following we present a ray-based model of decay rates,
which yields good agreement with the numerically obtained
imaginary parts of wave numbers.

To this end, we assign an effective reflectivity R(P) for a
light ray moving on an adiabatically invariant curve given by
P. This is accomplished by averaging the reflectivity R(p) of
a circular cavity obtained in Ref. [46] along the adiabatically
invariant curve defined by P and Eq. (12). That is, we set

R(P) = 1

L

∫ L

0
R(p(s, P))

∂S(s, P)

∂s
ds, (28)

where a uniform density along the adiabatic curve in the adia-
batic action-angle coordinates is assumed. The corresponding
density ∂S/∂s in Birkhoff coordinates is obtained by differ-
entiating Eq. (16) with respect to the arc-length coordinate.
Equating the exponential decay in the wave and in the ray
picture gives the decay rate [46]

	 = −2c
ln (R(P))

4nR
√

1 − P2
(29)

of a mode associated with P. Note that P is not required
to fulfill a quantization condition. Thus it is applicable for

arbitrary P. In contrast, for quantizing P = Pm,l we have

Im km,l = −	m,l

2c
. (30)

Strictly speaking, this is only true for integrable systems,
where the actual modes are associated with a single classical
torus defined by Pm,l . We call 	m,l the direct decay rate of
this mode. For nonintegrable systems, dynamical tunneling
between quantizing adiabatically invariant tori will cause the
decay rates and therefore also the imaginary parts of wave
numbers to deviate from the direct decay given by Eq. (29).

E. Perturbation theory of resonance-assisted tunneling

While the ray-based model of decay describes the direct
decay of an optical mode associated with the quantizing adia-
batic invariant, resonance-assisted tunneling causes couplings
to faster decaying modes. As these couplings are small, the
real part of the wave numbers is expected to be not influenced
by resonance-assisted tunneling, while the overall decay will
increase. This enhancement is well described by quantum per-
turbation theory within the Hamiltonian (17). Based on this,
we construct a perturbative expansion of the imaginary parts
of the wave numbers km,l for whispering-gallery modes with
l = 0. For quantum perturbation theory, an unperturbed basis
in terms of optical modes and wave numbers is required. As
mentioned above, this is accomplished either by the circular
cavity, which approximates the near-integrable system, or the
elliptic cavity approximating the mixed system. This allows
for a perturbative treatment of resonance-assisted tunneling in
both systems. Moreover, we will demonstrate that when using
the EBK quantization scheme and the ray-based model for the
imaginary parts of wave numbers, an actual approximating
cavity is not necessary. More specifically, we construct the
perturbative expansion solely from the EBK wave numbers,
quantizing adiabatic invariants and the decay rates introduced
in Sec. III D.

To obtain a perturbative description, we follow Refs.
[29,30] and apply the perturbation theory of resonance-
assisted tunneling in quantum systems to optical microcav-
ities. To this end, let us denote the wave numbers of the
approximating cavity by k̃ and expand the imaginary part of
km,l as [24,29]

Im km,l = N−2
∑
v�0

|cv|2Imk̃m−va,l+vb. (31)

Here, N 2 = ∑
v�0 |cv|2 accounts for proper normalization,

and the sum is restricted by the requirement that all angular
mode numbers m − va have to be non-negative. Furthermore,
note that only wave numbers of modes within the same sym-
metry class contribute to the sum. The coefficients cv follow
from the perturbative scheme developed in Ref. [47] applied
to the pendulum Hamiltonian (17) and adapted to optical
systems [25,29]. They are determined by the wave numbers
of the approximating cavity and the corresponding quantizing
adiabatic invariants. To compute the coefficients cv we make
the following observations. Given an approximating cavity,
its adiabatically invariant curves, Eq. (11), should coincide
with the adiabatically invariant curves of the original system.
Therefore, by means of EBK quantization, the quantizing
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adiabatic invariants Pm−va,l+vb coincide as well if we further
assume that the length L(0, s∗) of the ray segment appearing in
Eq. (26) is approximately the same. Additionally, this implies
that also the real parts of the wave numbers in both systems
agree, i.e., Re k̃m−va,l+vb = Re km−va,l+vb. The coefficients cv

can be computed by assigning an energy

Em−va,l+vb = H0[Pm−va,l+vb − �pPOS(km−va,l+vb)] (32)

in the Hamiltonian H0(P) given by Eq. (20) to each of
the quantizing adiabatic invariants. Note that here we take
the periodic-orbit shift into account, which we assume to
be the same in both coordinate systems as they are trans-
formed into each other by a near identity transformation.
This adjusts the effective position of the nonlinear resonance
at Pa:b + �pPOS(km−va,l+vb) relative to Pm−va,l+vb. However,
shifting the quantizing adiabatic invariants rather than Pa:b

allows us to use the same Hamiltonian for all wave numbers.
The coefficients in the perturbative expansion (31) can then be
written as [25]

cv =
∏
u�v

Va:b(Re km,l )2eiφa:b

Em,l (Re km,l )2 − Em−ua,l+ub(Re km−ua,l+ub)2
, (33)

where in the product u is restricted to those values for which
the quantization condition Eq. (26) permits a solution. As
the nonlinear resonance only couples modes whose wave
numbers are similar, i.e., Re km,l ≈ Re km−va,l+vb, the wave
numbers in Eq. (35) cancel (up to small corrections) and
�pPOS(k) can be assumed to be constant for fixed Re km,l .
This additional approximation does not alter the end result
significantly, and thus we use

Em−va,l+vb = H0[Pm−va,l+vb − �PPOS(km,l )] (34)

as well as [24]

cv =
∏
u�v

Va:beiφa:b

Em,l − Em−ua,l+ub
(35)

in the following. Furthermore, note that so far for the eval-
uation of Eq. (35) only properties of the original system are
required. In particular, it is not required that an approximating
cavity exists.

Using the coefficients Eq. (35) and the imaginary parts
of wave numbers in the circular and elliptic cavity, we find
overall good qualitative agreement with numerically obtained
mode numbers in the near-integrable system and the mixed
system. This is shown in Figs. 7(a) and 7(b), where the nu-
merically obtained wave numbers (black stars) are compared
with Eq. (31) (red crosses). For the near-integrable system,
the wave numbers of the circular cavity can be obtained ana-
lytically. For the mixed system, the eccentricity of the elliptic
cavity is chosen according to Eq. (5) and the wave numbers
are computed numerically. Thus for the mixed system the
method provides no numerical advantage compared to the
direct numerical computation of wave numbers. However, it
demonstrates the validity of the approach. In both systems,
we truncate the perturbative expansion, Eq. (31), at v � 5.
In the near-integrable system, the exponential decay of the
negative imaginary part of the wave numbers matches with the
numerically obtained wave numbers. In contrast, in the mixed
system the overall exponential decay matches up to the second

FIG. 7. Wave numbers for the near-integrable systems are shown
in (a) starting from m = 1 and in (b) for mixed systems starting from
m = 4. Numerically obtained wave numbers are depicted as black
stars. The perturbative description using the imaginary parts of wave
numbers in the circular and elliptic cavity is shown as red crosses,
while blue circles denote the perturbative description combined
with the ray-based decay rates. The semiclassical description is
represented by green diamonds. The lines connecting the data points
are a guide to the eye.

peak only, but it is slower than in the numerical data for larger
real parts. We assume this to be caused by the Goos-Hänchen
shift rendering the modified ray-dynamics of the elliptic cav-
ity nonintegrable, and the corresponding enhancement of the
decay of its optical modes, which are used as an unperturbed
basis. In both systems, the first numerically obtained peak is
described well. The subsequent peaks are predicted system-
atically for slightly smaller real parts of the wave numbers
compared to the numerical data. The strong enhancement of
the negative imaginary part of the wave number can be traced
back to the coefficients Eq. (35), which diverge whenever
a quantizing adiabatic invariant Pm−va,l+vb is energetically
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degenerate with Pm,l with respect to H0 when the periodic-
orbit shift is taken into account. Within the quadratic approx-
imation of H0 by Eq. (21) this corresponds to Pm+va,l−vb and
Pm,l being located symmetrically around Pa:b + �pPOS(km,l ).
Deviations of the actual frequencies of motion along adiabati-
cally invariant curves from those predicted by H0 may shift
the wave numbers for which this degeneracy occurs in the
perturbative description. Furthermore, this degeneracy may be
spoiled by deviations of the periodic orbit shift from Eq. (6).
In the mixed system, the perturbative description fails when
Re km,l R > 25 as it does not include additional resonances
which may cause the formation of the observed plateau.

While the perturbative expansion gives rise to qualitatively,
and for the near-integrable system also quantitatively good
agreement with numerical data, Eq. (31) still requires the
knowledge of the imaginary parts of the wave numbers of the
approximating integrable cavity. Replacing them by Eqs. (30)
and (29) evaluated at Pm−va,l+vb allows for a prediction of
wave numbers without making reference to an actual approxi-
mating cavity. The resulting wave numbers are shown as blue
circles in Fig. 7. For the near-integrable system, they perfectly
match the prediction obtained above. In the case of the mixed
system, they underestimate the initial exponential decay by
up to one order of magnitude. For larger real parts of the
wave numbers, they agree slightly better with the numerical
data compared to the prediction using the wave numbers of
the elliptic cavity up to the wave numbers where additional
resonances may become important.

Using this ray-based model of decay allows for an applica-
tion of perturbation theory when there is no actual approx-
imating cavity. The remaining inaccuracy of the ray-based
model can be associated with the approximate nature of both
the adiabatically invariant curves and the associated effective
reflectivity, Eq. (28). Moreover, some of these adiabatically
invariant curves are located partially in the chaotic region
of the actual ray dynamics. Thus classical chaotic transport
phenomena as well as chaos-assisted tunneling may influence
the decay. These phenomena are not taken into account here.

F. Semiclassical description

While the perturbative description of resonance-assisted
tunneling decomposes the imaginary part of the whispering-
gallery mode wave numbers into several contributions from
different modes, in a semiclassical description there are only
two contributions. In particular, there is a direct contribution
to the decay denoted as 	m,l , which resembles the decay
of an optical mode associated with the quantizing adiabatic
invariant Pm,l . Therefore, the direct contribution describes the
decay of the mode that would be present even if the system
was integrable, i.e., in the absence of nonlinear resonances
and resonance-assisted tunneling. The contribution resulting
from resonance-assisted tunneling is denoted by 	rat and is
associated with an adiabatic invariant Prat located symmet-
rically on the opposite side of the nonlinear resonance with
respect to Pm,l . In general, Prat does not fulfill a quantization
condition and thus it is not associated with an actual mode
of the system or of an approximating integrable cavity. To be
more precise, an optical mode associated with Pm,l obtained
by EBK quantization will also localize on Prat. However, the

amplitude on Prat is suppressed by a factor AT , called the
tunneling amplitude. Taking this into account, the imaginary
parts of the wave numbers can be decomposed as [48]

Im km,l = − 1

2c
	m,l − A2

T

2c
	rat. (36)

Here, 	m,l is given by Eqs. (29) and (30) for P = Pm,l and 	rat

for P = Prat, respectively.
Thus it remains to compute Prat and AT in the following,

which is done by means of WKB theory within the pendulum
Hamiltonian (17) with quadratic H0(P), Eq. (21). Due to the
periodic-orbit shift, we consider P̃m,l = Pm,l − �pPOS(km,l )
for the semiclassical construction of Prat and AT . The equally
shifted P̃rat = Prat − �pPOS(km,l ) is defined as the torus on
the opposite side of the resonance with respect to P̃m,l but
with the same energy Em,l = H0(P̃m,l ). It is given by P̃rat =
2Pa:b − P̃m,l . Both P̃m,l and P̃rat are shown schematically in
Figs. 5(c) and 5(d) for the mixed and the near-integrable
system as thick green and blue lines, respectively. To compute
the tunneling amplitude, we identify 1/(nRe km,l R) as the
semiclassical parameter which plays the role of the reduced
Planck constant. Using this identification gives

AT =
∣∣∣2 sin

( n

2a
Re km,l RArat

)∣∣∣−1
exp (−nRe km,l R σ ) (37)

for optical microcavities. Here,

Arat = L(Pm,l − Prat ) (38)

is the phase-space area bounded by the adiabatic invariants
Pm,l and Prat, and σ is determined by the imaginary action of
complex classical paths, which bridge the nonlinear resonance
and connect P̃m,l with P̃rat. In particular, for the action of these
complex paths we have

σ = Arat

2πa
ln

(∣∣∣∣ 4Em,l

e2Va:b

∣∣∣∣
)

(39)

in analogy to Ref. [26]. In Fig. 7 we compare the wave
numbers obtained by the semiclassical formula Eq. (36) with
the numerical data. Note that the semiclassical description
is only valid if the quantizing adiabatic invariant is located
outside of the 4 : 1 resonance. Hence the initial exponential
decay in both the near-integrable and the mixed system is
due to the direct contribution in Eq. (36) as P̃m,l is located
below the resonance while P̃rat is located above. Therefore,
the direct contribution is dominant and the resonance-assisted
contribution can safely be neglected. Similar to the pertur-
bative description, the initial decay is underestimated in the
mixed system as Eq. (29) underestimates the actual decay
within this regime. In between the initial decay and the first
peak, the quantizing adiabatic invariant P̃m,l is located inside
the 4 : 1 resonance and thus no meaningful semiclassical
prediction based on Eq. (36) is possible. Once P̃m,l is located
above the nonlinear resonance for larger real parts of wave
numbers, the semiclassical description is again applicable and
leads to good agreement with the numerically obtained wave
numbers. In particular, in this regime the resonance-assisted
contribution dominates and the direct contribution can be
neglected. In both systems, the overall exponential decay is in
good agreement with the numerically obtained wave numbers.
Moreover, the position of the peaks is resolved correctly in
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both systems except for the peak around Re km,l R = 25 in
the near-integrable system. The peaks occur whenever the
prefactor that enters in Eq. (37) diverges, which occurs if
nRe km,l RArat is an integer multiple of 2πa. If this condi-
tion is fulfilled exactly, Eq. (37) is ill-defined, which causes
the semiclassical prediction to overestimate the numerically
obtained negative imaginary parts. At these wave numbers,
Prat satisfies a quantization condition as well. That is, Prat =
Pm−va,l+vb for some integer v. As, by definition, Pm,l and
Prat are energetically degenerate, this is the same condition
obtained from the perturbative treatment of resonance-assisted
tunneling. Again, for the mixed system, the semiclassical
prediction does not capture the plateau formation for wave
numbers Re km,l R > 25, which we expect to be due to addi-
tional resonances.

Although it is at least as accurate as the perturbative de-
scription, the semiclassical picture is also subject to the same
errors induced by the ray-based model of decay as discussed
in the previous section.

IV. SUMMARY AND OUTLOOK

In this paper, we demonstrate how resonance-assisted tun-
neling gives rise to enhanced decay of optical modes in
deformed microdisks with near-integrable or mixed phase
space. While the near-integrable case was treated before,
we extend the existing perturbative description to systems
far from integrability, and we presented also a semiclassical
description. We apply both the perturbative and the semi-
classical description to systems with either near-integrable or
mixed classical ray dynamics, and we find good agreement
with numerically obtained data for whispering-gallery modes.
In particular, our description correctly captures the overall
exponential decay of the imaginary parts of wave numbers
toward larger wave numbers, and it predicts the wave numbers
of modes with significantly enhanced decay. In the latter case,
the semiclassical description gives rise to better agreement
with the numerical obtained positions of these peaks com-
pared to perturbation theory. Moreover, we show that the
theory of resonance-assisted tunneling predicts the enhance-
ment of decay in cases in which the second-order perturbative
expansion in the deformation parameter does not apply.

Our approach is based on the construction of adiabatically
invariant action-angle coordinates and the approximation of
the relevant nonlinear resonance by a suitable pendulum
Hamiltonian. We further use EBK quantization of adiabatic

invariants and a ray-based model for the decay of optical
modes to compute wave numbers in the absence of dynamical
tunneling. The obtained imaginary parts of the wave numbers
can be interpreted as the direct decay of the associated modes.
Subsequently, the pendulum Hamiltonian allows for the inclu-
sion of resonance-assisted tunneling by either quantum pertur-
bation theory or a semiclassical description. Both descriptions
confirm that the underlying mechanism of enhancement coin-
cides with what is known for two-dimensional quantum maps.
That is, the enhancement is due to the coupling of optical
modes associated with quantizing adiabatic invariants, which
are located symmetrical with respect to the relevant nonlinear
resonance. This allows whispering-gallery modes with slow
decay to couple to faster decaying modes, which can be
seen also in their Husimi representation. While the coupling
between modes is well described within the pendulum Hamil-
tonian, the main error of the presented approach is introduced
by describing the direct decay based on a simple ray picture.

In the regime of large wave numbers, we expect also
smaller resonances to become important for tunneling as
the numerical obtained wave numbers in the mixed system
suggest. These multiresonance effects could be incorporated
in the perturbative description, as was done for quantum maps.
However, a semiclassical picture thereof does not exist so far.

Furthermore, an obvious generalization of the deformed
microdisks are three-dimensional deformed spherical cavities,
which are expected to exhibit resonance-assisted tunneling as
well. As such cavities are frequently used in experiments, an
equally good description to that in the two-dimensional case
is of great interest. However, with more degrees of freedom,
resonances of higher rank may arise, which give rise to a much
more complex way of resonance-assisted coupling between
optical modes. This was recently demonstrated for a normal-
form Hamiltonian [49]. On an even more fundamental level,
the interplay of tunneling and classical transport mechanisms,
e.g., the famous Arnold diffusion, could become important
in three-dimensional cavities. This is, however, even an open
problem for much simpler systems such as four-dimensional
symplectic maps.
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