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Multivariate singular spectrum analysis (M-SSA), with a structured varimax rotation, is a method that allows
a deep characterization of phase synchronization (PS) phenomena in an almost automatic fashion. It has been
increasingly used in the study of PS in networks of nonlinear, real-world, and numeric systems. This paper
investigates the impact of the other recently developed structured orthomax rotations on the M-SSA ability to
characterize PS. The results show that by using the structured quartimax rotation, a very faint and intermittent PS
regime can be detected, in contrast with the structured varimax (which demands a stronger, more consolidated PS
regime). This is due to the fact that the different rotations do not have the same efficiency in achieving a simple
structure of the M-SSA eigenvectors. Nevertheless, for well-established PS regimes, the same robustness of the
original M-SSA approach against high levels of additive Gaussian noise was found for the structured quartimax
and biquartimax rotations. However, for all approaches we found an overshoot of the qualitative range for the PS

onset due to noise.
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I. INTRODUCTION

Multivariate singular spectrum analysis (M-SSA) is a well-
established method in the investigation of temporal and spatial
patterns in diverse fields of science [1]. In this decade, the
method was adapted to deal with the detection and charac-
terization of chaotic phase synchronization (PS) in networks
of nonlinear dynamical systems [2]. Under this scenario, the
lack of a universal definition or estimate of phase or frequency
was one of the main challenges. However, M-SSA is able
to provide detailed information regarding the dynamics of
PS, with no a priori need for a phase or frequency estimate.
Nevertheless, this is achieved in a automatic fashion by detect-
ing oscillatory modes present in data. This is made through
the eigendecomposition of a concatenated trajectory matrix
from the measured time series of the network oscillators. The
sharing of oscillatory modes by different systems implies in
the formation of PS clusters. This method has undergone
intense development in recent years [3—7], and it has been
applied in diverse natural [3,8,9] and numerical scenarios
[10,11].

The efficiency of the method is largely due to the intro-
duction of a specially crafted varimax rotation by Groth and
Ghil [2]. Without this rotation, the M-SSA eigenvectors are
not (pairwise) uniquely related to the oscillatory modes within
the data, and hence no information of the underlying of PS
clustering is provided. Recently, a closed-matrix formulation
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for Groth and Ghil’s modified varimax was developed [5],
in which it was called a structured varimax (s-varimax), as
contrasted to the classical Kaiser’s varimax rotation [12].
Nonetheless, the authors in Ref. [5] extended this matrix
approach to the entire family of structured orthomax (s-
orthomax) rotation criteria by following a modern gradient
projection approach [13,14]. It was shown as well that the
advantage of the s-varimax over the classical one appears
only when dealing with multimodal systems (specifically, this
was shown through a numerical investigation with coupled
Rosslers oscillators in the funnel or nonphase coherent chaotic
regime).

Classical orthomax rotations were developed in the field
of psychometrics. The underlying motivation was a better
understanding of experimental outcomes in factor analysis
by achieving a “simple structure” for a factor pattern matrix
[15,16]. Kaiser’s varimax is the most-efficient (orthogonal)
rotation [17]. Hence it was just natural for Groth and Ghill
to use the varimax as the basis for their structured (modi-
fied) orthogonal rotation to achieve a simple structure of the
M-SSA eigenvectors in the analysis of PS. We make a system-
atic investigation of the s-orthomax rotations on the M-SSA
technique, with a comparison with its standard application
with the s-varimax.

The new findings of this study a fourfold. First, the M-
SSA with the different s-orthomax rotations has different
sensitivities for PS characterization. For example, a weak (or
less developed, highly intermittent) PS regime can be detected
by using the s-quartimax rotation but not with the s-varimax.
Second, only three (of four) members of the s-orthomax
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family are useful in characterizing synchronization. Specif-
ically, the s-equamax criterion is not able to find a rotation
to convey a simple structure of the M-SSA eigenvectors in
the context of PS analysis. Third, the gradient projection
algorithm [5] fails to achieve a suitable s-varimax rotation
under the single-variable M-SSA approach [4] for two cou-
pled systems. This is due to the fact that the s-varimax and
the s-equamax are equivalent in this specific context, which
explains why the authors in Ref. [4] empirically applied a
different criterion from the strict s-varimax one. Finally, we
show that the M-SSA PS onset characterization is not robust
against additive Gaussian noise.

The M-SSA approach with the s-varimax, and the matrix
extension to the s-orthomax family rotations, are briefly re-
viewed in Sec. II. The numerical experimental design and
complementary analytical tools are presented in Sec. III. The
results for the full multivariable approach [2] and single-
variable approach [4] (with the best system observable) are
shown and discussed in Sec. IV. Final remarks and prescrip-
tions are presented in Sec. V.

II. BACKGROUND

A. M-SSA and the structured varimax

Here we briefly review the s-varimax M-SSA for chaotic
PS analysis [2-4]. Consider j =1, ..., J coupled dynamical
systems and the measured time series {sd(i)}fv= , at time i
and with length N. Here d = 1,...,D is the number of
channels, or time series, used to represent the systems. In the
multivariable approach [2,3], any number of time series can be
used to represent a given oscillator (e.g., the three time series
from x, y, and z of the Rossler system). In the single-variable
approach [4], only the time series from the best observable of
each system is used, and then D = J. The M-SSA approach
for the characterization of chaotic phase synchronization can
be defined by the following steps:

(1) Build individual trajectory matrices X; by embedding
each (centered and normalized) {s;(i)} in an m-dimensional
space with lag 1 [18,19] (m is also called window width).

(2) Construct the augmented trajectory matrix X =
Xi,...,Xp] € RN—m+LDm by concatenating the individual
ones.

(3) Extract the “skeleton” of the structure encoded in the
time series by performing a singular value decomposition
of X = PAE” /(N — m + 1)!/? or, equivalently, the eigende-
composition of the covariance matrix cov(X) = X7 X/(N —
m+ 1) as cov(X) = EXE’.

(4) Perform the structured varimax rotation of the first §
eigenvectors EY = EgT, and compute the respective modified
variances {Af};_, = diag(A}) as A% = TT AgT.

For an in-depth discussion, alternative procedures, and
pitfalls regarding the spectrum decomposition, we refer the
reader to Refs. [1,2].

Figure 1 provides an illustrative representation of the ex-
pected outcomes of this analysis for J = 4 coupled and de-
tuned chaotic phase-coherent oscillators (the phase-coherence
implies in a sharp, well-defined, intrinsic frequency. Then
each oscillator has a single oscillatory mode which shall be
represented as a pair of eigenvalues or eigenvectors in the
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FIG. 1. Schematic representation of the multivariable M-SSA
for J = 4 idealized coupled and detuned phase-coherent oscillators.
The scenario in which oscillators j = {1, 2} are phase synchronized
(forming a PS cluster) is depicted. (a) Singular values A'/? and
associated eigenvectors (b) before and (c) after rotation. The s-
varimax rotation is necessary to reveal the synchronized behavior
(i.e., oscillatory mode sharing). The single-variable approach yields a
qualitatively similar picture, but the eigenvectors in (b) and (c) would
spam only one time series per system (e.g., only for {y;, y2, y3, y4}).

M-SSA). This example depicts a specific regime which oscil-
lators j = 1,2 are phase synchronized, while the remaining
oscillators j = 3, 4 remains out of sync. The M-SSA operates
in a way to identify the shared oscillatory modes within the
data sets. Before the s-varimax rotation, no information of this
shared structure is captured by neither the variances A, [black
rings in Fig. 1(a)] or by the eigenvectors ex [Fig. 1(b)].

Groth and Ghil’s idea was to impose the “simple structure”
on the eigenvector matrix E but not on each column (which
would be the original Kaiser’s varimax): Given the underlying
structure of the augmented trajectory matrix X [see step 2,
above, and Fig. 1(b)], the simple structure should be imposed
on the D blocks (of length m) of each channel d =1, ..., D.
Hence, the matrix E should be rotated in a constrained fashion
that respects its special structure. To achieve this, under
an arbitrary orthogonal rotation T, and defining the rotated
vectors E* = ET, Groth and Ghil proposed to first sum over
the individual channels [2],

M
&y’ = Zejkz(m), ()
m=1
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and compute the simplicity Q over the new vectors €,

LS , 1 (2 2
QET) =53 1> (@) — 5 (Z ézkz) )
k=1 | d=1 d=1
where S stands for the number of selected leading eigen-
vectors to be rotated (S must be higher than the number of
significant A;. For details see Ref. [2]). The authors originally
called modified varimax criterion the maximization of (2)
under T. Here we call this the structured varimax (s-varimax)
rotation [4].

The outcome of this rotation in the eigenvectors e* is
illustrated in Fig. 1(c). They are now pairwise associated
to a single oscillatory mode. Since this is a phase-coherent
scenario, where each oscillator has an unimodal phase dy-
namics, they are also pairwise associated to each PS cluster,
allowing their unique identification. For example, oscillators
J = 1,2 share the same oscillatory modes, and so e , reflects
this shared “skeleton” (i.e., the simple structure is imposed
on the remaining 2 x m block whose components are now
near to zero, because it should correspond to the different
oscillatory behavior of oscillators j = 3, 4). The respective
representations of the nonshared oscillatory modes of oscil-
lators j = 3, 4 are now split respectively into the eigenvectors
e; 4 and eg‘ﬁ. In accordance, the modified variances [Fig. 1(a),
blue squares] show a single leading A} , pair associated with
one strong oscillatory mode (the shared mode of j =1, 2)
and two other pairs (A3 4 and A5 ¢) representing the two other
modes of approximately the same “power” (from each j = 3
and j = 4).

Next (Sec. IIB), we review the matrix formulation for this
approach [5], which leads to the generalization to the family
of orthomax rotations.

*

B. Structured rotations: Generalization to the orthomax family

In devising a matrix formulation for Groth and Ghil’s
s-varimax, Portes and Aguirre [4] generalized the concept
of structured rotations to the orthomax family, from which
the s-varimax is a special case. Henceforth, we will refer to
this family as s-orthomax. Let s; 5y = (1, ..., 1) be the sum
operator of order R'*¥, I, be the identity matrix of order
RP*P | and call C = (b3,) € RPS. The authors defined the
structural operator Y = s; y ® Ip € RPPY which allowed
them to rewrite (1) in matrix form as

C=YBOB), 3)

where ® and © are the Kronecker (direct) and the Hadamard-
Schur (element-wise) products, respectively. Finally, by defin-

ing the symmetric idempotent matrix of order R?*P
M=1Ip— (y/D)s"s, 4)

the matrix formulation of (2) and its generalization to the
s-orthomax family are expressed by the criterion

QO(B) = 1rC"MC, 5)
and its respective gradient projection
. prd@ T T 2
G=E'— =E[BO (Y MYB)]. 6)

dB

The structured rotation can then be accomplished by setting
y =0 for s-quartimax, y = 1/2 for s-biquartimax, y =1
for Goth and Ghil’s s-varimax, and y = D/2 for s-equamax
in (4).

Note that the parameter D in definition (4) corresponds to
the total number of trajectory matrices that were concatenated
to form the augmented trajectory matrix X, and so correspond
to the number of measured time series. In the single-variable
approach [4] D = J, because only one time series is used
to represent each dynamical system. As a consequence, the
s-equamax and the s-varimax are equivalent in the context of
two coupled dynamical systems: y = D/2 =J/2 = 1. How-
ever, in the original Groth and Ghill’s approach [2], these two
rotations may not be equivalent when J = 2, since there is no
restriction for the number of measured time series for each
dynamical system, and so D > J).

We call the attention for another two complementary re-
sults from Ref. [4], which will guide the discussion of the new
results presented here. First, the s-varimax (structured) and the
original (nonstructured) varimax are equivalent in the scenario
of phase-coherent dynamics. Hence, the use of a structured
rotation is pertinent only in more complex, multimodal, sce-
narios. As a consequence, we will focus here on the numeric
scenario of noncoherent oscillators, specifically on coupled
Rossler oscillators with intrinsic chaotic funnel regime (see
Sec. [IT A).

Second, for noncoherent dynamics, the application of the
original varimax rotation is equivalent to no rotation at all (i.e.,
only the s-varimax is able to allow their pairwise association
with each oscillatory mode). As discussed later, our results
will show surprisingly similar behavior for the structured
s-equamax.

III. METHOD

A. Numeric experiment layout

Our focus is the impact of different s-orthomax on M-SSA,
and hence we consider the scenario of two coupled Rossler
system in the funnel (nonphase coherent or multimodal)
regime—since for unimodal (phase coherent) systems, the
classic varimax is sufficient and there is no necessity of the
structured one [5]. This is a benchmark dynamical system that
has been used to investigate the M-SSA and so allows one
to build on knowledge gathered from previous studies in the
literature [2,4,5,10].

The study rationale is the characterization of synchroniza-
tion dynamics for an increasing coupling strength C. Consider
a chain of J = 2 coupled Rossler systems [20]:

Xj ==y =),

vi=wixj+ay;+CQyj1 —2y; +yj-1),

Zj20.1+Zj(Xj—8.5). (7)
The individual natural frequencies are w; = w1 + Aw(j — 1),
and the index j =1,...,J being the position in the chain.

Free boundary conditions are assumed. The coupling strength
is C [not to be confounded with the matrix C in (3)]. With
a = (.28, we set the natural (uncoupled) dynamical behavior
of the oscillators to the non-phase-coherent (funnel) regime.
For each 200 values of the coupling strength C € [0, 0.2]
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system (7) is simulated for f5y, = 1.2 x 10* with integra-
tion step & = 0.01 and then sampled with ¢, = 0.07. After
removing the initial transient (fya = 2 X 10%), the working
data have a total time length 7 = 1 x 10*. These data were
used for the straightforward synchronization analysis metrics
(see Sec. IIIB), implying N ~ 1.42 x 10° data points. Far
fewer data points are required for the M-SSA. Then, for this
analysis, the working data for this analysis were the original
ones decimated by 5, yielding an effective sampling time
t, = 0.35 and N ~ 2.8 x 10* data points. In view of this, the
M-SSA window width or embedding dimension was set to
m = 30 in order to embrace approximately two oscillatory
cycles.

The M-SSA is then performed with the leading 20 eigen-
vectors ek for each s-orthomax rotation: s-quartimax (y = 0),
s-biquartimax (y = 1/2), s-varimax (y = 1), and s-equamax
(y = D/2). The scaling )»,1/ %ex was used to determine the
rotation matrix (a strategy to avoid “over-rotation” [2]). A
second step is made to investigate the M-SSA robustness
against noise given the chosen rotation. This is done by adding
Gaussian white noise of the same variance as the original data.

Under this experimental design, we first present the results
for the multivariable approach [2] (Sec. IV A). Since the three
state variables x, y, and z are used to build the full augmented
trajectory matrix X, for brevity we will use the notation X,,,
to refer to this approach. Then, the results for the single-
variable approach [4] with the best observable y are shown
in Sec. IV B, and the notation X is used.

B. Straightforward synchronization analysis

The motivation for using some “standard” tools for phase
synchronization analysis [21] is twofold: first, to provide a
complementary perspective of the synchronization process as
characterized by the different approaches (rotations) with the
M-SSA and, second, they will support a broader discussion
for a wider audience, more familiar with those metrics.

Classical methods for phase synchronization characteriza-
tion are often system dependent, the main difficulty regarding
a suitable way to estimate or define an instantaneous phase
[21]. Here the instantaneous phases are estimated through a
Poincaré section as

o) =2m——* 4 2rk,

th <t <ty )
tey1 — tk

where #; is the time of the kth crossing, which are through
the maxima of the y time series (and so been equivalent to
Poincaré sampling at a differential embedding). Through this
operational definition, the regime of phase synchronization
can be quantified in three different ways. The first one is by the
phase-locking condition: a “stronger” condition of PS, defined
by a bounded phase difference A¢(t) = |mo(t) — ng(t)| <
const. Second, the synchronization “quality” regarding this
phase difference can be estimated by the statistics [21] S;» =
sin?[(¢(t) — ¢y (1))/2]. If the phases are equal, then the time
average will be (S;,) = 0. If they differ by &, then (S;,) =
1, and (S;) is 0.5 for uncorrelated phases. The third is
the frequency entrainment condition AQ = |2, — 2] = 0,
considered as a weaker condition for PS, with the mean

observed frequencies 2; defined as

Q= lim 20—,
T

T—o0

&)

Finally, the difference of two trajectories in state space is
quantified by the normalized average error [22]

e=lim — /—IIX2(I)—X1(t)IIdt (10)

where D = max(||X,(¢) — X1 (¢)||) is maximum distance in the
state space. A value e = 0 implies in complete synchroniza-
tion.

IV. RESULTS

A. Full multivariable approach

We first consider the impact of the different s-orthomax
rotations on the M-SSA ability to characterize PS through the
X,,. trajectory matrix singular spectrum, Fig. 2.

The s-equamax is not only unable to show the underlying
PS clustering structure, Figs. 2(e) and 2(j), but the correspond-
ing eigenspectrum is qualitatively identical to the one obtained
with no rotation at all [Figs. 2(a) and 2(e)]. On the other
hand, the identification of an underlying PS clustering struc-
ture is accomplished by the other three s-orthomax rotations
s-quartimax, s-biquartimax, and s-varimax. Henceforth we
focus on this subset, which we refer as the s-QBYV rotations.

Those findings suggest that only the three s-QBV rota-
tions could be useful to the M-SSA. However, they yield
remarkably different results in the funnel regime scenario,
with the following four features. First, despite the fact that
the high diffusive (noncoherent) phase of the funnel regime
does not allow for a sharp value of coupling strength Cpg for
the PS onset, the range of values for which PS emerges is
quite different for each of those three rotations, with a clear
shift to higher values of the coupling strength by increas-
ing y [Figs. 2(b)-2(d)]. Second, the high level of additive
Gaussian noise makes this shift even stronger [Figs. 2(g)—
2(i)], suggesting that the s-varimax is not so robust to noise
regarding the identification of PS onset as previously believed
in the literature [2,4] (but still much more robust than the
straightforward synchronizaiton analysis, not shown). Third,
the auxiliary PS metrics (Fig. 3) identified a PS regime for
C > (G, = 0.1659, and the M-SSA agrees with that result
regardless of the specific s-QBYV rotation applied.

Finally, note that even the high level of noise was not able
to compromise the M-SSA characterization of PS for this
range C > C,. By this point of view, the M-SSA is extremely
robust to additive Gaussian noise regardless of the s-QBV
rotation applied.

For a deeper investigation, we consider now the M-SSA
eigenvectors ey, Fig. 4. Three values of the coupling strength
were selected, given a “stable” fingerprint of PS onset in
the singular spectra for each s-QBV rotation: Cy ~ 0.1050,
Cp ~ 0.1149, and C, ~ 0.1301—those values were chosen by
observing a large and stable increase of the leading pair of
singular values A7, in Fig. 2 (left panel) and are highlighted
by the doted Vert1ca1 lines. Another two reference values were
taken (see dashed vertical lines): at C; ~ 0.0895, which is
prior to any sign of PS, and at C; ~ 0.1659, a value for which
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FIG. 2. Multivariable approach: Impact of the different s-
orthomax rotations on the M-SSA characterization of chaotic phase
synchronization for an increasing coupling strength C. Dotted ver-
tical lines correspond to the earlier more consistent fingerprint of
PS as suggested by the use of s-quartimax (C ~ (), s-biquartimax
(C =~ (), and s-varimax (C =~ C,). The first dashed vertical line
corresponds to the absence of any PS signature (C > C). The second
one corresponds to the PS onset (C > C,) as identified by the
auxiliary PS metrics in Fig. 3. Results for both noise free data (left
panel) and data with additive Gaussian noise (right panel).

the auxiliary PS metrics (Fig. 3) identified a PS regime. For
the following discussion, we stress here that some features
related to the s-varimax are already known [2,4], and the main
goal of the present work is to investigate the completely un-
known effects related to the remaining s-orthomax rotations.
Figure 4 shows that several oscillatory modes were iden-
tified, as captured by the eigenvectors structure [compare
with Figs. 1(b) and 1(c)]. This is expected due to the high
diffusive phase of the funnel regime, implying at a multimodal
oscillatory dynamics [2,4]. The specific way the structure of
these eigenvectors change due to the specific rotation (and
coupling strength) illuminates the underlying mechanism for
the previously shown success, or failure, of the s-orthomax

0.15

0.10 A

0.05 A1

e T S Y R—

0.00 " —

2x107!

1071
Coupling strength C

6x10-2

FIG. 3. Straightforward synchronization analysis for J/ = 2 cou-
pled and detuned Rossler oscillators with intrinsic chaotic funnel
dynamics. (a) Normalized average synchronization error of the tra-
jectories (horizontal dashed line corresponds to 10% of the initial
error, i.e, for C = 0). (b) Mean observed frequencies mismatch mod
2m. (c) “Quality” of PS as estimated by the (S, ,) statistics. Vertical
lines are the same as in Fig. 2.

rotations regarding PS characterization through the eigenval-
ues Af. This can be seen in the following three features. First,
before any sign of PS onset (C = C}) the s-QBV rotations
successfully associate the eigenvectors with one (and only
one) Rossler oscillator and then providing evidence that no
oscillatory mode is being shared by them (no fingerprint of
the PS regime). This structure contrasts largely with the full
mixture seen before rotation and with the s-equamax. So
the s-equamax is simply not able to find the proper rotation
to dissociate the eigenvectors. Second, how efficiently the
s-QBV perform is quite different. The s-varimax is the most
efficient, being able to split the eigenvectors for larger values
of the coupling strength (C; to C,). It is followed by the
s-biquartimax (C| to Cp) and then by the less-efficient rotation
s-quartimax. These results can be expressed through an “ef-
fectiveness rank™ s-varimax > s-Bivarimax > s-quartimax (as
highlighted by the increasingly wider light green rectangles).
That is the underlying mechanism for the different PS onset
identification by each s-QBYV rotation. Specifically, since each
e, pair is uniquely associated with one oscillatory mode,
those PS onsets are related to the first oscillatory modes that
start to be shared (by the Rosslers oscillators), as perceived
by the different s-QBYV rotations. Finally, when the coupling
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FIG. 4. M-SSA leading eight eigenvectors e; for the multivari-
able approach. The s-QBV rotations have different abilities to asso-
ciate the e, pairs to each Rossler oscillator, as highlighted by the light
green rectangles. The selected coupling strength values correspond to
the vertical lines in Fig. 2.

strength C = G, is sufficiently large to unambiguously allows
PS characterization through the locking of the estimated
phases A¢; 2 ~ 0 (as well as by the other auxiliary metrics,
Fig. 3), all the three s-QBV rotations agree with a complete
sharing of oscillatory modes (Fig. 4, rightmost panel) and so
characterizing a well-established PS regime.

But what is the physical or dynamical interpretation for the
different PS onsets? To answer this we investigate the instanta-
neous phase difference A¢ /2w, computed for the five selected
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FIG. 5. Instantaneous phase difference, corresponding to the five
selected coupling strengths C € {Cy, C,, G, Cy, Co}. (a) A single
small plateau (i.e., constant phase difference). Larger and more
consistent plateaus are found for (b) C = C, and (c) C = C;,, which
represent more episodes of PS dynamics. This is a signature of
intermittent PS regime. (d) At C = C, the PS is even more consistent,
and, finally, at (e) C = C; a full PS regime is achieved.

coupling strengths, Fig. 5. A plateau A¢ /2w ~ const implies
PS. One sees that the number or the consistence (width) of
plateaus increases by increasing the coupling strength. Putting
in other words, at C = C,, C; there is a regime of intermittent
PS, with several phase slips. Hence, there were episodes of
oscillatory modes sharing. However, these were not “strong”
(i.e., consistent along time) enough to avoid the highly ef-
ficient s-varimax to find a rotation to dissolve the mixture
effect on the eigenvectors. Then, no fingerprint for a PS
regime was captured by the M-SSA with the s-varimax: See
singular values at Fig. 2(d) and eigenvectors at the fourth
row of Fig. 4 (under the light green rectangle). Only at the
more consistent PS regime (C = C,), Fig. 5(d), the sharing
of modes became so consistent in time that the s-varimax is
not able to find a rotation to unmix the eigenvectors. Then
the M-SSA characterizes the PS onset near C = C,,. A similar
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FIG. 6. Single-variable approach: Impact of the different s-
orthomax rotations on the M-SSA characterization of chaotic phase
synchronization for an increasing coupling strength C. Vertical line
correspond to the ones in Fig. 2. Note that for / = 2 coupled systems,
y = D/2 = 1 in the single-variable approach and the s-equamax and
s-varimax are equivalent.

argument can be applied to the s-quartimax and s-biquartimax.
They progressively need a more consistent PS regime in order
to not be able to unmix the eigenvectors. Then the less-
efficient s-quartimax is able to characterize a less-established
PS regime (in the sense of an intermittent PS regime).
Theoretical considerations can be made by framing the
s-orthomax efficacy using the concept of separability [23-25].
Remember that each time series j contributes with a block
X, for the augmented (concatenated) trajectory matrix X
(Sec. ITA). Separability encapsulates the notion of orthogo-
nality between the respective reconstructed state vectors (i.e.,
between the J segments of length m of a given row of X).
More specifically, it means that the eigentriple (A!/2, P, ET)
from the decomposition of X corresponds to the union of
the ones obtained by the isolated decomposition of each
subtrajectory matrix X;. The rotation of eigenvectors aims
at solving the problem of weak separability, where there is
an “approximate” orthogonality in the original data. A higher
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FIG. 7. M-SSA leading eight eigenvectors e, for the single-
variable approach. As in the multivariable approach (Fig. 4), the
s-quartimax and s-biquartimax have different abilities to associate
the e; pairs to each Rossler oscillator (highlighted by the light
green rectangles). Since y = 1 stands for both the s-varimax and
s-equamax in this context with J =2 systems, the results are
equivalent. The selected coupling strength values are the same as
in Fig. 4.
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degree of PS implies at lower separability due to the sharing
of oscillatory modes. Since the varimax is the most-efficient
rotation of factor analysis, it is able to find a rotation to
convey a simple structure for a weaker separability (higher
level of PS) than the other rotations. An in-depth discussion
of separability theory for one-dimensional time series can be
found in Ref. [25].

B. Single-variable approach

The results with the best observable y are shown in Figs. 6
and 7 (singular values and eigenvectors, respectively). The
vertical lines are the same as in the previous analysis through
the full multivariable approach. In this context, with J =2
oscillators and one single time series for each one, y =1
implies in both the s-equamax and s-varimax and hence their
results are equivalent.

The expected increased resolution of the s-varimax in
single-variable approach [4] was now achieved with the s-
quartimax and s-biquartimax, as seen for both the clean data
and noisy data in Figs. 6(b), 6(c), 6(g), and 6(h) (note that the
vertical scale is the same as in Fig. 2). The s-equamax is again
not able to find a proper rotation, but it is not equivalent to the
results before rotation as in the case of the full multivariable
M-SSA. This is seen in both singular values, Figs. 6(e) and
6(j), and eigenvectors, Fig. 7 (bottom). Here one notices that
the presence of noise imposes a larger shift for the PS onset
characterization toward higher values of the coupling strength
[Figs. 6(b) and 6(g) and Figs. 6(c) and 6(h)] as compared
with the multivariable approach. Besides that, the range for
PS onset with clean data is similar to the ones obtained
from X,,..

V. CONCLUSION

Multivariate singular spectrum analysis, enhanced by
Groth and Ghil’s structured varimax (s-varimax) rotation
[2,5], is an increasingly widely utilized technique to inves-
tigate synchronization phenomena in diverse natural [3,8] and
numerical scenarios [10,11]. It provides a deep characteriza-
tion of phase synchronization with no necessity of a priori
phase estimate or definition. In factor analysis, it is known
that the varimax is the most-efficient rotation criterion (in the
orthomax family) to achieve a simple structure of a factor
matrix [12,15]. Hence, the varimax was the natural choice for
the seminal modified (structured) Groth and Ghil’s version
do deal with PS characterization in the context of coupled
dynamical systems. Here the results for the first systematic
investigation of the structured versions of the other orthomax
rotations [5] in the context of a multimodal system are five-
fold:

(i) The s-orthomax rotations are not equivalent. Indeed,
the useful rotations are restricted to the structured quartimax,
biquartimax, and varimax (s-QBV).

(i) The s-QBV subset has different performances to
achieve the separation of eigenvectors between different sys-
tems, with an “effectiveness rank” s-varimax > s-Bivarimax
> s-quartimax.

(iii) This rank is related to the strength of PS. Hence, while
the s-varimax could be used as a test for a more consolidated
PS regime, the s-quartimax seems to be the best choice if
the goal is the characterization of a faint, less developed, and
intermittent PS regime.

(iv) Additive Gaussian noise slightly overshoots the iden-
tification of PS onser. This effect is stronger in the single-
variable approach than in the multivariable one.

(v) In the single-variable approach, J = 2 oscillators im-
plies in the equivalence among the s-varimax and s-equamax
(because y =D/2=J/2 =1). As a consequence, in this
specific context the choice y = 1 yields no useful results. It
is worth noticing that this was acknowledged in Ref. [4]; the
authors stated that “...if J = 2 in the single-variable M-SSA

. the structured varimax rotation (SRV) fails to separate
the rotated eigenvectors.” Then the authors found, empirically,
that the y = 2/3 = 0.66 gave an appropriate rotation. Indeed,
we found good rotations for values of y near to 1 (e.g., 0.99,
results not shown here). However, we restrict the presentation
of results to the y values corresponding to this study scope:
the orthomax family (y € {0, 1/2, 1, D/2}).

We expect that the results provided here could be used
in two ways: first, by providing a choice for the researcher
in adjusting the desired sensitivity to establish a PS regime
through time-series analysis, in accordance with his or her
specific experimental scenario under investigation. For ex-
ample, by applying the s-quartimax for a earlier identi-
fication of PS onset. However, we stress here that dis-
cussing just sensitivity without specificity is dangerous [6],
and this complementary point of view is left for further
investigation.

Second, the joint application of the s-QBYV rotations could
provide tests for PS in more complex scenarios, given that
they agree when this regime is more developed or consoli-
dated, and disagree when it becomes intermittent. Those ideas
could be employed at the implementation of specific sensors,
being focused on more sensitivity for PS onset characteriza-
tion or more reliability in discern very-weak to moderate PS
levels and intermittent regimes.
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