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Emergent spatiotemporal instabilities in reactive spatially extended systems by thermodiffusion
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Thermodiffusion or thermophoresis or Soret effect, i.e., mass-transport induced by thermal gradient, has
immense application in segregation of species in two or multicomponent gaseous, liquid, or colloidal mixtures.
Here, we show that an external thermal gradient can be effectively utilized in creation and modification of
patterns in spatially extended systems. We consider Brusselator and chlorine-dioxide iodine malonic acid
(CDIMA) reaction-diffusion systems, which follow activator-inhibitor kinetics subjected to an external thermal
gradient. We find that the conspicuous interaction of emergent thermodiffusive flux with reaction kinetics and
diffusion can lead to various spatiotemporal instabilities in these two models. Specifically, our result reveals
formation of Turing-like spatial patterns even for equal diffusivities of the activator and inhibitor components in
the Brusselator model under the influence of differential thermodiffusion, whereas formation of such stationary
patterns in the CDIMA system from a homogenous stable steady state, which is also stable under differential
diffusion, requires the same sign and magnitude of Soret coefficients. However, with equal diffusivities of
the components of the CDIMA system and without starch in the medium, our result identifies formation
of drifting spiral waves which finally disappears at longer times under the influence of thermodiffusion. We
also show formation of propagating patterns of spotlike or stripelike heterogeneity in both the model systems
under appropriate conditions. Our study provides a route to pattern formation beyond Turing space and reveals
remarkable influence of thermodiffusion to modify the pattern types just by employing an external thermal
gradient which also opens up the possibility to set up new related experiments.
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I. INTRODUCTION

The spontaneous formation of patterned structures is one of
the most fascinating far-from-equilibrium phenomena which
has received significant attention for decades due to its preva-
lent occurrence in many naturally evolving spatially extended
systems [1–4]. The most common mechanism of spatiotem-
poral pattern formation was proposed in early 1950s by
mathematician Alan Turing in the context of morphogenesis
[5], which suggests that, in a system of two interacting and
diffusing species, the disparity between diffusion coefficients
of activator and inhibitor might lead to the formation of stable
heterogeneous spatial patterns. This is well known as Turing
instability or diffusion-driven instability. Nevertheless, it is
hard to achieve such a large difference of diffusivities between
two interacting chemical species in chemical reactions in real
experiments; a large number of studies have been reported so
far in this context to investigate pattern formation processes
both theoretically and experimentally [6–11]. Efforts had
been made in literature to overcome the stringent criteria of
equal diffusivities to generate spatiotemporal instabilities by
externally perturbing the chemical reaction-diffusion systems
using differential flow [12], electric fields and magnetic fields
[13–17], photoillumination [18,19], or by including time-
delay and time-delayed feedbacks [20,21] or fluctuations in
different forms [22–27]. In the same line, the problem of equal
diffusion coefficients has been addressed in reaction-diffusion
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systems with cross-diffusion [28] and diffusion on complex
networks [29].

In this regard, we investigate here the spatiotemporal dy-
namics of a reaction-diffusion system subjected to an ex-
ternally applied temperature gradient. A thermal gradient
in a fluid mixture not only causes heat flux but also gen-
erates a diffusive flux of the constituent components and
thereby influences the overall transport. This phenomenon of
mass transport driven by temperature gradients in binary or
multicomponent fluid mixtures is known as thermodiffusion
[30–34] or Ludwig-Soret effect, which was first observed
in 1856 by Ludwig and later established by Soret in 1979.
This cross effect between temperature and concentration can
be naturally found in thermohaline convection in oceans, in
segregation of components in liquid lava. Use of thermal
diffusion has been found in separation of metals in alloys
and for purification of isotopes [35–37]. Thermal diffusion
has been explicitly studied in complex molecular systems
such as colloidal suspensions and charged micelles [36,38–
42]. Although, previously, Soret effect has been studied in a
reactive one-component spatially extended system resulting
in absolute and convective instabilities [43] and unpinning of
scroll waves in B-Z reaction [44], a systematic investigation
of thermodiffusion induced spatial instability in spatially ex-
tended systems is still elusive.

In this paper, we study how and to what extent an ap-
plied external thermal gradient influences the spatiotempo-
ral dynamics of a planar two-component spatially extended
system following activator-inhibitor kinetics. As prototypical
examples we consider two dynamical systems: Brusselator
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model and chlorine-dioxide iodine malonic acid (CDIMA)
system [7,45,46]. The focal theme of the paper concerns
thermodiffusion-induced pattern formation in the presence or
absence of diffusion-driven instability. In what follows, we
show that thermodiffusion can lead to the emergence of spa-
tiotemporal instabilities in the form of Turing-type stationary
patterns and traveling waves in general depending on the
appropriate parameter region and Soret coefficients. Our the-
oretical analysis is corroborated with numerical simulations
done for the two aforementioned model systems. However,
the spatiotemporal dynamics of the two systems have certain
distinct features under the influence of external thermal gra-
dient. While, our study identifies formation of a stationary
pattern even for equal diffusivities in the presence of differ-
ential thermodiffusion of the components in the Brusselator
model, in the case of the CDIMA system, without disparity
in diffusion, thermal gradient alone is inadequate to generate
stationary Turing patterns. However, Soret coefficients of
the same sign and magnitude result in stationary patterns in
the CDIMA system from a homogeneous stable state in the
presence of diffusion-driven instability. Interestingly, in the
CDIMA system, opposite signs or difference in magnitude
of Soret coefficients always generate propagating patterns of
spot- or striplike heterogeneity or spiral waves. Based on
the knowledge of existing literature, these thermodiffusion-
induced stationary patterns are reported in two-component
reaction-diffusion systems in the present study in addition
to various propagating patterns. Along with other chemical
reactions, our study can be useful to investigate collective
spatiotemporal dynamics of fish school in the ocean, where
temperature gradients might be present as well as thermosen-
sitive microbial systems. Similarly, our study can be extended
to investigate spatiotemporal dynamics of dust particles in
atmosphere under the influence of temperature gradients.

The rest of the paper is organized as follows: in Sec. II, we
provide a description to include the effect of thermodiffusive
flux in a general reaction-diffusion model. In Sec. III we
demonstrate, analyze, and discuss the results of the present
work on the application of thermal gradient on Brusselator
and chlorine-dioxide iodine malonic acid (CDIMA) reaction-
diffusion system. The paper is concluded in Sec. IV.

II. ROLE OF THERMODIFFUSION: A GENERAL
THEORETICAL DESCRIPTION

To investigate the influence of externally employed tem-
perature gradient in a spatially expended system, we first
consider a general reaction-transport model in two dimensions
represented by the following equations:

u̇ = f (u, v) − ∇·Ju, (1)

v̇ = g(u, v) − ∇·Jv, (2)

where u(x, y, t ) and v(x, y, t ) are two dimensionless concen-
tration variables. Ji denotes the flux of the ith species for the
system. f (u, v) and g(u, v) are the reaction parts following
activator-inhibitor kinetics. In the presence of an applied
constant thermal gradient, the flux for a species is given by

the Ludwig-Soret effect [30,33,35,36] as

Ji = −Di∇ci − DTi ci(1 − ri )∇T . (3)

Here Di is the translational diffusion coefficient, DTi denotes
the thermal diffusion coefficient, ci is the concentration of
the ith species, and ri is the relative concentration of the
same (i.e., ri = ci/

∑
ci). ∇T is the imposed thermal gradient

(can have a dimension K cm−1), across the reaction chamber
and is kept constant throughout. DTi can be expressed in
the form DTi = STi Di, STi being the Soret coefficient having
the dimension K−1, of the ith species, which is expressed
by the relation STi = STi (1 + ksci )−1 [47]. Here ks is a phe-
nomenological constant (can be expressed in M−1 unit). The
values of STi are nearly equal for ionic species. Equation (3)
can be written in the following form:

Ji = −Di∇ci − DiSTi ci
(1 − χci )

(1 + ksci )
∇T, (4)

where ri = χci and χ = 1/
∑

ci.
On substituting the expression of the total flux from Eq. (4)

in Eq. (1) and Eq. (2) we get

u̇ = f (u, v) + Du∇·
(

∇u + STu

u(1 − χu)

(1 + ksu)
∇T

)
, (5)

v̇ = g(u, v) + Dv∇·
(

∇v + STv

v(1 − χv)

(1 + ksv)
∇T

)
. (6)

The sign of the Soret coefficient decides the movement of
a species towards the hot or cold ends. Those with positive
coefficient move to the colder region and ones with negative
Soret coefficient move towards the warmer region.

At this point, we examine the effect of thermodiffusion
in modifying the instability region such that a homogeneous
stable steady state which is stable otherwise becomes unsta-
ble in the presence of thermodiffusion. We now consider a
small spatiotemporal perturbation around the homogeneous
steady state (u0, v0) so that u(x, y, t ) = u0 + δu(x, y, t ) and
v(x, y, t ) = v0 + δv(x, y, t ). By expanding u and v about the
steady state value (u0, v0) and keeping only the linear terms
we obtain

∂ (δu)

∂t
= fu(δu) + fv (δv) + Du∇2(δu)

+ DuSTu∇T

[
1 − χ0u0

(1 + ksu0)2
− χ0u0

(1 + ksu0)

]
∇(δu),

(7)
∂ (δv)

∂t
= gu(δu) + gv (δv) + Dv∇2(δv)

+ DvSTv
∇T

[
1 − χ0v0

(1 + ksv0)2
− χ0v0

(1 + ksv0)

]
∇(δv),

(8)

where the terms within the third brackets correspond to the
first derivative of the Soret term at the steady state (u0, v0) and
χ0 equals the sum of the initial concentrations of the reactants.

Expressing the spatiotemporal perturbations in the form

δu(x, y, t ) = (δu0)e[λt+i(kx ·x+ky·y)], (9)

δv(x, y, t ) = (δv0)e[λt+i(kx ·x+ky·y)] (10)
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and substituting the above into Eq. (7) and Eq. (8), we obtain the following matrix equation for the eigenvalues:⎛
⎝ fu − Duk2 + ipDuSTu Mu∇T − λ fv

gu gv − Dvk2 + ipDvSTv
Mv∇T − λ

⎞
⎠(

δu0

δv0

)
= 0, (11)

where p = (kx + ky) and k2 = k2
x + k2

y . For the sake of sim-
plicity we assume Mu = [(1 − χ0u0)/(1 + ksu0)2 − (χ0u0)/
(1 + ksu0)] and Mv = [(1 − χ0v0)/(1 + ksv0)2 − (χ0v0)/
(1 + ksv0)].

To determine the stability of the system we focus on the
eigenvalue equation of the growth rate λ as obtained by
expanding the stability matrix:

λ2 − mλ + h = 0, (12)

where m = ( fu + gv ) − (Du + Dv )k2 + ip∇T (DuSTu Mu +
DvSTv

Mv ) and h = ( fugv − gu fv ) − ( fuDv + gvDu)k2 +
DuDvk4+ip∇T [(DuSTu Mugv+DvSTv

Mv fu)−DuDvk2(STu Mu +
STv

Mv )] − DuDvSTu STv
MuMv (∇T )2 p2.

The eigenvalues of Eq. (12) are given by the expression

λ± = [m ±
√

m2 − 4h]/2. (13)

The eigenvalues consist of both real and imaginary parts.
Deriving the expression

√
m2 − 4h, we obtain the real

part as represented by R =
√

(A + √
A2 + B2)/2 and

the imaginary part Q = B/

√
2(A + √

A2 + B2), where

A = [ fu + gv − (Du + Dv )k2]2 − 4[( fugv − gu fv ) − ( fuDv +
gvDu)k2 + DuDvk4] − (∇T )2(DuSTu Mu − DvSTv

Mv )2 p2 and
B = 2p∇T [ fu + gv − (Du + Dv )k2][DuSTu Mu + DvSTv

Mv] −
4p∇T [DugvSTu Mu + Dv fuSTv

Mv − DuDvk2(STu Mu + STv
Mv )].

The growth rate of perturbation, i.e., the eigenvalues, can
be obtained by the following expression:

Re(λ±) = [{ fu + gv − (Du + Dv )k2} ± R]/2, (14)

Im(λ±) = [p∇T (duSTu Mu + dvSTv
Mv ) ± Q]/2, (15)

which determine the nature of the stability of the steady
state. By plotting the three-dimensional (λ, kx, ky) dispersion
diagram and identifying positive eigenvalues, we examine the
effect of thermodiffusion in determining the instabilities.

In the next section we apply the aforementioned theoretical
analysis considering two model reaction-diffusion systems.
We consider a two-dimensional reaction chamber and main-
tain a no-flux boundary condition. The reason behind this
choice of boundary condition is to corroborate with the pos-
sible experimental setup to maintain a constant temperature
difference between two ends of the reaction chamber. A cir-
cular type of reactor with periodic boundary condition would
not meet the present purpose. To obtain a constant thermal
gradient across the reaction chamber, we need to first maintain
a difference in temperature along the two opposite sides of the
reaction chamber. For instance, in a square reaction chamber
of length 10 cm, a 50 K difference in temperature will create
a thermal gradient of 5 K cm−1.

Our aim here is to investigate the following: how does
the presence of an external thermal gradient (i) destabilize
a homogeneous stable steady to generate stationary spatial

patterns or propagating waves? and (ii) modify the type of
instability in the form of pattern transition in a spatially
extended system?

III. APPLICATIONS AND DISCUSSION

A. Brusselator model

To begin with, we first consider the Brusselator model
which is a representative paradigm for autocatalytic chemical
reactions [48,49]. The corresponding two variable reaction-
diffusion model in the presence of an external thermal gradi-
ent can be described by two dimensionless equations as rep-
resented by Eq. (5) and Eq. (6) described in Sec. II, with the
reaction terms having the form f (u, v) = a − (b + 1)u + u2v

and g(u, v) = bu − u2v. Here a and b are constant reaction
parameters related to the reactant concentration.

The dynamical system represented by Eq. (5) and Eq. (6)
with Brusselator kinetics admits a homogeneous steady state
(u0 = a, v0 = b/a), which is stable below a threshold, b <

bH , where bH = (1 + a2) refers to the Hopf-bifurcation line
obtained for parameters Dv = 5.0 and a = 3.0 and can be
drawn as a function of diffusion coefficient of activator, i.e.,
Du as shown in Fig. 1. This line separates the region of
homogeneous stable steady states from oscillatory states in
the (b − Du) parameter space. In the presence of simple dif-
fusion of the components (∇T = 0), the homogeneous steady
state becomes unstable and diffusion-induced heterogeneous
concentration patterns emerge following the Turing condi-
tion: bT = 1 + (a

√
Du/Dv )2 as derived from linear stability

analysis. The region above the Turing curve and below the

 0
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FIG. 1. Bifurcation diagram obtained from linear stability anal-
ysis of Eq. (5) and Eq. (6) with Brusselator kinetics in the absence
of thermal gradient (∇T = 0) and for Dv = 5.0 and a = 3.0. Hopf
(blue) and Turing (red) curves divide the (b − Du) parameter space
into a homogeneous stable region, a homogeneous oscillatory region,
and a region of inhomogeneous stationary Turing patterns. The
homogeneous stable steady states are denoted by points O1, O2, and
O3 on the bifurcation diagram. O1 lying below both the Hopf and
Turing curves is diffusionally stable and O2 and O3 inside the Turing
region show stationary patterns.
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FIG. 2. Formation of Turing-like stationary patterns for equal diffusion coefficients of the two components (Du = Dv = 5.0): a three-
dimensional dispersion diagram for thermodiffusion induced instability is obtained from linear stability analysis for the state O1 for the Soret
coefficients STu = 0.1, STv

= 0.5. Shown here are the plots of the real part of the growth rate Re(λ) as a function of kx and ky for different
values of the imposed temperature gradient: (a) ∇T = 0, (b) ∇T = 4.0, and (c) ∇T = 5.0. All the other parameters are the same as mentioned
in the main text. The corresponding numerically simulated spatial patterns of concentration of the activator u are depicted in bottom figures
(d), (e), and (f), respectively.

Hopf curve as depicted in Fig. 1 is attributed to diffusion-
driven instability. For further analysis we choose a point
O1 (Du = 5, b = 7) in the bifurcation diagram as shown in
Fig. 1, which lies below both the Hopf and Turing curves
representing a homogeneous stable steady state. Our aim here
is to investigate the fate of the state O1 in the presence of
an external thermal gradient, which does not show diffusion-
driven Turing instability.

1. Formation of Turing-like stationary patterns
for equal diffusivities (Du = Dv)

To examine the influence of temperature gradient in in-
ducing spatial instability of the homogeneous steady state
corresponding to the point O1 in the bifurcation diagram 1, we
first check the presence of real positive eigenvalues dominant
over imaginary ones as given by Eq. (14) in Sec. II by drawing
a three-dimensional dispersion diagram [Re(λ), kx, ky] for
different values of thermal gradient ∇T . We consider equal
diffusivity of the two components, i.e., Du = Dv = 5, which
does not fulfill the necessary condition of Turing instability.
We now investigate spatiotemporal dynamics of the system
considering Soret coefficients with positive sign and different
magnitudes (STu = 0.1, STv

= 0.5), which implies differential
movement of the components towards the cooler part of the
reaction chamber under thermodiffusion. The values of other
parameters are a = 3.0, Dv = 5.0, χ = 1.0, and ks = 0.1,
which we kept constant throughout our study unless otherwise
mentioned. We observe no positive real eigenvalue for ∇T =
0, as shown in Fig. 2(a). With increasing values of ∇T = 4.0,
we find the appearance of real positive eigenvalues as depicted
in Fig. 2(b). Moreover, as ∇T increases, the magnitude of

largest positive eigenvalue also increases [Fig. 2(c)], signi-
fying formation of stable stationary patterns. The differential
fluxes originated in response to the temperature gradient are
the key for the development of this spatial instability.

To verify the predictions obtained from the 3D dispersion
diagrams, we now perform detailed numerical integration of
Eq. (5) and Eq. (6), following the Brusselator model in two
dimensions for several values of imposed thermal gradients.
For numerical simulations, an explicit Euler method is used
following a discretization of space and time. A finite system
size of length Lx = Ly = 200 with grid size �x = �y = 0.5
and a time interval dt = 0.001 are set for the present purpose.
We maintain a no-flux boundary condition throughout our
present study. The system is initialized at each mesh point
(400 × 400 array) by perturbing the steady state with ±1%
random noise in order to break the initial spatial symmetry.
The numerical simulations are performed for a long time to
observe the effect of the applied temperature gradient so that
it can lead to the formation of stable heterogeneous patterns.
Our numerical result shows a homogeneous uniform spatial
pattern as depicted in Fig. 2(d) in the absence of any applied
temperature gradient. As a thermal gradient is imposed on
the system, we initially find transient patterns which finally
become homogeneous. With increase in the value of ∇T � 4,
we observe formation of a stationary stripe pattern as illus-
trated in Fig. 2(e). Moreover, further increase of ∇T = 5.0
results in a stationary spatial pattern of larger wavelengths that
is clearly captured in Fig. 2(f). However, we find that in this
case, when both the diffusion and Soret coefficients of the two
components are equal, the system does not admit formation
of a Turing-like stationary pattern in the presence of thermal
gradient.
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FIG. 3. Modulation of Turing patterns under thermodiffusion:
plot of numerically simulated concentration patterns of activator
u corresponding to the parameter set designated by point O2(1,7)
are shown by the images (a)–(c) and point O3(1,9) are depicted
in images (d)–(f) for different values of the imposed temperature
gradient ∇T = 0.0, ∇T = 2.0, and ∇T = 4.0, respectively. The
Soret coefficients are taken as STu = STv

= 0.1.

To this end, we now discuss the effect of thermodiffusion
with negative Soret coefficients of the component species,
i.e., when both the species are moving towards the hot end
of the reactor. We carry out numerical simulations with the
same parameter set referring point O1 as described earlier
with STu = −0.1, STv

= −0.5 for ∇T = 1.0. Interestingly, in
this case we observe wave instabilities in the form of traveling
waves of stripelike heterogeneity as demonstrated in Movie 1
(see Supplemental Material [50]). However, for higher values
of ∇T = 5, we end up with a stationary pattern. On the other
hand, with opposite signs of Soret coefficients for example
either with STu = −0.1, STv

= 0.5 or STu = 0.1, STv
= −0.5

we find an oscillatory pattern of propagating periodic stripes.
Therefore, by proper tuning of external applied thermal gradi-
ent, one can achieve patterns of varied wavelength and various
types.

2. Modulation of Turing patterns in the presence
of applied thermal gradient

To further explore how and to what extent an applied
thermal gradient can influence the spatiotemporal dynamics
of a patterned state we consider a point O2, lying inside
the Turing region, as shown on the bifurcation diagram
(Fig. 1). In absence of ∇T , numerical simulation of the system
shows spatial heterogeneity in concentrations in the form of
labyrinthine stripes as shown in Fig. 3(a). As ∇T is applied,
imaginary eigenvalues appear and compete with the real ones
and the system shows propagating spatial heterogeneity. For
a larger ∇T = 2.0, it turns out that positive real eigenvalues
dominate over imaginary ones and by selection of a partic-
ular mode, stationary pattern of vertically oriented stripes
is emerged as depicted in Fig. 3(b). For further increase of
∇T = 4.0, again a transition occurs and stationary stable
patterns of horizontally bent periodic stripes appear as shown
in Fig. 3(c). A similar type of pattern transition from spots to
stripes occurs in the presence of thermal gradient in the case
of state described by point O3. Corresponding numerically

simulated concentration patterns of activator component are
demonstrated in Figs. 3(d)–3(f) for different values of applied
thermal gradients. The underpinning of such transition reveals
competition between real and imaginary eigenvalues of the
growth rate of perturbation which results in some spatial pat-
terns which consist of a mixture of stationary and oscillatory
instabilities. Further exploration in the Turing domain reveals
that in the presence of an applied thermal gradient either
a propagating stripelike heterogeneous pattern evolves or a
stationary pattern develops in the concentration fields even
with negative Soret coefficients, e.g., (STu = STv

= −0.1).
When components move in opposite directions with the same
speed in response to applied thermal gradient in Turing space,
propagating waves of stripes evolve in a particular direction
for lower values of ∇T and stable stationary patterns emerge
for higher values of ∇T . This signifies the potential role
of thermodiffusion to manipulate the pattern types just by
adjusting the value of the externally applied thermal gradient.

B. Chlorine-dioxide iodine malonic acid model

Next, we consider the chlorine-dioxide iodine malonic
acid (CDIMA) model proposed by Lengyl and Epstein in
1992 [7,45,46] in the context of spatiotemporal instabilities in
chemical reactions. This is a simple activator-inhibitor kind of
model which has served as a representative paradigm for many
experimental and theoretical studies on pattern formation over
the past two decades [14,15,19–21,23,51]. The corresponding
two-variable reaction-diffusion system in the presence of a
thermal gradient can be written by the following dimension-
less equations in two dimensions:

u̇ = f (u, v) + ∇·
(

∇u + STu

u(1 − χu)

(1 + ksu)
∇T

)
, (16)

v̇ = σ

[
g(u, v) + d∇·

(
∇v + STv

v(1 − χv)

(1 + ksv)
∇T

)]
, (17)

where u and v refer to the activator I− and the inhibitor
ClO−

2 , respectively. The ratio of diffusion coefficients of
inhibitor and activator is denoted by d = DClO−

2
/DI− . The

constant σ refers to the concentration of starch which forms
a complex with tri-iodide I−

3 such that σ = 1 + K[S] and
K is the equilibrium constant of the starch-iodide complex
and [S] is the concentration of starch tri-iodide binding
sites. Here, f (u, v) = [a − u − 4uv/(1 + u2)] and g(u, v) =
b[u − uv/(1 + u2)] are the dimensionless reaction kinetic
terms which govern the dynamics of u and v in the absence
of diffusion and any external flux. a and b are the kinetic pa-
rameters corresponding to the concentrations of the reactants,
i.e., malonic acid (MA), I2, and ClO2 and are represented by
a = [MA]/[I2] and b = [ClO2]/[I2].

The dynamical system given by Eq. (16) and Eq. (17) ad-
mits a homogeneous steady state (u0 = a/5, v0 = 1 + a2/25)
so that f (u0, v0) = g(u0, v0) = 0. The steady state is stable
above a critical threshold such that b > bH , where bH =
[(3a/5 − 25/a)/σ ] refers to the Hopf-bifurcation curve which
separates the homogeneous stable steady state from the un-
stable oscillatory state. In the presence of simple diffu-
sion, this homogeneous stable steady state becomes unstable
and diffusion-driven instability comes into play under the
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FIG. 4. Bifurcation diagram obtained from linear stability analy-
sis of Eq. (16) and Eq. (17) in the absence of thermal gradient (∇T =
0) and for d = 1.6 and σ = 10.0. Hopf (blue) and Turing (red) curves
divide the (a − b) parameter space into a homogeneous stable region,
a homogeneous oscillatory region, and a region of inhomogeneous
stationary Turing patterns. The two homogeneously stable steady
states are denoted by points P1 and P2 on the bifurcation diagram.
P1 lying above the Turing curve is diffusionally stable and P2 inside
the Turing region is unstable.

Turing condition: (3da2 − 5ab − 125d )2 = 100abd (a2 + 25)
as derived from the linear stability analysis. In Fig. 4, we
plot the Hopf (blue with solid circles) and Turing (red with
solid squares) bifurcation curves for σ = 10.0 and d = 1.6, to
depict the regions of instabilities that separate out the region
of homogeneous stable steady state (the region above the Hopf
bifurcation line) from oscillatory unstable state and the region
of inhomogeneous Turing pattern (the region above the Hopf
bifurcation curve and below the Turing bifurcation curve).
When σ = 1.0, the Hopf-bifurcation curve lies well above
the Turing curve and thus if we choose a stable steady state
at relatively high b value, i.e., large [ClO2]/[I2], it does not
come under the Turing region of instability and thereby no
stationary patterns could be observed. Therefore, increasing
σ , the Hopf curve shifts downward proportionally and a stable
steady state with lower values of b can become unstable
to show diffusion-driven instability. Here, the homogeneous
stable steady state depicted by point P1(18.0,1.7) in the bifur-
cation diagram shown in Fig. 4 lies above the Turing curve
and is stable in the presence of diffusion and the steady state
denoted by point P2(18.0,1.4) lies inside the Turing region and
shows diffusion-driven instability.

We evaluate the growth rate of perturbation, i.e., the real
part of the eigenvalue

Re(λ±) = [{ fu + σgv − (σd + 1)k2} ± R]/2, (18)

that determines the nature of the stability of the steady
states. Here, R =

√
(A + √

A2 + B2)/2 with A = [ fu + σgv −
(σd+1)k2]2−4σ [( fugv−gu fv )−(dfu + gv )k2+dk4]−(∇T )2

(STu Mu − σdSTv
Mv )2 p2 and B = 2p∇T [ fu + σgv − (σd +

1)k2][STu Mu + σdSTv
Mv] − 4pσ∇T [gvSTu Mu + dfuSTv

Mv −
dk2(STu Mu + STv

Mv )].
In Fig. 5, we analyze the stability of a homogeneous stable

steady state (P1) by plotting a three-dimensional (λ, kx, ky)
dispersion diagram in the presence of a thermal gradient ∇T .

 0
 0.4

 0.8
 1.2 0

 0.4
 0.8

 1.2
-4
-2
 0

(a)

kx ky

Re(λ)
 0

 0.5

 1

 0
 0.4

 0.8
 1.2 0

 0.4
 0.8

 1.2
-2

 0

(b)

kx ky

Re(λ)
 0

 0.5

 1

 0
 0.4

 0.8
 1.2 0

 0.4
 0.8

 1.2
-2
 0
 2

(c)

kx ky

Re(λ)
 0

 0.1

 0.2

 0
 0.4

 0.8
 1.2 0

 0.4
 0.8

 1.2
-2
 0
 2

(d)

kx ky

Re(λ)
 0

 0.2

 0.4

FIG. 5. Three-dimensional dispersion diagram for thermodiffu-
sion induced instability in the presence of diffusive transport: plot of
real part of the growth rate Re(λ) as a function of kx and ky obtained
from linear stability analysis for different values of the imposed
temperature gradient : (a) ∇T = 0, (b) ∇T = 3.0, (c) ∇T = 4.0, and
(d) ∇T = 6.0. The parameters’ values are corresponding to point P1
with Soret coefficients taken as STu = STv

= 0.1.

Since we do not have a prior knowledge of the sign of Soret
coefficients of the component ions of the present system, we
first proceed by considering the same sign and magnitude
of STu and STv

to draw the dispersion curves as illustrated
in Fig. 5. Later, we will examine the effect of opposite
signs and difference in magnitude of the Soret coefficients in
determining the spatiotemporal instabilities if any. The val-
ues of other parameters, d = 1.6, σ = 10.0, χ0 = 1.0, and
ks = 1.0, remain fixed throughout our present study unless
otherwise mentioned. In the absence of thermal gradient
(∇T = 0), or for smaller values ∇T = 3.0, the real part of
the growth rate Re(λ) remains negative as shown by the
dispersion diagrams in Figs. 5(a) and 5(b). With higher values
of applied thermal gradients we see a shift of the dispersion
curve [Fig. 5(c)] and existence of positive eigenvalues Re(λ)
for a reasonable combination of kx and ky, which indicates the
instability generated due to the influence of thermodiffusion.
With further increase of the applied thermal gradient, growth
rate of perturbation begins to increase as shown by the larger
region of positive eigenvalues in the 3D-dispersion diagrams
[Fig. 5(d)]. This observation suggests that thermodiffusion-
induced spatiotemporal patterns may exist for this parametric
space.

We now perform detailed numerical integration of Eq. (16)
and Eq. (17) in two dimensions for several values of imposed
thermal gradient. For numerical simulations, explicit Euler
method is used following a discretization of space and time.
A finite system size of length Lx = Ly = 100 with grid size
�x = �y = 0.5 and a time interval dt = 0.001 are set for the
present purpose. We maintain a no-flux boundary condition
throughout our present study. The system is initialized at each
mesh point (200 × 200 array) by perturbing the steady state
with ±1% random noise in order to break the initial spatial
symmetry. The numerical simulations are performed for long
time to ascertain the formation of stable heterogeneous pat-
terns.
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FIG. 6. Thermodiffusion induced stationary patterns for differ-
ent values of imposed constant temperature gradients. Numerically
simulated spatial patterns for the parameter values corresponding to
point P1 for (a) ∇T = 0, (b) ∇T = 4.0, (c) ∇T = 6.0, and (d) ∇T =
10.0. A modification of stationary pattern occurs from spot to stripe
with increasing values of ∇T . All other parameter values are kept
fixed as mentioned in the main text. Red refers to the higher values
of concentration of iodide I−.

1. Emergence of stationary patterns: Soret coefficients
of same sign

We begin our study by considering that both the acti-
vator and inhibitor ions are moving in the same direction
with equal speed towards the cooler end under the presence
of constant temperature gradient, i.e., Soret coefficients are
both positive and equal (STu = STv

= 0.1). Our numerical
simulation results demonstrate that the homogeneous stable
steady state corresponding to P1(a = 18.0, b = 1.7) remains
spatially uniform in the absence of imposed thermal gradient
as depicted in Fig. 6(a). With the application of a constant
thermal gradient ∇T the homogeneous stable steady state
becomes unstable resulting in Turing-type stationary spatial
instability as illustrated in Fig. 6. We observe, as the value of
∇T systematically increases, a transition of stationary pattern
occurs from stable spots [Fig. 6(b)] to stable heterogenous
stripelike heterogeneity [Figs. 6(c) and 6(d)]. It is apparent
from our numerical simulation results that fluxes originating
from thermodiffusion widen up the Turing region of instabil-
ity leading to the formation of stationary patterns.

To further explore the effect of constant ∇T on modulat-
ing stationary Turing patterns, we numerically simulate the
reaction-diffusion system described by Eq. (16) and Eq. (17)
for a different set of parameters (a = 18.0, b = 1.4) as des-
ignated by the point P2 that lies inside the Turing region
in the bifurcation diagram (Fig. 4). In the absence of any
imposed temperature difference, the reaction-diffusion system
shows basic Turing instability which results in a stable spot-
like stationary pattern for the aforementioned values of the
parameters as depicted in Fig. 7(a). With systematic increase

FIG. 7. Thermodiffusion induced transition of stationary patterns
from stable spots to stripelike heterogeneous patterns for the pa-
rameter values a = 18.0, b = 1.4 with the increase in the applied
temperature gradient: (a) ∇T = 0.0, (b) ∇T = 2.0, (c) ∇T = 3.0,
and (d) ∇T = 5.0. All the other parameters are kept the same
as described in the main text. Red refers to the higher values of
concentration of iodide I−.

of the applied constant ∇T , we observe a modification or
deformation occurs in the nature of spot pattern as demon-
strated in Fig. 7. A finer look through the time evolution of the
instabilities suggests an unstable spot-stripe mixture obtained
for an intermediate value of ∇T = 3.0, which stems from a
competition between different modes of spatial periodicity.
We here show a long-time snap of the mixed patterned state in
Fig. 7(c). Further increase in ∇T ultimately results in a stable
stripeslike heterogeneity as depicted in Fig. 7(d).

In order to investigate what happens if the movement of
both the ions is towards the hot end of the reaction chamber,
i.e., Soret coefficients are negative but equal in magnitude
(STu = STv

= −0.1), we carry out numerical simulations as be-
fore with the same parameter set. In what follows, we observe
that in the case of both the activator and inhibitor ions having
the same sign of Soret coefficients (either positive or nega-
tive), thermodiffusion can lead to the formation of stationary
spatial patterns and modulation of Turing instability from
a spotlike patterned state to finally stripelike heterogenous
stationary patterns. Further analysis of the dispersion diagram
reveals that no oscillatory instability is possible in this case
since the real part of the growth rates always dominates over
the imaginary ones (we do not present the results here for the
sake of brevity).

It is apparent that if the Soret coefficient of species is high,
a lesser value of thermal gradient will be required to initi-
ate pattern formation for a fixed value of phenomenological
constant ks. To get a quantitive estimate of ∇T required for
stationary pattern formation, we proceed as follows. The con-
dition on the dispersion relation for a transition to a stationary
pattern is λ = 0 with Im(k = 0), so the perturbation has the

042217-7



PUSHPITA GHOSH PHYSICAL REVIEW E 100, 042217 (2019)

form eik·r with a purely imaginary exponent. Setting λ = 0 in
Eq. (12) yields h = 0. In order to get an analytical estimate
for the same, we assume kx = ky = q, i.e., both the directions
equally contribute to the growth rate of the perturbation.
While doing so we get the following equation:

σ ( fugv − gu fv ) − σ (dfu + gv )k2 + σ dk4

+ ipσ∇T [(STu Mugv + dSTv
Mv fu) − dk2(STu Mu + STv

Mv )]

− σd p2STu STv
MuMv (∇T )2 = 0. (19)

Setting the imaginary part equal to zero yields the con-
dition q2

c = [gvSTu Mu + dfuSTv
Mv]/[2d (STu Mu + STv

Mv )] for
the bifurcation to stationary pattern. We substitute the values
of qc in Eq. (19), which on rearrangement leads to the follow-
ing expression for the thermal gradient:

∇T 2 = d
(
q2

c

)2 − 2(dfu + gv )q2
c + ( fugv − gu fv )

4dSTu STv
MuMvq2

c

. (20)

For kx = ky = q, we expect stationary patterns to exist for a
thermal gradient equal to or greater than this value. From this
relation it is evident that, if the product of the Soret coef-
ficients is high, lower values of thermal gradient can create
stationary patterns. To verify the above prediction obtained for
the value of ∇T for the isotropic case (kx = ky = q), we ran a
few numerical simulations by varying the values of ST [lower
(0.05) and higher (0.2)] and find out that it is consistent with
the prediction that a higher value of ∇T is required to initiate a
stationary pattern and vice versa (results are not shown for the
sake of brevity). To get a better insight of how ∇T varies with
ST and ks, we draw a three-dimensional diagram (ST , ks,∇T )
as shown in Fig. S1 in the Supplemental Material [50].

2. Emergence of propagating spots and stripes:
Soret coefficients of opposite sign

To get a better insight of how and to what extent the
direction of the movement of the ions under thermodiffusion
might affect the spatiotemporal dynamics, we next proceed
by considering opposite signs of Soret coefficients such
that STu = 0.1 and STv

= −0.1. This suggests that activator
and inhibitor ions are moving in opposite directions in the
presence of a constant temperature gradient. We repeat the
numerical simulations for the aforementioned parameter sets
designated by point P1 (a = 18.0, b = 1.7), keeping all the
other parameters the same as before. At this parameter set,
the system remains spatially homogeneous in the absence of
any temperature gradient, i.e., ∇T = 0, as shown in Fig. 8(a).
As we systematically increase the applied constant thermal
gradient, we observe emergence of spatiotemporal instability
in the form of moving mixed spots and stripes for lower
values of ∇T = 3.3, as shown in Fig. 8(b) and demonstrated
in Movie 2 (see Supplemental Material [50]). Further increase
in ∇T leads to a transition to a traveling striped pattern
[Fig. 8(c)]. The corresponding video is illustrated in Movie
3 in the Supplemental Material [50]. A closer look into
the time evolution of traveling patterns reveals that there
is a competition between the direction of movement of the
traveling waves for a higher value of ∇T � 4. We observe
changes in the direction of the moving patterns which need a

FIG. 8. Thermodiffusion induced spatiotemporal instability:
moving patterns for the parameter values a = 18.0, b = 1.7, STu =
0.1, STv

= −0.1 for applied temperature gradient of values:
(a) ∇T = 2.0, (b) ∇T = 3.3, and (c) ∇T = 5.0. Red refers to the
higher values of concentration of iodide I−. All the other parameters
are kept the same as described in the main text.

detailed nonlinear analysis which is beyond the scope of our
present study.

To further check the impact of the imposed thermal gradi-
ent on the region of Turing instability when the activator and
inhibitor have the same magnitude but opposite signs of Soret
coefficients (STu = 0.1, STv

= −0.1), we numerically simulate
the spatiotemporal dynamics for the parameter values a =
18.0, b = 1.4 corresponding to the point P2 (lies inside the
Turing region) in the bifurcation diagram in Fig. 4. Similar to
our previous observation, wave instability arises in the form
of moving spots or stripes from a stationary Turing instability
as demonstrated by longtime snaps in Fig. 9. For smaller
values of imposed constant thermal gradients, ∇T = 1.0, the
morphology of the pattern still remained intact but the nature
of the pattern changes from stationary spots to propagating
spots [Fig. 9(a) and Movie 4 (see Supplemental Material at
[50])]. Further increase of ∇T = 3.0 leads to the transition
from moving spots to traveling stripes [Fig. 9(b) and Movie 5
in [50]]. We observe that spots start to aggregate and develop
traveling stripes with the increase of ∇T .

To this end, it is important to mention that one can vary
the initial total concentration of the reactants χ0 and get a
different set of parameter region for thermodiffusion-driven
instabilities. However, our results remain consistent with the
basic observations we have obtained so far. The values of
Soret coefficients for ionic species are nearly equal but the
signs might be different. In general, Soret coefficients are of

FIG. 9. Thermodiffusion induced spatiotemporal instability:
moving patterns for the parameter values a = 18.0, b = 1.4, STu =
0.1, STv

= −0.1 with the increase of the applied temperature gradi-
ents of values: (a) ∇T = 1.0 (moving spots); (b) ∇T = 3 (moving
stripes). Red refers to the higher values of concentration of iodide I−.
All the other parameters are kept the same as described in the main
text.
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order �10−3 − 10−1 K−1 [31], whereas larger values of Soret
coefficients are found in polymeric solutions ST � 0.5 K−1.
Recently, in colloidal solutions, values of ST from 0.17 to
0.25 K−1 have been reported [52]. In the present work, since
we do not have any prior experimental studies on ST of
iodide and chlorite ions in the CDIMA reaction-diffusion
system, we consider each of the possible combinations (all
the results are not shown here for the sake of brevity). In
this regard, we furthermore check if Soret coefficients are
of different magnitude; for example, the activator is slow
compared to the inhibitor subjected to the constant thermal
gradient in the system, i.e., STu = 0.05 and STv

= 0.1. In this
case, instead of having stationary patterns as previously seen
for the same sign of Soret coefficients and for the parameters
described by point P1, we always get either transient waves or
propagating spots or stripes as demonstrated in Movies 6 and
7 (see Supplemental Material [50]). In what follows, we can
conclude that the case of the same signs of Soret coefficients
results in stationary patterns. On the other hand, opposite signs
or difference in the magnitude of Soret coefficients generates
spatiotemporal instabilities in the form of transient waves,
stable moving spots, or traveling stripes.

3. Thermodiffusion alone is inadequate to produce
Turing instability in a CDIMA system

At this juncture, we investigate whether the applied con-
stant thermal gradient is sufficient to create Turing instability
in the CDIMA system in the absence of diffusion driven
instability. The dispersion diagram, i e., plot of the real and
imaginary part of the eigenvalues with respect to kx and ky,
suggests that, under the condition d = 1, σ = 1.0, there is
very little possibility of stationary spatial pattern formation
as the region of homogeneous stable steady state is separated
by a wide oscillatory region before it hits the Turing curve,
as illustrated in the bifurcation diagram [Fig. 10(a)]. One
important observation from our numerical studies is that, with
no disparity in the ratio of diffusion coefficients and without
the aid of starch in the reaction medium, i.e., d = 1.0 and σ =
1.0, thermodiffusion solely is not enough to create stationary
Turing-like patterns. Nevertheless, for the parameter values
described by point P1 (a = 18.0, b = 1.7) in the bifurcation
diagram depicted in Fig. 10(a), we observe formation of stable
spiral waves in the absence of applied thermal gradient. The
corresponding image is shown in Fig. 10(b). However, in the
case of the component having same sign and magnitude of
Soret coefficients (STu = STv

= 0.1), we observe that spiral
waves show a drift motion towards the boundary in the pres-
ence of a nonzero thermal gradient (∇T = 1.0), as illustrated
in Figs. 10(c)–10(h) in successive time snaps. Numerical
simulation results reveal a conspicuous feature of these spiral
waves: these waves while drifting towards the boundaries
might diminish a later time as shown in Movie 8 (see [50]). If
the ionic components move towards the hot end of the reaction
vessel (i.e., both the Soret coefficients are negative), there is
also formation of similar spiral waves which finally disappear
at longer times.

On the other hand, for opposite signs of Soret coefficients
(STu = 0.1, STv

= −0.1) or (STu = −0.1, STv
= 0.1), i.e., two

ionic species moving in opposite directions under a constant

FIG. 10. Spatiotemporal instability for equal diffusivity: (a) plot
of b − a bifurcation diagram when diffusion coefficients of activator
and inhibitor ions are equal and starch is absent in the medium,
i.e., d = 1, σ = 1. (b) Snapshot of numerically simulated concen-
tration profile of iodide (I−) in the absence of thermal gradient
for the parameter values a = 18.0, b = 1.7, STu = 0.1, STv

= 0.1
and simulated in a domain of size (200 × 200) with spatial grid
�x = �y = 0.5. Successive snapshots of concentration profiles in
the presence of applied temperature gradients (∇T = 1.0) are shown
in successive figures from (c) to (h). In this case, we consider a
domain size (200 × 200) with a larger spatial grid �x = �y = 1.0.
All the other parameters are kept the same as described in the main
text. Red signifies high concentration of iodide ions.

thermal gradient, we observe formation of spirals as shown by
the longtime snapshots in Fig. 11. Interestingly, in this case,
the spiral pattern is stable and does not show drift motion.

To this end, we discuss the effect of domain size and grid
spacing which might have an impact on wave instabilities.
However, by increasing the domain size to 200 × 200 or
decreasing the grid spacing to �x = �y = 0.4, we do not
find any modulation of the wavelength or frequency in the
case of stationary patterns and propagating Turing type spots
or stripes. The nature and morphology of the patterns also
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FIG. 11. Thermodiffusion induced spiral waves for opposite
signs of Soret coefficients: shown is the snapshot of spiral patterns
for the parameter values a = 18.0, b = 1.7, ∇T = 1.0 and the Soret
coefficients are (a) STu = 0.1, STv

= −0.1; (b) STu = −0.1, STv
=

0.1. The domain size is (200 × 200) with spatial grid �x = �y =
0.5. Red refers to high concentration of iodide ions I−. All the other
parameters are kept the same as described in the main text.

remained similar as we find for the smaller domain size or
with larger grid spacing. However, there is a conspicuous
effect of boundary and spatial grids in the case of spiral
wave formation. We find that a larger domain (200 × 200
or 400 × 400) in general helps to hold spiral waves. But at
the same time the effect of the spatial grid is peculiar. We
find that a smaller spatial grid is effective in the generation
of spiral waves but it might lead to broken spiral waves. A
relatively larger grid size helps to sustain unbroken spiral
arms in general. For example, if we numerically simulate
using a large grid size 1.0, and large domain size (400 × 400)
corresponding to Fig. 11(a), we initially observe formation of
a small spiral center surrounded by target waves which later
on converts to a stable spiral wave pattern as demonstrated in
Movie 9 (see Supplemental Material [50]).

IV. CONCLUDING REMARKS

The presence of temperature gradients in a natural environ-
ment is common and its use in chemical systems has come
up quite effectively in the recent past [35,36,38–40,43,44].
In this paper, we show that thermodiffusion, i.e., mass flow
driven by thermal gradients, can be utilized in creation and
modification of spatiotemporal instabilities. As a prototypi-
cal model we consider the Brusselator model and CDIMA
system, which have been extensively studied for pattern for-
mation. Under the influence of thermodiffusion, these two
models show formation of a large variety of spatiotemporal
instabilities. In the case of the Brusselator model, even with
equal diffusivities of the components ionic species but having
unequal Soret coefficients, i.e., differential movement of the

components towards cooler region under thermal gradient,
one can achieve formation of stationary Turing-like patterns.
Using an external thermal gradient one can overcome the
stringent requirement of disparity of diffusion coefficients for
Turing pattern formation. However, for the same case, if any
of the components has negative Soret coefficient spatiotem-
poral dynamics shows evolution of propagating waves. On
the other hand, formation of such stationary patterns requires
the same sign and magnitude of Soret coefficients of the
constituent activator and inhibitor ionic species in a CDIMA
system in the presence of starch in the medium. This is at-
tributed to the movement of the ions in the same direction with
equal speed under thermodiffusion. This supports the fact of
nearly equal Soret coefficients for ionic species. Interestingly,
either the difference in sign or in magnitude lead to the
development of wave instabilities such as propagating spatial
patterns of spot or stripes. Moreover, larger values of thermal
gradients lead to the formation of stripelike heterogeneity.
This stems from the fact of differential thermodiffusion of
the two components, which causes the symmetry breaking
resulting wave instabilities. We also find that thermodiffusion
solely is inadequate to generate Turing instabilities in the
case of a CDIMA system with equal diffusivities and without
starch in the medium. However, we see formation of spiral
waves having drift motion and their disappearance in long
times under a no-flux boundary condition.

Keeping in view of recent developments, experimental
observation of thermodiffusion-induced unpinning of three-
dimensional scroll waves has been reported in the Belousov-
Zhabotinsky reaction-diffusion system [44]. Although the
present study of pattern formation and modulation by thermal
gradient has been carried out on specific models as prototypi-
cal examples, we believe that our results on thermodiffusion-
induced spatiotemporal instabilities are likely to be impor-
tant for other reaction-diffusion systems of activator-inhibitor
type. In summary, application of an external thermal gradient
provides us an opportunity to achieve a large variety of
spatiotemporal instabilities. Our study can be extended to see
how thermal gradients influence the spatiotemporal dynamics
of microorganisms or synthetic active systems and opens up
new possibilities to carry out experiments of pattern formation
beyond Turing space.
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