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Deterministic phase transitions and self-organization in logistic cellular automata
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We present a simple extension in which a single parameter tunes the dynamics of cellular automata (CA) by
consequently expanding their discrete state space into a Cantor set. Such an implementation serves as a potent
platform for further investigation of several emergent phenomena, including deterministic phase transitions,
pattern formation, autocatalysis, and self-organization. We first apply this approach to Conway’s Game of
Life and observe sudden changes in the asymptotic dynamics of the system accompanied by the emergence of
complex propagators. Incorporation of the new state space with system features is used to explain the transitions
and formulate the tuning parameter range where the propagators adaptively survive by investigating their
autocatalytic local interactions. Similar behavior is present when the same recipe is applied to Rule 90, an outer
totalistic elementary one-dimensional cellular automaton. In addition, the latter case shows that deterministic
transitions between classes of CA can be achieved by tuning a single parameter continuously.
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I. INTRODUCTION

Cellular automata (CA), first invented to investigate self-
replication [1], are among the most frequently used tools to
model and understand complex systems [2]. These compu-
tational frameworks are defined in discrete space-time-state
domains, where time evolution occurs through local interac-
tions. Despite the simple properties and the succinct absence
of long-range connections, these implementations have been
proven proper for studying large-scale collective behavior
and self-organizing mechanisms, which often emerge in sev-
eral dynamical systems including fluids [3], social [4] and
urban [5] settings, or pattern formation in geological [6]
and biological [7,8] environments. By presenting a simple
approach with two archetypal models, this work addresses
critical deterministic phase transitions and tunable emanation
of self-organized morphologies in such discrete domains.

One of the most studied CA, Conway’s Game of Life
(GOL), is an outer totalistic model of simple rules, defined
in a two-dimensional square grid of cells and designed with
two states, referred to as dead and alive, respectively. Despite
the simplicity of the governing rules (described below), ac-
tive states in Conway’s GOL exhibit interesting dynamics,
including stable, oscillating, and propagating structures akin
to living systems. Asymptotic density and time evolution in
GOL have been analyzed in detail using earlier theoretical
approaches [9,10]. Generalizations of GOL include determin-
istic systems with variations in the rules [11] or expansion
in the neighborhood [12] and stochastic systems involving
probabilistic evolution [13,14] or asynchronous updating [15].
These generalizations are accompanied by additional tunable
parameters, and they lead to the conclusion that GOL is a
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subcritical system dominated by quiescent states, but the same
framework is still associated with critical transitions in its
dynamics. The same conclusion is reached when GOL is
compared to the so called set of Life-Like CA [16]. Scale-free
properties of GOL have also been investigated in the context
of self-organized criticality where the system is subject to
slight external perturbations [17].

Subcriticality in GOL can be attributed to its limited state
space, which results in a fast pace of decay and growth. Over-
coming this subcriticality without sacrificing the deterministic
nature of GOL not only redirects the system toward richer
dynamics, but it also enables the exploration of additional
phenomena that this framework may exhibit, including deter-
ministic phase transitions and emergence in terms of pattern
formation and self-organization.

In this paper, following the spirit of the well-known Logis-
tic Map [18], which itself is a simple one-dimensional model
of chaotic phase transitions, we introduce a single parameter
that tunes the pace of decay and growth by consequently
expanding the binary state space of CA into a Cantor set. As a
result, we report a series of deterministic phase transitions that
eventually lead to self-organized pattern formation. Initially,
we observe a critical transition in density defining two main
regimes: from sparse inactive to dense active asymptotic
states. This is followed by other sharp transitions in density
within the active asymptotic regime. Furthermore, we observe
the tunable emanation and existence in a continuous range of
a ballistic propagator that serves as a prototype showing how
finite sets of local interactions get coupled to act as attractors
in CA. Finally, we apply our framework to Rule 90, which
is a one-dimensional elementary CA. This system not only
shows a phenomenological behavior similar to the Logistic
GOL, but it also enables parameter-tuned class transitions that
can be used to investigate Langton’s “computation at the edge
of chaos” in detail [19].
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FIG. 1. (a) Conway’s Game of Life (GOL) is defined in a square
grid where the operation on each state s is determined by the
sum m of the eight states in its Moore neighborhood. The table
shows the conditions and difference equations for the three operation
regimes: decay, stability, and growth. In the case of Logistic GOL,
the difference equations are rescaled by the parameter λ. Operation
regions are discrete in Conway’s GOL while in Logistic GOL
they are continuous domains separated by parameters t1, t2, and t3.
(b) Schematic representation of Cantor set formation starting with
uniform distribution between 0 and 1. The nth-order Cantor set
can be constructed by copying the (n − 1)th order and adding or
subtracting (1 − λ)n. DG0 represents the element constructed by
applying growth operation to 0 followed by decay operation.

The paper is organized as follows. In Sec. II, we introduce
the Logistic extension of Conway’s GOL. In Sec. III, by
analyzing the asymptotic dynamics, we discuss a series of
deterministic transitions occurring as the parameter is tuned.
Section IV is devoted to developing a quantifiable formulation
of the concept of autocatalytic interactions, and in Sec. V
we discuss the emergence of a new propagator that is not
present in Conway’s GOL. In Sec. VI, we apply the same
methodology to a one-dimensional system and observe class
transitions. Finally, Sec. VII contains discussions of possible
future directions.

II. THE MODEL

In Conway’s GOL, each site, s, goes through a parallel
updating scheme:

s(r, t + 1) = s(r, t ) + �s.

The change in a state, �s, is a function of s(r, t ) itself and
m(r, t ), which accounts for the sum of states in the site’s
Moore neighborhood, as shown in Fig. 1(a). In this automaton,
�s can be defined by the rate equations that comply with
three regimes: decay, stability, and growth, thereby offering

a clear picture of the nonequilibrium conditions present in the
system [see the table in Fig. 1(a)]. If m < 2 or m > 3, then
�s = −s, which in a two-state system indicates asymptotic
decay. m = 2 corresponds to stability, hence �s = 0. Finally,
if m = 3, then �s = 1 − s, indicating asymptotic growth.

We extend GOL by introducing a single tuning parameter
λ that rescales the updating rate, with λ = 1 corresponding to
the original system. Actually these update equations are the
same as the first-order finite-difference forms of exponential
decay and asymptotic growth equations, respectively [see the
table in Fig. 1(a)]. In the new system, sites are still subject to
three possible rules, but with several consequences in the state
space. We denote the updating rules as decay (D), stability (S),
and growth (G) operations:

Ds ⇒ (1 − λ)s, Ss ⇒ s, Gs ⇒ (1 − λ)s + λ.

For the range 0 < λ < 1, the state space is eventually trans-
formed into a Cantor set within the range [0,1]. The formation
of this λ-dependent Cantor set is schematically shown in
Fig. 1(b). If one starts with a continuous set between 0 and
1, the decay and the growth operations will map these values
to shrunken intervals in the limits [0,1 − λ] and [λ,1], respec-
tively. Here both decay and growth operations map the states
and increase the distribution density only within these smaller
regions, while the stability operation has no such effect. After
the first iteration, the range [1 − λ, λ] is still populated by
values remaining the same due to the stability operation.
However, they keep fading with subsequent iterations (sites
that experience only stability in randomly initialized runs are
statistically very rare), and hence they are not shown. The
boundary values {0, 1 − λ, λ, 1} formed after the first iteration
are referred to as first-order elements of the Cantor set. Upon
the second iteration, these boundaries are preserved while
new boundaries are formed by the addition or subtraction
of (1 − λ)2, leading to {(1 − λ)2, 1 − λ − (1 − λ)2, λ + (1 −
λ)2, 1 − (1 − λ)2}. Preserved and new boundaries together
make up the second-order elements of the Cantor set. After
n iterations, one reaches at the nth-order Cantor set elements
2n+1 unique values that are spaced in a self-similar fashion
in the range [0,1]. Every element of the nth-order Cantor
set can be written as a sum c0 + c1(1 − λ)1 + · · · + cn−1(1 −
λ)n−1 + cn(1 − λ)n with proper coefficients that take values
−1, 0, or 1. Our preferred way of representing elements of
the Cantor set is to write them as a series of decay and/or
growth operated on 0 or 1. As seen in Fig. 1(b), the order of
polynomials representing a state is equal to the total number
of decay and growth operations involved.

With the new state space we need to consider its effects
on the neighborhood space m, which in turn dictates the
rules. Now m spans the range [0,8] populated by eight-fold
convolution of the Cantor set. To account for this, we fairly
assign two unity intervals centered at 2 and 3 as stability and
growth regimes, respectively, with the rest corresponding to
decay. The limits of these intervals are represented by t1 =
1.5, t2 = 2.5, and t3 = 3.5, as shown in Fig. 1(a). The new
automaton is named Logistic GOL and it is still synchronous,
outer totalistic, and discrete in space and time, but now with
an extended state space, so in terms of classification it can also
be regarded as a coupled map lattice [20,21].
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FIG. 2. Top panels: the logarithmic distribution of states after 1,
2, 3, and 1000 iterations. Two-dimensional histograms of states are
constructed for values of λ in the range (0,1]. The colors represent
the logarithm of the number of occurrences plus unity, to avoid zeros
(see the text). Dashed lines correspond to Cantor set elements formed
after the corresponding iteration. Bottom panels: the density of states
after 1, 2, 3, and 1000 iterations for λ = 0.8.

To further clarify how the Cantor set emerges in Logistic
GOL, we perform numerical simulations in a 1000 × 1000
square lattice with periodic boundary conditions. Initially the
states in each cell are picked up randomly from a uniform
distribution in the range [0,1]. We start 3000 unique runs with
different λ linearly spanning the range (0,1]. After a certain
number of iterations, we take a histogram that counts the
number of occurrences of values that falls into one of the 1000
bins that uniformly parses the state space between 0 and 1.
The same is repeated 28 times with different initial conditions,
and the histograms are summed over the repetitions. Finally,
we take the logarithm of the number of occurrences after
increasing each by 1 to avoid zeros. The resulting values
depending on λ and s are represented with a color code that
spans from 0 to an arbitrary maximum in a two-dimensional
plot. The top panels of Fig. 2 show this analysis for steps 1, 2,
3, and 1000. One can clearly see the emergence of the first-,
second-, and third-order Cantor set manifested as λ-dependent
boundaries highlighted with dashed lines. After 1000 itera-
tions, these boundaries remain while the regions in between
fade away as described above. The bottom panels of Fig. 2
present the density of states for λ = 0.8. Here the lack of
the logarithmic scale further establishes the contrast between
high- and low-density regions separated by the Cantor set.

III. PHASE TRANSITIONS IN LOGISTIC GOL

We now investigate Logistic GOL starting with λ = 1 and
tuning it down to see changes in the behavior of the system as

it departs from Conway’s GOL. In accordance with previous
studies on GOL, we choose the asymptotic density, ρ, as our
order parameter. To calculate ρ, we start with a 1000 × 1000
square lattice with periodic boundary conditions. Initially the
states are picked up randomly from a uniform distribution
in the range [0,1] (initial density ρ0 = 0.5). The system is
first run for 106 time steps for activity to settle and reach
the thermodynamic limit. Then the system is run for another
106 time steps for averaging the states over time and space.
The same procedure is repeated 28 times for each value of λ

starting with different initial conditions, and the λ-dependent
ρ is found by taking the average of these runs.

The λ-dependent ρ is shown in Fig. 3(a). Although Con-
way’s GOL is well known for its long transients, its subcritical
nature eventually leads it to a state dominated by the quiescent
phase and sparsely distributed stable or periodic structures
called still life and oscillators, respectively. We call this state
the inactive asymptotic state. In the range 0.875 < λ � 1,
Logistic GOL eventually reaches such an inactive asymptotic
state. ρ remains almost constant in this range, as shown in
Fig. 3(a). Indeed, the only curious event that we encountered
in this range was the fact that Gosper’s Glider gun stops
working at λ ∼ 0.896.

At λ = λC = 0.875 there is a critical transition in the
system’s behavior accompanied by a change in the average
density. From this point on, the density starts increasing and
the dynamics of the system keep showing qualitative and
quantitative changes with respect to Conway’s GOL, as seen
in Fig. 3(a) and its insets. As λ is decreased down to ∼0.8,
the dominance of the quiescent phase fades while the activity
percolates. This leads to the emergence of chaotic regions
consisting of rapidly changing disordered states, which we
refer to as the flickering phase. After this point, the ac-
tivity starts decreasing while the average density plateaus
to a much higher value, ρ ≈ 0.44. This value can in turn
be justified by using an adapted single-site mean-field ap-
proximation [9,10,16] over an initial density ρt of uniform
distribution:

ρt+1 = ρt + λ

{
ρt

[∫ t2

t1

P(x)dx − 1

]
+

∫ t3

t2

P(x)dx

}
,

where ρt+1 is the updated density, and P(x) is the neigh-
borhood distribution obtained by the eightfold convolution
of ρt distribution. [t1, t2) and [t2, t3] are the neighborhood
sum intervals defining the operation regimes of stability and
growth, respectively. This equation has two λ independent
fixed points, the stable one being at ρt+1 = ρt ≈ 0.45.

Tuning λ down further gives rise to domainlike structures
of stable horizontal and vertical stripe patterns that interact
with networks of flickering states at their boundaries. Similar
stripe patterns were observed in the asynchronously updated
version of GOL [15]. The flickering states can also propagate
over the stripe patterns while changing them, allowing the
system to comprise both ordered (stripes) and chaotic (flick-
ers) phases in it simultaneously. It is important to notice that
stripe patterns are actually a new dynamically stable configu-
ration of the system. Dense sites self-organize in orthogonal
orientations, and each of them neighbors only two other
dense sites by remaining in the stability regime (t1 < m < t2),
whereas the surrounding empty sites that actually make up
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FIG. 3. (a) The asymptotic density, ρ, in the Logistic GOL with
respect to the tuning parameter λ. Insets show snapshots of randomly
chosen regions from the asymptotic state for different values of λ.
The blue dots correspond to numerical results while the red dashed
lines are a guide for the eye. (b) Log-log plot of the average diffusive
activity (see the text) vs time for λ slightly above (magenta) and
below (blue) the threshold. (c) Top panel: two magnified regions
of the plot in part (a). Bottom panel: the number of times the
neighborhood sum m is equal to either t1, t2, or t3 with respect to
λ. (d) Log-log plot of the transition at λA and λB present in (c). The
red vertical lines delineate microtransitions (see the text).

the remaining space keep decaying as their neighborhood
mostly consists of six dense sites. In this way, the sites get
correlated and help maintain larger-scale stable domains of
such patterns.

The Cantor set that defines the state space becomes simply
connected at λ = 0.5, which is accompanied by a sudden
change in the average density. As λ approaches ∼0.18, the
flickers become isolated and the system makes a transition
to an asymptotic state that has very low activity. In fact,
the density of this asymptotic state depends on the initial
conditions. Starting with a uniform distribution results in a
linear dependence of ρ on λ.

To further clarify the transition at λC , we calculate the time-
dependent diffusive activity of the system for λ = λC + 10−10

and λ = λC − 10−10. Here the activity at time step t is calcu-
lated by first taking the difference of states at each cell by their
corresponding values 60 time steps before and then finding
the average of the absolute values of these differences. In this
way, we probe only the activity that can propagate throughout
the lattice, and we also obtain zero average activity when the
system reaches the inactive asymptotic state (with oscillators
having periods that are divisors of 60). All of the 28 runs reach
an inactive asymptotic state at approximately 105 steps when
λ = λC + 10−10 while all of the 28 runs remain active after
106 steps when λ = λC − 10−10. Logarithmic plots of average
diffusive activities are presented in Fig. 3(b). At transient
times one can observe the power-law behavior of diffusive
activity. Then the slope of the line decreases and activity
drops to zero for λ+

C . However, it stabilizes to a finite value
for λ−

C . This clearly shows that λC marks the point of sudden
departure from the subcritical nature of Conway’s GOL to an
active asymptotic behavior.

In Fig. 3(c) we present a close inspection around λC =
0.875, which reveals that there are many other transitions
that are present in λ < λC . To understand the source of the
transition at λC = 0.875 and the subsequent transitions, we
must focus on conditions that change the operation regimes of
the system. As the tuning parameter alters the rate of change
in states, the neighborhood sums m made up of these states
are also tuned. Changes in operation regions occur when m
sums cross any of the limits t1, t2, or t3. For example, if
m is slightly less than t3, then the corresponding state will
grow; however, if, upon tuning λ, the same sum becomes a
value slightly larger than t3, the site will decay. Hence, m =
t3 will correspond to a transition between two significantly
different pathways in the system. The more these “equalities”
occur, the greater will be the impact on the global dynamics.
To numerically investigate the values of λ where significant
changes are expected, we start from a 1000 × 1000 uniform
initial state and run the system for 1000 steps. Then we run
the system for another 1000 steps while recording the number
of occurrences where m is equal to t1, t2, or t3 up to a precision
10−6 that is also the increment with which λ is tuned. The
number of occurrences versus λ is plotted at the bottom panels
of Fig. 3(c). As we expected, there is indeed a sharp peak at
λ = λC in the number of occurrences of m = t3. Also the other
transitions are accompanied by relevant peaks.

Now we need to explain why m = t3 has a peak at λ = λC .
We start by restating that at these values of λ, the system
is dominated by the quiescent phase (regions of zeros) with
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sparse activity. States having values λ keep forming as a
result of a single growth operation on zeros at the bound-
aries where active sites meet the quiescent phase. Indeed,
states involving fewer operations are formed more frequently
than those needing more operations. In other words, states
having a lower polynomial degree on λ are more frequent
than others. Hence the transition at λC = 0.875 can be ex-
plained by 4λC = t3, which corresponds to a quite frequent
neighborhood populated by four λ states and four zeros.
As λ is tuned down, the operation of this sum changes
from decay to growth, and any cell with such a neighbor-
hood starts growing instead of decaying, thereby altering the
dynamics.

Another substantial change occurs at λA = 5/6 when m =
3λA = t2 (a neighborhood of three λ states and five zeros),
as seen in Fig. 3(c). Here one of the frequently occurring
sums changes its region from growth to stability and leads
to a sudden decrease in density as λ is decreased. This
transition is different from the one at λC as the system has
active asymptotic states both before and after. Another related
transition is present at λB ∼ 0.842, which can be under-
stood by employing the second-order values of the Cantor
set, namely {(1 − λ)2, λ(1 − λ), λ + (1 − λ)2, 1 − (1 − λ)2}.
Then the corresponding equation is 3λB + 1 − (1 − λB)2 =
t3. This transition in turn can be related to yet another
transition at λ ∼ 0.834 in which the third-order values are
employed in the equation 3λ + 1 − (1 − λ)3 = t3. The mag-
nitude of change in the density decreases as the sums m
involve more and/or higher-order terms and hence occur
less frequently. Taking this idea further, one can claim that
every transition point is accompanied by infinitely many
nearby transition points involving ever less frequently oc-
curring higher-order terms of the Cantor set. This claim is
supported by the log-log plots of changes in the density versus
changes in λ near the critical points λA and λB presented
in Fig. 3(d). Here, adding the smallest nonzero element of
the nth-order Cantor set, (1 − λ)n, to the original equations
results in new equations corresponding to accompanying mi-
crotransitions shown by red vertical lines. Each deterministic
transition follows a linear trend in the logarithmic scale,
which is similar to the power-law behavior of critical transi-
tions in stochastic systems, while the presence of cascadelike
microtransitions yields a qualitatively different self-similar
nature.

IV. AUTOCATALYTIC INTERACTIONS

To understand how self-organized structures arise in the
Logistic GOL, we formulate the tuning parameter range where
propagators adaptively survive by investigating their local
interactions. Propagators are actually the best indicators of
self-organization in CA [22,23]. We first consider the Glider,
an emergent propagator transmitting activity in the long range
and also the key component in computational properties of
Conway’s GOL [9,24]. Glider is translated one diagonal cell
every four steps.

In our model, it preserves its direction, speed, and pe-
riodicity in a continuous range of λ. As seen in Fig. 3(a),
for λ = 0.8 Glider has a similar structure, yet with different
numerical values due to the altered updating rate. Note that
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FIG. 4. (a) Five stages of evolution of the Glider in the Logistic
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shown by the arrow.

behind any stable, oscillating, or propagating structure, there
is a pertaining finite set of local interactions involved. We
quantify these interactions by investigating the corresponding
neighborhood sums m under the operations employed by the
rules. Considering the polynomial representation of states
(operator notation introduced in Sec. II) is essential for this
study because it allows us to extract quantitative information
from the emerging propagators.

To find the parameter range in which the Glider can be
preserved, we record the operations on each cell for every
time step as this structure propagates in a field of quiescent
states. This analysis is presented in Fig. 4(a) with stability
operations omitted. Each decay or growth operation increases
the polynomial order of the state by one degree. The m for
each site can thus be expressed in terms of λ-dependent
polynomials. Once Glider leaves a certain region, the
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visited sites will keep decaying indefinitely due to exposure
(underpopulation) and the neighborhood sums of these cells
trivially fall in the decay region (m ≈ 0). Active cells, which
lead the propagation mechanism, make up a finite set of
recurring nontrivial operations corresponding to this structure,
equivalent to attractors in dynamical systems [25]. Due to
their self-generating character, we refer to these operations
as autocatalytic interaction sets. As λ is tuned, if these outer-
totalistic sums remain within their corresponding regions of
operation, it means that the supposed operations will keep
recurring, hence the Glider can still propagate under such
growth and decay rates. Its structure will be altered when the
first sum changes its operation region.

As seen in Fig. 4(b), the first sum that changes the dy-
namics and breaks this emergent behavior occurs at λG ∼
0.783, where a polynomial of 11th order in λ crosses t1 from
decay to stability. The order of this polynomial is dictated
by DDDDGDDDGGG0, which is the highest-order state
in Moore’s neighborhood of the cell changing its operation
regime. Notice that the presence of symmetries in this frame-
work reduces the number of unique interactions significantly.
These symmetries are highlighted by the red and blue contours
in Fig. 4(a).

V. RAYFISH: AN EMERGENT PROPAGATOR

By tuning the parameter, we further notice the step-by-step
imminent self-organization of a propagator that is only par-
tially present in Conway’s GOL. This period-36 orthogonal
propagator, named Rayfish after its shape and dynamics [see
Fig. 5(a)], appears in a short yet continuous range λA < λ <

λR. Here, λA < λ supports the main propagation mechanism
of the Rayfish, where a column of three λ states gives birth
to another λ next to them. On the other limit, λR ∼ 0.841
is the solution to another 11th-order polynomial equation in
λ, calculated using the method presented in Sec. IV. A total
of 22 of the 36 links in the Rayfish loop are also present in
Conway’s GOL, including the six consecutive steps (from 11
to 17) that connect the largest stages. These stages are easily
noticed in active regions of Conway’s GOL. On the other
hand, stages from 24 to 29 are very simple structures that
are easily reached, making Rayfish a very frequent attractor
that contributes to the large increase in density at λA as λ is
increased.

In Fig. 5(b), using the recorded neighborhood sums of
Rayfish (similarly as with the Glider), the supported stages
are shown as λ is varied. The structure is set only once to
propagate in a field of empty states, and, by recording the
operations, we can extrapolate information about every stage
of Rayfish in the whole parameter range. Having obtained the
results, from a reverse perspective one can see how tuning
λ down gets the neighborhood sums coupled step by step
until they reach the autocatalytic regime, where all the stages
are supported and there is no interaction that breaks the
loop. Outside the range λA < λ < λR, stages start breaking
down, making this attractor not reachable anymore, while the
number of neighborhood sums changing operation regions in-
creases and further deteriorates the loop. Thus, it is important
to emphasize not only the robustness and inevitability of this
propagator inside its operating range, but also the vulnera-
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FIG. 5. (a) Formation of the period-36 propagator named Rayfish
from simple initial conditions. The red arrows indicate the steps
present also in Conway’s GOL. 1* and 1 denote the same but
translated states. (b) Red lines represent the number of Rayfish stages
that are dynamically reachable vs λ. The stages supported by the
neighborhood sums form an autocatalytic loop only in the shaded
interval. Outside this interval, the neighborhood sums change their
operation regions, as shown by the brown lines.

bility and its incomplete unveiling outside that range. Being
quite abundant while possessing sheer complexity are two
properties of this emergent system that, instead of remaining
mutually exclusive, counterintuitively start supporting each
other.

The development process itself and properties of Rayfish
make it a suitable abstract model for investigating the origins
of life scenarios based on self-organizing autocatalytic reac-
tion sets [26]. In the context of CA, Rayfish is an epitomic
example of how local sites get coupled in a consequent series
of interactions that generate a self-sustained loop. There is
a spatiotemporal synchronization of values and operations,
which effectively exploits the different symmetries of the
framework, thereby introducing consonance in a higher hier-
archy even though only local interactions are involved [27].

VI. THE LOGISTIC RULE 90

Our framework can be embodied in other outer-totalistic
CA as well. In particular, we study Rule 90, a one-dimensional
elementary CA in which the next value of a cell is determined
by the sum of its two nearest neighbors [28]. The actions
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FIG. 6. (a) Time evolution of Logistic Rule 90 accompanied by
a decrease in λ. (b) Thin black lines represent all unique sums that
can be constructed by adding to elements from the second-order
Cantor set. The cyan lines represent the 2s1 and 2s2 sums of period-2
stripes (see the text). The magenta lines represent the 2s1, 2s2, and
2s3 sums of period-3 stripes. Arrows show the important changes in
dynamics to crossings of sums between decay and growth operations.
(c) Transformation that maps period-3 stripes into fields of zeros for
better visualization. (d) Four snapshots of larger implementation of
the same system whereby in 10 000 steps λ is increased from 0.575
to 0.625, starting with 2500 cells having random initial values and
periodic boundary conditions.

correspond to decay and growth if the modulo 2 of the
sums are 0 and 1, respectively. Introducing λ transforms the
neighborhood sum into a continuous set in the range [0, 2]
populated by twofold convolution of the λ-dependent Cantor
set. We assign the growth interval to the range [0.5, 1.5]
sandwiched between two decay regions. In Fig. 6(a), we
show how the dynamics of the logistic version of Rule 90
changes when λ is decreased as the system starts from a single
nonquiescent cell. Even though λ is tuned while the system is
run, initially the system evolves in the same fashion with the
original Rule 90 producing the fractal object called Sierpinski
triangle.

At λ = 0.75, the dynamics of the system changes sub-
stantially for the first time. To understand this change, we

plot all unique sums produced by adding two elements from
the second-order Cantor set assuming that these are the most
frequently occurring ones. Any of the sums changing oper-
ation region as λ is varied could induce different dynamics
in the system. As seen in Fig. 6(b), at λ = 0.75 two of the
sums cross t1 and t2 lines, both going from decay to growth.
The crossing sums correspond to formulas 2(1 − λ) = t1 and
2λ = t2. In fact, all crossings come in symmetric pairs because
of the symmetry in both the Cantor set and the rules of
this particular system. The next crossing occurs when the
sum of the elements (1 − λ) and (1 − λ) − (1 − λ)2 is equal
to t1, which corresponds to λ = 1/

√
2. This point is also

accompanied by a substantial change in dynamics. The arrows
extended from the transition points [see Figs. 6(a) and 6(b)]
also coincide with different regimes of textures emerging in
the system.

The next significant change in dynamics, however, occurs
for a different reason. To understand this, we need to consider
the possibility of having oscillating states. The simplest case
would be having states with a value s1, dominating a region
of space, altogether changing their values to s2 and then
returning back to s1 and repeating this oscillatory behavior.
Assuming that s2 > s1, these kinds of period-2 stripes (in
time domain) are supported if Gs1 = s2 and Ds2 = s1. Solving
these equations simultaneously, one gets s1 = (1 − λ)/(2 −
λ) and s2 = 1/(1 − λ). However, to be in the correct operation
regime, we also need to have 2s1 > t1 and 2s2 > t2. The
sums 2s1 and 2s2 are plotted with cyan lines in Fig. 6(b).
One can see that 2s1 > t1 holds for λ < 2/3 while 2s2 > t2
holds for λ > 2/3. This makes λ = 2/3 a very special point
where period-2 stripes are supported. Indeed, running the
system with λ = 2/3 (not shown here) results in complicated
dynamics dominated by period-2 stripes. The same arguments
apply for a checkerboard pattern but this time with 2s1 < t1
and 2s2 < t2. One can spot both the checkerboard pattern and
period-2 stripes in the vicinity of λ = 2/3 but they quickly
fade because they lack autocatalytic sets as described above.
The cyan lines in Fig. 6(b) representing the sums that support
these patterns result in decay for λ < 2/3 and growth for
λ > 2/3. Hence, the average density increases as one passes
over 2/3 while decreasing λ.

Decreasing λ further, we hit a point where period-
3 stripes [29] emerge and start dominating the system.
One way of getting a period-3 stripe is to have Gs1 =
s2, Gs2 = s3, and Ds3 = s1. Solving these equations si-
multaneously, one gets s1 = (1 − λ)(2 − λ)/(λ2 − 3λ + 3),
s2 = [(2 − λ)/(λ2 − 3λ + 3) − λ]/(1 − λ), and s3 = (2 −
λ)/(λ2 − 3λ + 3). Being in the correct operation regime re-
quires conditions 2s1 > t1, 2s2 < t2, and 2s3 > t2. The sums
2s1, 2s2, and 2s3 are plotted with magenta lines in Fig. 6(b).
All conditions are satisfied starting with the point where
2s2 = t2, which corresponds to the equation λ3 − 2λ + 1 =
0, which has a root at λ = (

√
5 − 1)/2 (the golden ratio).

As seen in Fig. 6(b), from this point on period-3 stripes
indeed appear and start dominating the system as λ is tuned
down. Note that the values s1, s2, and s3 are not members of
any low-order Cantor set. In fact, their autocatalytic nature
forces the system to approach these values using higher orders
of the Cantor set. In other words, very high-order elements of
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the Cantor set that are normally extremely rare get boosted
to the point where they start to prevail over the system
dynamics. This is another excellent example of emergent
behavior.

At λ ∼ 0.6, the period-3 stripes reach their peak size while
localizing chaotic regions up to a point where the latter
become propagators interacting with each other in a complex
fashion. These propagators become more apparent after a
transformation introduced in Fig. 6(c). Here we make use
of the fact that s1 + s2 + s3 = 2. Then instead of plotting st ,
which corresponds to the state at time step t , we plot |st−1 +
st + st+1 − 2|, in which case stripes appear as homogeneous
fields of zeros. To reveal the rich dynamics around λ ∼ 0.6,
we start with 2500 cells having uniform distribution between
[0,1]. Then in 10 000 steps we increase λ from 0.575 to 0.625.
In Fig. 6(d) we present four small snapshots of this system.
One can see that around λ ∼ 0.587, period-3 stripes (blue
regions) have no dominance. This is because the gap between
the values s1, s2, s3 and the Cantor set elements that are
closest to them is too wide to be bridged with autocatalysis.
As λ is increased, period-3 stripes smoothly grow in size
while propagators start appearing. Hence, in the context of
canonical classification of CA [2], we observe a transition
from “chaotic” Class 3 phase to complex “lifelike” Class
4 phase. This kind of transition was investigated earlier in
the context of “computation at the edge of chaos” [19]. The
advantage of our system is that we achieve the same transition
while tuning a single parameter continuously.

The range 0.595 < λ < 0.605 is dominated with a period-
18 propagator that moves in the field of period-3 stripes. The
autocatalytic interactions of this propagator are more com-
plicated compared to those of Rayfish, which propagates in
the field of zeros. λ ∼ 0.605 marks an unprecedented case in
which the autocatalytic interaction set of period-18 propagator
is broken while a different set supporting a new period-48
propagator is formed. This resonates with the idea of punc-
tuated equilibrium where an organism acquires a substantial
change in a short period of time to adapt to a new fitness
landscape [30,31]. The period-48 propagator dominates the
system dynamics until we reach λ = (

√
5 − 1)/2 where they

disappear since the system stops supporting period-3 stripes
that act as their habitat.

VII. DISCUSSION

In this study, aiming to reemphasize the importance of
CA as proper tools for complex systems, we report a simple
implementation of a decay and growth rate tuning parameter
that can be extended to any dimensional two-state outer
totalistic model. Applying this parameter to Conway’s GOL
brings up a transformation of the state space into a Cantor set,
and a series of deterministic transitions with the emergence
of self-organized patterns. Furthermore, we discuss how the
same system can serve as a playground for the emergence
of propagating spatiotemporal correlations under the influ-
ence of a single parameter. We also show that the same
idea can induce similar behavior even in a one-dimensional
system such as Rule 90. Next to the Logistic GOL, just by
changing the stability and/or growth intervals (t1, t2, t3) one
can generate all the possible birth/survival rules of other
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FIG. 7. Snapshots showing simple self-replicating structure (top)
at λ = 1.3, propagating ships at λ = 1.5 (middle), and another struc-
ture that instantaneously self-replicates and propagates throughout
the lattice at λ = 1.6 (bottom).

lifelike CA, and exploit the approaches followed in this
work, to explore novel examples of this discrete complex
realm.

A further examination would lead to a plethora of patterns,
propagators, and other self-organizing entities that appear
under different rules (examples can be found in Ref. [32]),
and all these can serve as phenomenological assets to provide
helpful insights into different physical phenomena [33]. In-
terestingly, the Logistic GOL presents additional phenomena
when operating with faster dynamics, namely in the λ > 1
regime. Complex features emerge in the range 1.25 < λ < 1.6
(see Fig. 7), where along with a burst of many different
propagators, different self-replicating topologies appear. Each
of these examples is still relying on finite recurring sets of
interactions, but they exploit the symmetries of the framework
in different levels.

Our results will shed light on parameter tuned class
transitions and phase transitions in deterministic CA, ques-
tions addressed earlier [34] but never with a parameter that
can be varied continuously. On the other hand, it is also
plausible to consider this work as an extension of totalistic
CA to coupled map lattices. The transition in Logistic GOL
is qualitatively similar to chaotic transitions in coupled map
lattices exhibiting spatiotemporal chaos [35]. Furthermore,
the analysis of propagators as emergent phenomena, and their
development, adaptation, or transformation over continuous
ranges of parameters, is another focal point that contributes
to an understanding of autocatalytic loops in real chemical
or biological systems and how they are affected by possible
changes in exterior conditions.
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