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Unidirectional flow of solitons with nonlinearity management
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Unidirectional flow of solitons is obtained with a localized modulation of the nonlinearity strength. The
modulation takes the shape of an asymmetric double well with a slight difference between the potential depths.
The results were established using numerical computations and then verified qualitatively using a variational
approach. Our results suggest that the most important physics at the origin of the unidirectional flow is the
excitation of the breathing modes in the scattering region. Simplified variational equations of motion suggested
that the phenomenon can be observed if the soliton is scattered by a generic asymmetric effective double potential
well.
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I. INTRODUCTION

The fascinating particlelike behavior of solitons stimulated
interest at both the fundamental and technological levels. For
instance, the interaction between solitons and their scattering
centers was a prominent subject in soliton theory for the past
few decades. Another example is the appealing features that
solitons provide for optical data transfer and processing [1].

Unidirectional flow has been sought in many fields of
applied physics including thermal, electromagnetic, acous-
tic waves [2–10], systems with PT -symmetric potentials
[11–14], and metamaterials [15,16]. Using solitons in the
all-optical data processing suggests that unidirectional flow of
solitons is an essential element that needs to be established.
Different schemes have been proposed for the discrete nonlin-
ear Schrödinger equation (NLSE) with asymmetric nonlinear-
ity [17] in waveguide arrays, double potential well for spatial
solitons in the continuum [18], dispersion-managed waveg-
uide arrays [19], and waveguide arrays with PT -symmetric
potentials [14].

High efficiency performance was obtained in Ref. [18]
with a double potential well with slightly different depths. It
was pointed out in this reference that unidirectional flow of
solitons occurs as a result of the combined effects of quantum
reflection and exchange of energy between the center-of-mass
and internal breathing modes. At the scattering point the
breathing mode is excited with energy extracted from the
center-of-mass kinetic energy. This reduces the group velocity
slightly shifting it below the critical velocity for quantum
reflection and hence the soliton reflects rather than transmits.
Due to the asymmetry of the two potential wells, the soliton
incoming from the other direction will not experience the
same amount of group velocity reduction and thus will trans-
mit. In this manner, only one direction of flow will be allowed
for such a setup. In Ref. [19], a different scheme was followed
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where the dispersion strength was modulated in the form of
a double well function. Similar behavior was obtained as in
the case of a double potential well. In the present paper, we
address the third possibility, that is to modulate the strength
of the nonlinearity.

It was established that the fundamental NLSE is inte-
grable. Using a similarity transformation, or equivalently
other methods, such as the existence of Lax Pair or Painlevé
methods, the NLSE with varying coefficients was proven
to be integrable only under certain integrability conditions
that relate the different coefficients of the partial differential
equation (PDE) to each other [20]. Hence, the strengths of
the nonlinearity, dispersion, and potential terms in the NLSE
were related to each other. The Riccati equation is an example
of such a restriction [21]. Since unidirectional flow has been
proven to occur with an asymmetric double well potential or a
modulated dispersion, it would be natural to consider the third
possibility of the integrability condition, namely the strength
of the nonlinearity. In Ref. [17], this has been considered
for a discrete system with two waveguides having different
values. Here, we consider this problem for the continuum and
show that indeed a highly efficient unidirectional flow can be
obtained with nonlinearity modulation. From an application
point of view, this scheme should be the most feasible as
compared to the previous two since the nonlinearity of the
medium can be modulated in an easier manner than for
instance introducing a double potential well.

The model used here is the NLSE with position-dependent
strength of the nonlinearity. The equation will be first solved
numerically to show that asymmetric flow indeed exists. Then
we develop a simplified variational approach that generates
the effective equations of motion for the center-of-mass and
breathing modes. The physics of the unidirectional flow will
be exposed most clearly by considering the time dependence
of the width of the soliton and its effect on the outcome of
the scattering. Further insight will be attained by deriving an
equation of motion for the center-of-mass motion which leads
to the effective potential experienced by the soliton. It will

2470-0045/2019/100(4)/042213(8) 042213-1 ©2019 American Physical Society

https://orcid.org/0000-0002-9615-034X
https://orcid.org/0000-0002-9309-7969
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.042213&domain=pdf&date_stamp=2019-10-18
https://doi.org/10.1103/PhysRevE.100.042213


M. O. D. ALOTAIBI et al. PHYSICAL REVIEW E 100, 042213 (2019)

FIG. 1. Nonlinear coefficient as given by Eq. (2). Switching δ

from 1 to −1 rotates the potential around the y axis. Here the
parameters are g0 = 1, a1 = 0.2, a2 = 0.25, α = 1.25, and δ = 1.

be shown that the profile of this effective potential indeed
changes depending on the direction from which the soliton
approaches the potential.

In the next section, we present the theoretical model.
Numerical results are presented in Sec. III. The variational
calculation and its results are presented in Sec. IV. In Sec. V
we discuss our results and conclude.

II. THEORETICAL MODEL

In the absence of an external potential, the dynamics of
a bright soliton is described by the following dimensionless
nonlinear Schrödinger equation:

i
∂

∂t
ψ = −1

2

∂2

∂x2
ψ + g(x)|ψ |2ψ. (1)

Here, ψ ≡ ψ (x, t ) is the wave function and g(x) is the asym-
metric potential-like nonlinear coefficient defined by

g(x) = g0 − a1 �(α − |x − δ|) − a2 �(α − |x + δ|), (2)

where �(x) is the Heaviside function and the positive num-
bers a1,2, δ, α define the depth, position, and width of the
multiwell potential, depending on the choice of parameters.
We have also considered other types of potential profiles
such as the reflectionless sech-type asymmetric double well
potential

g(x) = g0 − a1 sech2
( x

α

)
− a2 sech2

( x

α

)
. (3)

While Eq. (2) will be used for the variational calculation
and numerical simulations throughout this paper, Eq. (3) is
used in the numerical solution to verify the existence of the
unidirectional flow for different shapes of potential. The main
advantage of the above engineered square well potential stems
from its ease in handling the necessary space integrations
required to obtain the effective Lagrangian. In Fig. 1, we plot
g(x) for a1 = 0.2, a2 = 0.25, α = 1.25, g0 = 1, and δ = 1.
Note that when we change δ from 1 to −1 we rotate the
potential around x = 0. Therefore, an equivalent procedure to
change the launching direction of soliton from right to left of
the potential is to fix the launching point on one side of the
potential and study the scattering by changing the sign of δ

from δ = 1 to −1.

FIG. 2. Spatiotemporal plot for a soliton scattered by the region
of modulated nonlinearity strength. (a) δ = 1 corresponding to a
soliton incident from the right. (b) δ = −1 equivalent to a soliton
incident from the left. Solid blue line is the trajectory obtained
using the variational calculation. Parameters are x0(0) = 15 and v =
−0.25.

As an initial soliton profile, we use the exact bright soliton
solution of Eq. (1) with constant nonlinearity g(x) = g0,

ψ (x, t ) = n
√

g0

2
sech

(
1

2
n g0(x − x0 − v0 t )

)

× ei [v (x−x0 )+(n2 g2
0−4v2

0 ) t/8], (4)

with x0, v0, and n, being the initial position, group velocity,
and norm, respectively. Transport coefficients are calculated
using the following formulas:

R = 1

n

∫ ∞

δ+α

|ψ (x, t f )|2dx, (5)

for the reflectance, where t f is a time scale long after the
scattering such that the soliton restores its state of uniform
steady flow far away from the scattering potential. For the
transmittance we have

T = 1

n

∫ −δ−α

−∞
|ψ (x, t f )|2dx, (6)

and finally for the trapping

L = 1

n

∫ δ+α

−δ−α

|ψ (x, t f )|2dx. (7)

Probability conservation law requires that R + T + L = 1.

III. NUMERICAL RESULTS

Normally, the unidirectional flow is investigated by launch-
ing a soliton towards the region of modulated nonlinearity
strength from both sides and observe the scattered soliton
in each case. Equivalently, we may keep fixed the launching
point, say on the right hand side, and then reflect the mod-
ulation function with respect to the vertical axis in Fig. 1
by switching δ from positive to negative value. This will
reproduce the potential shown in Fig. 1 but reflected with
respect to the x = 0 vertical axis.

Our first result in Fig. 2 shows clearly that indeed a
unidirectional flow is obtained by switching the sign of δ from
1 to −1. It is noticed that in both cases the soliton preserves
its integrity after scattering. The corresponding transport co-
efficients are shown in Figs. 3 and 4. In Fig. 3, we used the
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FIG. 3. Transport coefficients obtained from the numerical solu-
tion of the NLSE, Eq. (1), for δ = −1 (a) and δ = 1 (b) with the
reflectionless potential well, Eq. (3).

reflectionless double well potential, Eq. (3), and in Fig. 4
we used the square potential well, Eq. (2). It is clear from
Fig. 3 that a sharp transition from almost full reflectance to
full transmittance takes place at the critical group velocity of
v ≈ 0.285. The transition in Fig. 4 is not as sharp as in Fig. 3
due to the nonreflectionless nature of the square potential well
which causes some radiation upon scattering. Furthermore,
trapping is absent from the reflectionless case while it occurs
for the square potential well around the transition region.
While in general there is full trapping near the transitions,
there is still a window in the soliton speed where trapping
is very small and unidirectional flow takes place. Comparing

the reflectance in both cases of positive and negative δ, we
find in Figs. 3 and 4 a velocity window [0.286,0.293] and
[0.282,0.287], respectively, within which the unidirectional
flow takes place.

To understand qualitatively the physics of the unidirec-
tional flow, we develop in the next section a variational
approach. This will enable us to verify that the excitation of
the internal modes is the essential mechanism that ensures the
unidirectional flow.

IV. VARIATIONAL CALCULATIONS

In this section, we study the interaction between the bright
soliton with the asymmetric double well nonlinearity coeffi-
cient using the variational method. The Lagrangian density
associated with Eq. (1) is

L = i

2

[
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

]
− 1

2

∣∣∣∣∂ψ

∂x

∣∣∣∣
2

− 1

2
g(x)|ψ |4, (8)

where we can use the Euler-Lagrange equation of motion to
obtain Eq. (1).

We adopt the following trial function as the variational
bright soliton solution to Eq. (1),

ψ (x, t ) = A sech

[
(x − x0)

w

]

× exp{i[φ0 + (x − x0)φ1 + (x − x0)2φ2]}. (9)

The variational parameters A(t ), x0(t ), w(t ), φ0(t ), φ1(t ), and
φ2(t ) represent the amplitude, center-of-mass position, width,
phase, velocity, and the chirp of the soliton, respectively. We
may reduce the number of variational parameters by 1 when
we use the normalization condition,∫ ∞

−∞
dx |ψ |2 = 2A2w = n. (10)

Substituting the trial function, Eq. (9), into the Lagrangian density, Eq. (8), using Eq. (2) for the nonlinearity profile, and then
integrating over space from −∞ to ∞ results in the effective Lagrangian as a function of the variational parameters,

L = −n2a2

24w

{[
2 + sech2

(−α + δ + x0

w

)]
tanh

(−α + δ + x0

w

)
−

[
2 + sech2

(
α + δ + x0

w

)]
tanh

(
α + δ + x0

w

)}

+ n2a1

24w

{[
2 + sech2

(
α + δ − x0

w

)]
tanh

(
α + δ − x0

w

)
+

[
2 + sech2

(
α − δ + x0

w

)]
tanh

(
α − δ + x0

w

)}

− n

6w2
− g0n2

6w
− 1

2
nφ2

1 − 1

6
nπ2w2φ2

2 + n φ1dx0/dt − n dφ0/dt − 1

12
n π2w2dφ2/dt . (11)

Applying the Euler-Lagrange equations for each of the
variational parameters yields a system of ordinary differential
equations that describes their time evolution. Most of these
equations are lengthy and hence we relegate the writing of the
explicit system of equations of motion to the Appendix.

In Fig. 2, we plot the trajectory of the soliton calculated
from the variational approach (solid blue line) showing a very
good agreement with the numerical calculations. Transport
coefficients are shown in Figs. 3 and 4. Very sharp transitions

occur at the critical velocity and a unidirectional window
indeed exists.

The transport coefficients, given by Eqs. (5)–(7), can be
calculated, from the variational calculation, as follows:

R = 1

2n
lim

D→∞

[
tanh

(
D − x0(t f )

w(t f )

)

− tanh

(
α + δ − x0(t f )

w(t f )

)]
, (12)
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FIG. 4. Transport coefficients obtained from the numerical solu-
tion of the NLSE, Eq. (1), for δ = −1 (a) and δ = 1 (b) with the
double square potential well, Eq. (2).

T = 1

2n
lim

D→∞

[
tanh

(
D + x0(t f )

w(t f )

)

− tanh

(
α + δ + x0(t f )

w(t f )

)]
, (13)

L = 1

2n
lim

D→∞

[
tanh

(
α + δ − x0(t f )

w(t f )

)

+ tanh

(
α + δ + x0(t f )

w(t f )

)]
. (14)

At large time, t = t f , the soliton is far from the scattering
region,

x0(t f ) →
{

D δ = −1
−D, δ = 1 , (15)

where D is large compared to the scattering region ∝α and
soliton width ∝w(t ). This is verified in Fig. 5, where we plot

FIG. 5. Soliton position long after scattering (t f = 200) vs its
initial group velocity. Solid curve corresponds to δ = −1 and dashed
curve corresponds to δ = 1.

FIG. 6. Transport coefficients obtained from the variational cal-
culation for δ = −1 (a) and δ = 1 (b).

x0(t f ) versus the velocity of incidence v. Here again, unidirec-
tional flow is evident within a velocity window near the criti-
cal speed. Using the asymptotic forms of limx→±∞ tanh(x) =
±1, the reflection transport coefficient within the unidirec-
tional flow window takes the form

R =
{

1, δ = −1
0, δ = 1 , (16)

which is the ideal mathematical form of unidirectional flow. In
Fig. 6, we plot the transport coefficients using the variational
calculation. The sharpness in the transitions at the critical
speed is indicated by the sharp transition in x0(t f ) as explained
above and shown in Figs. 3 and 4.

In conclusion, the variational calculation describes accu-
rately the dynamics of the scattered soliton and accounts
for the unidirectional flow. A necessary condition for the
variational calculation to account for the unidirectional flow
is to allow the width to change with time. Setting the width
as constant leads to the disappearance of unidirectional flow.
With a time-dependent width and its conjugate variable, the
chirp, the equations of motion become complicated as shown
in the Appendix. In order to give more insight into the
dynamics, we simplify the equations of motion in the next
section to reduce the problem to a soliton scattered by an
effective asymmetric potential.

Simplified dynamics and effective potential

The main aim of the variational calculation is to capture the
physics of unidirectional flow. To that end, we simplify the
rather lengthy and complicated variational equations of mo-
tion. The simplification is performed by first noting that away
from the scattering region, the soliton is not anymore affected
by the nonlinearity modulation and hence will be moving
with a uniform speed. Then, we expand the equations in the
small quantity w(t )/x0(t ). This will give accurate behavior at
the asymptotes—long before and long after the scattering—
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FIG. 7. Effective force, given by Eq. (22). Dashed curve corresponds to δ = −1 and solid curve corresponds to δ = 1.

but a less accurate account near the scattering region since
w(t )/x0(t ) is not small there. However, by comparing the
results of the simplified equations of motion to those of the
exact ones, it turned out that this is an acceptable approx-
imation. Most importantly, it captures the main features of
the unidirectional flow and furthermore provides a description
of the dynamics in terms of soliton scattered by an effective
potential that changes its profile depending on the direction
from which the soliton is incident on the potential. Based on
the above approximation, the simplified equations of motion
take the following form:

x′
0(t ) − φ1(t ) = 0, (17)

w′(t ) − 2w(t )φ2(t ) = 0, (18)

a2 n
[
sech2

(
α+δ−x0(t )

w(t )

) − sech2
(−α+δ−x0 (t )

w(t )

)]
12w(t )2

− φ′
1(t ) = 0,

(19)

a1 nx0(t )sech2
( 2[δ+x0(t )]

w(t )

)
2w(t )3

+ g0 n

6w(t )2
− 1

6
π2w(t )φ′

2(t )

− 1

3
π2w(t )φ2(t )2 + 1

3w(t )3
= 0. (20)

Equations (17) and (19) show that the trajectory of the soliton
satisfies the effective Newton’s equation

ẍ0 = F [x0], (21)

where

F [x0] = a2n
[
sech2

(
α+δ−x0

w

) − sech2
(−α+δ−x0

w

)]
12w2

(22)

is an effective force experienced by the soliton. The associated
effective potential can be calculated using

V [x0] = −
∫

F [x0] dx0. (23)

In performing this integration, it should be noted that w(t )
depends also on x0. Equations (18) and (20) can be used to
eliminate φ2 and then solve for w(t ) in terms of x0(t ). As
this will produce a complicated expression for the resulting
potential, we would rather calculate the effective potential
numerically, as detailed below. Nonetheless, further insight
about the physics behind the unidirectional flow mechanism
can be obtained by additional simplifications of the equations
of motion in the regions away from the scattering point. For
x0 much larger than α and w, the right hand side of Eq. (22) is
approximated by

F [x0] = 2α sech4(x0){2δ[cosh(2x0) − 2] + sinh(2x0)}, (24)

which upon integrating with respect to x0 gives the potential

V [x0] = 2α sech2(x0) [1 + 2δ tanh(x0)]. (25)

This is the asymptotic potential at large x0 experienced by the
scattered soliton. For a soliton incident from the right with
δ = 1, it will experience a potential ∝tanh[x0(t )], which is
a step potential with value before the scattering higher than
after the scattering and thus the soliton will cross the origin
and transmit, as found in the full numerical solution. For a
soliton incident again from the right but with δ = −1, the
soliton will experience a potential ∝−tanh[x0(t )], which is
again a step function but with value before scattering lower
than after scattering explaining the soliton reflection in this
case. In conclusion, it is the asymmetry introduced by the
potential that leads to the difference in the scattering outcome.

FIG. 8. Effective potential. Dashed curve corresponds to δ = −1 and solid curve corresponds to δ = 1.
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FIG. 9. Soliton width. Left panel corresponds to δ = −1 and right panel corresponds to δ = 1.

In Fig. 7, we plot the effective force, given by Eq. (22),
versus the soliton position x0(t ). Both cases where the soliton
is incident from the right and from the left are considered.
For a soliton incident from the right which amounts to δ < 0,
the dashed curve in Fig. 7 shows that the soliton encounters a
repulsive force that forces it to reflect. The solid curve shows
that when the soliton is incident from the left it encounters a
considerably less repulsive force followed by a larger attrac-
tive force and thus transmits with an increase in its speed.

In Fig. 8, we plot the effective potential for both positive
and negative values of δ. For δ < 0, which amounts to a soli-
ton incident from the right, the soliton will experience a high
effective potential barrier that forces it to to reflect. On the
other hand, for δ > 0, which corresponds to a soliton incident
from the left, the soliton will encounter a smaller potential
barrier through which it transmits. Plotting in this figure the
potential versus time shows that the soliton experiences a
potential step for a soliton incident from the right and a con-
siderably smaller potential barrier for a soliton incident from
the left. The width of the soliton is plotted in Fig. 9. It shows
that in both cases of reflectance and transmittance, the soliton
acquires oscillations in its width. However, the amplitude of
width oscillation is much larger for the transmission case. The
speed of the soliton is plotted in Fig. 10 showing that there
is an increase in the speed in the case of transmission. The
increase in speed shifts the speed of the soliton from below
the critical to above the critical speed for transmission.

V. CONCLUSIONS

We have considered the scattering of a bright soliton off
a region of modulated nonlinearity strength. The modulation

takes the form of an asymmetric double well potential, the
two wells have the same width but slightly different depths.
The numerical solution shows that this setup indeed leads to a
unidirectional flow within a window of soliton speed. To un-
derstand the mechanism of this behavior, we derived through
a variational calculation the effective equations of motion
for the soliton’s peak position, speed, width, and chirp. It
was shown that transmission takes place when the soliton
undergoes considerable width oscillations as a result of its
scattering. This is in contrast with the case of reflection where
the width of the soliton remains constant. This leads to the
fact that the excitation of the internal breathing mode is a
crucial factor in the realization of the unidirectional flow.
Furthermore, it was noticed that upon transmission the soliton
emerges with an increase in the speed while upon reflection
its speed is the same as before scattering. A simplified version
of the equations of motion reveals that during transmission,
the soliton experiences a net attractive force that gives rise to
the speed increase. The reflected soliton does not experience
such an attractive force and thus reflects with the speed of
incidence. This mechanism is different from that in Ref. [18]
where NLSE was considered with modulated dispersion. In
that work, the speed of the soliton was reduced after trans-
mittance. This difference in unidirectional flow mechanism
can be understood by invoking the integrability condition
of the NLSE with space variable coefficients, as derived by
Ref. [20]. For a dispersion coefficient f (x, t ) and nonlinearity
coefficient g(x, t ), the integrability condition reads f (x, t ) =
c(t )/g(x, t )2, where c(t ) is an arbitrary real function. Thus, for
integrability of the NLSE to be preserved, the modulation in
dispersion should have the inverse effect of the modulation in
nonlinearity.

FIG. 10. Soliton speed. Dashed curve corresponds to δ = −1 and solid curve corresponds to δ = 1.
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We would like to stress that our results are in agreement
with recent references [22–24] which studied the necessary
conditions for nonreciprocal plane wave propagation in non-
linear media. These results remain valid for soliton propaga-
tion in modulated NLSE.

Our trial function (9) does not account for a trapped part.
In Ref. [25], the authors used a variational calculation with a
trial function that accounts for both the incident soliton and a
trapped part. This allowed for the detailed study of resonant
interaction between the incident soliton and the bound states
of the potential well. While accounting for a trapped part
would, in principle, enhance our calculations, it will not affect
the regions away from the sharp transition in the transport
coefficients. Since the unidirectional flow takes place for
soliton speeds away from the critical values where the sharp
transitions occur, we believe that adding a trapped part will
not have significant effect on our results. However, this may
be left for future investigation.

In the present work, we employed an asymmetric square
double potential well. Ideally, one should use reflectionless

potentials to minimize radiative losses. Nonetheless, it turned
out that even with the square double potential well used, the
efficiency of the unidirectional flow obtained is still very high.

We believe that our findings will be of great interest and
may have applications in optical data transmission in fibers or
data processing in waveguide arrays.
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APPENDIX: VARIATIONAL EQUATIONS OF MOTION

Using the effective Lagrangian, Eq. (11), the Euler-
Lagrange equations lead to the following variational equations
of motion:

− n2a1

24w2

{
tanh

(
α + δ − x0

w

)[
2 + sech

(
α + δ − x0

w

)2
]

+ tanh

(
α − δ + x0

w

)[
2 + sech

(
α − δ + x0

w

)2
]

+ 3

w

[
sech

(
α + δ − x0

w

)4

(α + δ − x0) + sech

(
α − δ + x0

w

)4

(α − δ + x0)

]}

+ n2a2

24w2

{
tanh

(−α + δ + x0

w

)[
2 + sech

(−α + δ + x0

w

)2
]

− tanh

(
α + δ + x0

w

)[
2 + sech

(
α + δ + x0

w

)2
]

+ 3

w

[
sech

(−α + δ + x0

w

)4

(−α + δ + x0) − sech

(
α + δ + x0

w

)4

(α + δ + x0)

]}
+ n2g0

6w2
+ n

3w3
− 1

3
nπ2wφ2

2

− 1

6
nπ2w

d

dt
φ2 = 0,

(A1)

n2a2

8w2

[
−sech

(−α + δ + x0

w

)4

+ sech

(
α + δ + x0

w

)4
]

+ n2a1

8w2

[
−sech

(
α + δ − x0

w

)4

+ sech

(
α − δ + x0

w

)4
]

− n
d

dt
φ1 = 0, (A2)

− 1

3
nπ2w2φ2 + 1

6
nπ2w

d

dt
w = 0, (A3)

− nφ1 + n
d

dt
x0 = 0. (A4)
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