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Investigated in this paper is a quasigeostrophic two-layer model for the wave packets in a marginally stable or
unstable baroclinic shear flow. We find that the wave packets can be modulated by certain long waves, resulting
in different behaviors from those in the existing literature. Via the bilinear method, we construct the modulated
N th-order (N = 1, 2, . . .) solitary waves, breathers, and rogue waves for the wave-packet equations. Based on
the modulation effects of the long waves, the solitary waves are classified into three types, i.e., Type-I, Type-II,
and Type-III solitary waves. Type-I solitary waves, without the modulations, are the bell shaped and propagate
with constant velocities; Type-II solitary waves, with the weak modulations, are shape changing within a short
time and subsequently return to the bell-shaped state; and Type-III solitary waves, with the strong modulations,
show not only the variations of shapes but also the appearances, splits, combinations, and disappearances of
certain bulges in the evolution. For the interaction between the two unmodulated solitary waves, two Type-I
solitary waves can bring about the oscillations in the interaction zone when they possess different velocities, and
bring into being the bound-state, oscillation-state, and bi-oscillation-state solitary waves when they possess the
same velocity. For the two interactive modulated solitary waves, bound-state, oscillation-state, and bi-oscillation-
state solitary waves with the short-time variations of shapes or appearances of bulges can occur. Due to the
modulations of the long waves, breathers and rogue waves are distorted and stretched, mainly in two aspects: one
is the evolution trajectories for the breathers; the other is the shape variations for each element of the breathers
and rogue waves. Numbers of the peaks and valleys for the rogue waves are adjustable via the modulations. In
addition, modulated breathers and rogue waves can degenerate into the M- or W-shaped or multipeak solitary
waves under certain conditions.
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I. INTRODUCTION

The quasigeostrophic two-layer model has been proposed
to describe the nonlinear evolution of wave packets in a
marginally stable or unstable baroclinic shear flow [1–7],
as described in Fig. 1. In that model, two layers of the
immiscible inviscid fluids, confined by rigid frictionless walls
to an infinite straight channel of finite depth and width, have
been presented to rotate around the vertical axis with a certain
angular velocity [1–3]. Researchers have found that the denser
fluid underlies the lighter to match the system’s gravitational
stability [1–3]. Once an equilibrium state of the system is
maintained, the interface between the two layers has deviated
from the original location and some gravitational potential
energy has been available to be transformed into the kinetic
energy of the fluid motions [1–3]. If the small disturbances in
the flow can grow at the expense of the available potential en-
ergy, the fluids have been said to be baroclinically unstable, in
which the infinitesimal wavelike disturbances can be expected
to grow [3]. To study the evolution of such waves as their
amplitudes become finite, experiments have been conducted,
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demonstrating that the nonlinearities can produce more or
less regular variations of the waves in time and space under
a wide range of conditions [3,8–10]. Theoretically, people
have supposed that the fluids flow in the form of a perturbed
basic zonal shear flow, so that the asymptotic expansions of
the perturbation stream functions have been used to derive
the wave-packet equations [2,3]. When the Rossby number
is small and the central wave number is

√
2F , the governing

equations have been presented as [2,3,11–21](
∂

∂T
+ Cg1

∂

∂X

)(
∂

∂T
+ Cg2

∂
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)
A = σ 2A − PAB,
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)
B =

(
∂

∂T
+ Cg1

∂

∂X

)
|A|2, (1)

with

σ 2 = �

2|�|�
2γ 2 β

F
, P = (mπ�γ )2

4
,

subject to the boundary condition

A(X,T ) → 0 as |X | → ∞, (2)

where F denotes the internal rotational Froude number, X
and T denote the slowly varying along-channel and time
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FIG. 1. The model proposed in Ref. [1]. Two layers of the
immiscible inviscid fluids flow along an infinite straight channel
with relative motion, rotating around a vertical axis with an angular
velocity 	, where x, y, and z denote the along-channel, across-
channel, and vertical coordinates, respectively, u2 and u1 are the
along-channel velocities of the upper-layer and lower-layer fluids,
ρ2 and ρ1 are the densities of the upper-layer and lower-layer fluids,
and g denotes the vertical gravitational acceleration.

coordinates, A = A(X,T ) is a complex function denoting the
slowly varying amplitude of a baroclinic wave train in the up-
per layer, γ denotes the ratio of the wave amplitude of the
lower layer to that of the upper layer, B = B(X,T ) is a real
function denoting the wave-induced modification of the basic
flow by the baroclinic waves,1 Cg1 and Cg2 (Cg1 > Cg2) are
the group velocities of the two wave modes described by the
lowest-order linear equations in the asymptotic expansions,
� is a shear increment above the minimum critical shear β

F
(required for the baroclinic instability) between the two layers,
β is the planetary vorticity factor, � < 0 and � > 0 denote
the so-called subcritical and supercritical cases, respectively,
π is the circular constant, � is a real constant, and m is an
integer [2,3]. Especially, Eqs. (1) have been reduced into the
sine-Gordon equation for the real amplitude and self-induced
transparency equations of nonlinear optics for the complex

1The governing wave-packet equations have been constructed
based on the assumptions of the basic zonal shear flows. Placing
the wave packet perturbations on the basic zonal shear flows, with
the help of the multiscale method, Refs. [1,2] have derived the
propagation equations for the wave packets, in which B is related
to the second-order components of the perturbation stream functions
in the asymptotic expansions. The first-order components (main
components) of the perturbation stream functions are determined by
A [1,2]. Under this circumstance, whether in the stability analyses
or solution explorations of the propagation equations, B affects the
amplitudes of the wave packets greatly, and thereby affects the wave
packet perturbations on the basic flows [1,2].

amplitude [3]. Through the variable transformations [11–21]

A = ψ1, B = (Cg1 − Cg2)2

Cg2P
ψ2, ξ = X − Cg1T,

τ = T − X

Cg2
, (3)

Eqs. (1) have been rewritten as [11–21]

∂2ψ1

∂ξ∂τ
= δψ1 − ψ1ψ2,

∂ψ2

∂ξ
= ς

∂|ψ1|2
∂τ

, (4)

with

δ = σ 2Cg2

(Cg1 − Cg2)2
, ς = P

(Cg1 − Cg2)2
, (5)

subject to the boundary conditions

ψ1 → 0 as |ξ | → ∞,

ψ2 → 0 as |ξ | → ∞. (6)

It has been revealed that the baroclinic wave packets can
propagate in the forms of the solitary waves (solitons),
breathers, rogue waves, and periodic waves [2,3,11–21].
Based on Eqs. (4), the high-order solitary wave solutions of
Eqs. (1) have been obtained via the inverse scattering trans-
formation,2 bilinear method,3 Darboux transformation (DT),4

and Kadomtsev-Petviashvili hierarchy reduction5 [2,3,11–
13]. Through the DT and generalized DT, the breather and
rogue wave solutions of Eqs. (1) have been derived [14–17].
Integration method has been used to derive the periodic wave
solutions of Eqs. (1) [18,19]. More on analytic solutions of
Eqs. (1) can be seen, e.g., in Refs. [20,21]. Solitary waves
have been discovered in a narrow channel due to the invariant
amplitudes and velocities in the propagation, and recognized
via the Korteweg–de Vries equation for the shallow-water

2The inverse scattering transformation is known as an extension
of the Fourier transform technique in the nonlinear science, which is
composed of three procedures: (1) mapping of the initial data into the
scattering space; (2) evolution of the scattering data over time; and
(3) reconstruction of the solution of the original equation by mapping
back into the physical space [3,22,23].

3The bilinear method is a direct approach to solve certain nonlinear
evolution equations, at the heart of which lies the idea that we
simplify the original equation by constructing a series of compatible
subequations and solve those subequations through the small param-
eter expansion or method of the undetermined coefficients [24].

4The DT is known as a set of the recurrence formulas that connect
certain seed solutions and new solutions of a nonlinear evolution
equation based on a series of different spectral parameters, while in
the generalized DT the spectral parameter remains the same in each
iteration [25].

5The Kadomtsev-Petviashvili hierarchy reduction is a method to
solve the nonlinear evolution equations through dividing the original
equations into some separate parts and comparing those parts to the
so-called Kadomtsev-Petviashvili hierarchy, the solutions of which
are known [26].
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waves [22,23]. In fact, people have observed that the solitary
waves can propagate steadily in optical fibers, plasmas, water
tanks, etc., arising from the balance between nonlinear and
dispersive effects [27–33]. Rogue waves, approaching without
a trace and leaving without a shadow, have captured the
researchers’ attention since they have caused some catastro-
phes for ships and offshore oil platforms [34–45]. Rogue
waves have also been discovered in optics, astrophysics, fluid
dynamics, and other fields [28–30].

In this paper, we will observe that the introduction of
certain long waves into the wave-induced modification of
basic flow brings the wave packets more diversified features.
Based on those observations, this paper will be organized as
follows. In Sec. II, we will introduce a long wave into the
wave-induced modification of the basic flow to investigate
the solitary wave mode of the baroclinic wave packets. In
Sec. III, with the long wave, breather and rogue wave modes
of the wave packets will be studied. Our conclusions will be
presented in Sec. IV.

II. SOLITARY WAVE MODE OF THE
BAROCLINIC WAVE PACKETS

A. Bilinear forms of Eqs. (4)

With the transformations

ψ1 = g

f
, ψ2 = 2

∂2 ln f

∂ξ∂τ
+ α(τ ), (7)

we obtain the bilinear forms for Eqs. (4) as

DξDτ f · g − [δ − α(τ )] f g = 0,

D2
ξ f · f +� f 2 − ςgg∗ = 0, (8)

where α(τ ) is a real differentiable function, g = g(ξ, τ ) is a
complex function of ξ and τ , while f = f (ξ, τ ) is a real one,
� is a real constant, “∗” denotes the complex conjugate, and
Dξ and Dτ are the bilinear operators defined by [24]

Dn1
ξ Dn2

τ ν1 · ν2 =
(
∂

∂ξ
− ∂

∂ξ ′

)n1
(
∂

∂τ
− ∂

∂τ ′

)n2

ν1(ξ, τ )ν2(ξ ′, τ ′)
∣∣∣∣
ξ ′=ξ,τ ′=τ

, (n1, n2 = 0, 1, 2, . . .),

with ν1(ξ, τ ) being an analytic function of ξ and τ , and ν2(ξ ′, τ ′) being an analytic function of the formal variables ξ ′ and τ ′.

B. Solitary waves of Eqs. (1)

With the help of bilinear forms (8) and the method of perturbation expansions, we derive the N th-order solitary waves of
Eqs. (4) as

ψ1 =
∑N

j=1 g2 j−1

1 + ∑N
j=1 f2 j

, ψ2 = 2
∂2 ln

(
1 + ∑N

j=1 f2 j
)

∂ξ∂τ
+ α(τ ), (9)

where

g2 j−1 =
{∑N

χ=1 exp(�χ ), ( j = 1),(
ς

2
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2,··· ,�′
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(
��χ +�∗

�′
χ−N

)]
, ( j = 2, 3, . . . ,N ),
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(ς

2
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⎣ j∑
χ=1

(
��χ +�∗

�′
χ−N

)⎤⎦, ( j = 1, 2, . . .N ),
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′
2,··· ,�′
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=

∏
1�ı<j� j

(
k�ı

− k�j
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1�ı<j� j−1

(
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�′

ı−N − k∗
�′

j −N
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∏
1 � ı � j

1 � j � j − 1

(
k�ı

+ k∗
�′

j −N

)2 ,

��1,�2,··· ,� j ,�
′
1,�

′
2,··· ,�′

j
=

∏
1�ı<j� j

(
k�ı

− k�j

)2(
k∗
�′

ı−N − k∗
�′

j −N

)2

∏
1�ı,j� j

(
k�ı

+ k∗
�′
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)2 ,

�χ = kχξ + 1

kχ

∫
[δ − α(τ )]dτ + �χ, � = 0,

where �ı’s (1 � �ı � N) and �′
j ’s (N < �′

j � 2N) are the
strictly monotone increasing positive-integer sequences with
respect to their subscripts ı and j (ı, j = 1, 2, . . . , j), kχ ’s
and �χ ’s are all the nonzero complex constants, while

∑
� j ,�

′
j−1

(•) and
∑

� j ,�
′
j
(•) indicate the sums going through

all the possibilities of •. Furthermore, taking boundary con-
dition (6) into consideration, we need α(τ ) → 0 as τ → ∞.
Based on the above results, substitutions of expressions (3)
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and (5) into Eqs. (9) yield the N th-order solitary waves of
Eqs. (1). It is noticed that when α(τ ) ≡ 0 the solitary waves
have been obtained in Refs. [2,3,11–13].

To study the effects of α(τ ) on the behaviors of the solitary
waves, we consider N = 1 first. Setting ϕ(τ ) = ∫

α(τ )dτ , we
simplify the amplitudes of the first-order solitary waves for
Eqs. (1) as

|A| =
√

2|Re(k1)||Cg1 − Cg2 |√
P

sech(�),

B = 2Re2(k1)
[
σ 2Cg2−(Cg1−Cg2)2α

(
T −C−1

g2
X

)]
P|k1|2Cg2

sech2(�)

+ (Cg1 − Cg2)2α
(
T − C−1

g2
X

)
PCg2

, (10)

with

� = κX + ωT − Re(k1)

|k1|2 ϕ
(
T − C−1

g2
X

)

+ ln

√
P

2
√

2Re(k1)|Cg1 − Cg2 |
+ Re(�1),

κ = Re(k1)

(
1 − σ 2

|k1|2(Cg1 − Cg2)2

)
,

ω = −Re(k1)Cg2

(
Cg1

Cg2
− σ 2

|k1|2(Cg1 − Cg2)2

)
,

where Re(•) denotes the real part of the element •. Thus, the
characteristic-line equations and propagation velocities of the
solitary waves are given by

κX + ωT − Re(k1)

|k1|2 ϕ
(
T − C−1

g2
X

)

+ ln

√
P

2
√

2Re(k1)|Cg1 − Cg2 |
+ Re(�1) = 0, (11a)

v = Cg2
{
(Cg1 − Cg2)2

[|k1|2Cg1 + α
(
T − C−1

g2
X

)] − σ 2Cg2

}
(Cg1 − Cg2)2

[|k1|2Cg2 + α
(
T − C−1

g2
X

)] − σ 2Cg2

.

(11b)

Note that X and T in Eq. (11b) are restricted by Eq. (11a).
From expressions (10) and (11), we find that when α(τ ) ≡ 0
the wave packets and wave-induced modifications of the basic
flow both show as the regular bell-shaped solitary waves with
the constant velocities and permanent shapes, as described in
Fig. 2. When α(τ ) �≡ 0, variations of the shapes and velocities
of the solitary waves would occur during the propagation of
the wave packets, and the modifications of the basic flow
evolve in the forms of the distorted bell-shaped solitary waves
with background waves, as seen in Figs. 3 and 4. In fact, the
background waves are the long waves,6 which are described

by
(Cg1−Cg2 )2α(T −C−1

g2
X )

PCg2
. In conclusion, introducing the long

6Long waves have been introduced in the wireless communications
first, which can travel the distance up to 17 000 kilometers [46].
Researchers have used the long waves to describe some nonlinear
phenomena characterized by the long-distance transmission [46].

FIG. 2. Type-I solitary waves via solutions (10), with k1 = 2+
3i (i=√−1), �1 = 0, σ = 5, P = Cg2 = 1, Cg1 = 2, ϕ(τ ) =−120.

waves into the wave-induced modifications of the basic flow
brings into being the distorted bell-shaped solitary waves for
the wave packets. Those phenomena can be regarded as the
modulations of the long waves to the bell-shaped solitary
waves [47], where the behaviors of the long waves can be
adjusted by α(τ ). Due to the modulations of certain long
waves, Figs. 3 and 4 present two modulation behaviors of the
wave packets. Considering the modulation effects of α(τ ) on
the behaviors of the solitary waves, we classify the solitary
waves into three types.

1. Type I—Solitary waves without the modulations: α(τ ) ≡ 0

In this case, ϕ(τ ) degenerates into a constant and we set
it as M. As discussed above, without the modulations of the
long waves, the wave packets are bell shaped and propagate
with the constant velocities. We reduce the amplitudes and
velocities of the solitary waves into

|A| =
√

2|Re(k1)||Cg1 − Cg2 |√
P

sech(�),

B = 2[Re(k1)]2σ 2

P|k1|2 sech2(�), (12)

v = |k1|2Cg1(Cg1 − Cg2)2 − σ 2Cg2

|k1|2(Cg1 − Cg2)2 − σ 2
,

with

� = κX + ωT − Re(k1)M

|k1|2

+ ln

√
P

2
√

2Re(k1)|Cg1 − Cg2 |
+ Re(�1). (13)

FIG. 3. Type-II solitary waves via solutions (10), with k1 = 2 +
3i, �1 = 0, σ = 5, P =Cg2 = 1, Cg1 = 2, ϕ(τ ) = 10 sech(τ ) − 120.
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FIG. 4. Type-III solitary waves via solutions (10), with k1 =2 +
3i, �1 =0, σ =5, P=Cg2 =1, Cg1 =2, ϕ(τ ) = 40 sech(τ ) − 120.

It is noticed that when |k1| = |σ |
|Cg1−Cg2| the solitary waves

degenerate into the infinitely long plane waves. Supposing
that A0 and V are, respectively, the initial maximum amplitude
and initial velocity of a wave packet, and that without loss of
generality A0 is restricted to a positive number, we have

Re(k1) =
√

PA0√
2(Cg1 − Cg2 )

, |k1|2 = σ 2(V − Cg2)

(Cg1 − Cg2)2(V − Cg1)
,

(14)

so that

PA2
0

2
� σ 2

(
V − Cg2

)
(
V − Cg1

) . (15)

When σ 2 > 0 (supercritical case), we can obtain a critical

amplitude Ã0 =
√

2σ 2

P for which |V | becomes infinite. If

0 < A0 < Ã0, V is in the range of (−∞,
PA2

0Cg1−2σ 2Cg2

PA2
0−2σ 2 )

or (Cg1,+∞). If A0 > Ã0, V is in the range of

(Cg1,
PA2

0Cg1−2σ 2Cg2

PA2
0−2σ 2 ). No matter which range A0 is in, V > Cg1

or V < Cg2 always holds, indicating that the propagation
velocities of the wave packets lie outside the velocity

interval bounded by the two group velocities. When σ 2 < 0

(subcritical case), V is in the range of ( PA2
0Cg1−2σ 2Cg2

PA2
0−2σ 2 ,Cg1).

Compared with those in Ref. [2], the more precise ranges of
the propagation velocities in the both cases are given.

2. Type II—Solitary waves with the weak modulations7:
σ2Cg2−|k1|2Cg2 (Cg1−Cg2 )2

(Cg1−Cg2 )2 �∈ S[α(τ )]8

When the range of α(τ ) is so small that
σ 2Cg2−|k1|2Cg2 (Cg1−Cg2 )2

(Cg1−Cg2 )2 �∈ S[α(τ )], short-time shape variations

and subsequent restorations to the initial state occur in the
propagation of the wave packets, as shown in Fig. 3. In this
case, the wave packets are modulated by the amplitude-limited
long waves and return to the bell state, indicating that the
effects of the modulations are rather weak. Under this
circumstance, we deem that the wave packets undergo the
weak modulations in the evolution. It is also demonstrated that
the solitary waves possess a certain degree of the nonlinear
stability.

3. Type III—Solitary waves with the strong modulations:
σ2Cg2−|k1|2Cg2 (Cg1−Cg2 )2

(Cg1−Cg2 )2 ∈ S[α(τ )]

When the range of α(τ ) grows, i.e.,
σ 2Cg2−|k1|2Cg2 (Cg1−Cg2 )2

(Cg1−Cg2 )2 ∈
S[α(τ )], indicating that the strong modulations occur in the

7Modulation is a process of adding the information of the signal
source to the carrier wave to make it suitable for the channel
transmission [48]. Based on the effect on the modulating signal,
modulation is divided into the weak and strong modulations [48].
When the amplitude of the carrier signal is less than a critical value,
modulation is called the weak modulation, and when the amplitude
of the carrier signal is more than the critical value, modulation is
called the strong modulation [48].

8S[α(τ )] denotes the range of the function α(τ ).

FIG. 5. Wave packet in the form of Type-III solitary waves, with the parameters the same as those in Fig. 4.
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FIG. 6. Two Type-I solitary waves with oscillations in the inter-
action zones via solutions (9), with k1 = 2 − 3i, k2 = 5

2 + 3i, �1 =
�2 = 0, σ = 5, P = Cg2 = 1, Cg1 = 2, ϕ(τ ) = −120.

evolution of the solitary waves, the wave packets show not
only the variations of shapes but also the appearance of
some new bulges, as seen in Fig. 4. We also illustrate the
evolution of the wave packet in Fig. 5. When T � 0, the wave
packet performs a steady solitary wave propagating forward
with a constant velocity and shape. At T = 4.2, affected by
the modulation of a long wave, the wave packet develops a
bulge at the point X = 4.5. The bulge grows and moves until
its maximum amplitude is reached at T = 5.0, and then it
divides into two parts at T = 5.3. One part of the bulge moves
forward and combines with that steady solitary wave into a
whole, which gradually disappears at last, while the other
part keeps moving with the shape changing until it possesses
the same shape and velocity as the solitary wave at T = 0.
Different from the evolution of the baroclinic waves in the
above two cases, the solitary waves hereby are characterized
by the appearances, splits, combinations, and disappearances
of those bulges.

Note that under the condition Im(k1) → ∞ [where Im(•)
denotes the imaginary part of the element •], for the latter two
cases, α(τ ) has no effect on the behaviors of the wave packets
while it still affects the modifications of the basic flow, and at
this point the propagation velocities of the wave packets are
exactly Cg1.

C. Interaction between the two solitary waves of Eqs. (1)

1. Case A: Interaction between the two Type-I solitary waves
of Eqs. (1)

Baroclinic wave packets can also evolve in the form of
multisolitary waves. In what follows, we take the second-
order solitary waves as an example to investigate the behaviors
of the wave packets. Considering α(τ ) ≡ 0 and ϕ(τ ) = M

FIG. 7. Two Type-I solitary waves without oscillations in the
interaction zones via solutions (9), with k1 = 3, k2 = 2, �1 = �2 =
0, σ = 5, P = Cg2 = 1, Cg1 = 2, ϕ(τ ) = −120.

first, we illustrate the evolution of the second-order solitary
waves in Figs. 6 and 7. Figure 6 shows that two single soli-
tary waves with different velocities interact with each other,
bringing about the phase shifts and regular oscillations in
the interaction zones. Figure 7 shows that the two interactive
solitary waves propagate without the oscillations. Based on
those observations, we find that under certain conditions the
characteristic lines of both solitary waves are approximately
the straight lines for large |T |. Under that circumstance, with
the assumptions that the characteristic-line equations of one
solitary wave before and after the interaction are, respectively,
X = v−T + φ− and v+T + φ+, we have

lim
T →+∞

|A||X=v+T +φ+ = A+ �= 0,
(16)

lim
T →−∞

|A||X=v−T +φ− = A− �= 0,

where v− (v+) and A− (A+) are the velocity and amplitude
of the solitary wave long before (after) the interaction, while
φ+ − φ− is the phase shift of the solitary wave. Meanwhile,
we set k j = a j + b ji, � j = c j + d ji, where i = √−1, a′

js,
b′

js, c′
js, and d ′

js ( j = 1, 2) are all the real constants, and
rewrite |A| as

|A| = |g1 + g3|
|1 + f2 + f4| , (17)

where |g1 + g3| and |1 + f2 + f4| are presented in
Appendix A. From Eq. (17), we find that lim

T →+∞
|A||X=v+T +φ+ ( lim

T →−∞
|A||X=v−T +φ− ) exists while nonzero

if and only if the coefficient of H or G with respect to T under
the constraint X = v+T + φ+ (X = v−T + φ−) equals zero,
i.e., ϒ+(ϒ−) = 0 or �+(�−) = 0, where

ϒ± = v±a1

[
1 − σ 2(

a2
1 + b2

1

)
(Cg1 − Cg2)2

]

− a1

[
Cg1 − σ 2Cg2(

a2
1 + b2

1

)
(Cg1 − Cg2)2

]
,

�± = v±a2

[
1 − σ 2(

a2
2 + b2

2

)
(Cg1 − Cg2)2

]

− a2

[
Cg1 − σ 2Cg2(

a2
2 + b2

2

)
(Cg1 − Cg2)2

]
. (18)

The two solutions of v− (v+), respectively, correspond to the
velocities of the two branches of the second-order solitary
waves before (after) the interaction. For ϒ± = 0 or �± = 0,
we both have v+ = v−, which implies that the velocities of the
two branches remain unchanged after the interaction. Hereby,
we take five cases into consideration. (1) When ϒ± = 0 and
�± > 0, we have

v− = v+ =
(
a2

1 + b2
1

)
Cg1(Cg1 − Cg2)2 − σ 2Cg2(

a2
1 + b2

1

)
(Cg1 − Cg2)2 − σ 2

, (19)
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where v− and v+, respectively, correspond to the velocities of one branch of the second-order solitary waves before and after the
interaction. Through some mathematical operations, we derive

φ+ = (Cg1 − Cg2)2(
a2

1 + b2
1

)
(Cg1 − Cg2)2 − σ 2

[
M − c1

(
a2

1 + b2
1

)
a1

+ a2
1 + b2

1

2a1
ln

8a2
1s2

1(Cg1 − Cg2)2

Ps2
2

]
,

φ− = (Cg1 − Cg2)2(
a2

1 + b2
1

)
(Cg1 − Cg2)2 − σ 2

[
M − c1

(
a2

1 + b2
1

)
a1

+ a2
1 + b2

1

2a1
ln

8a2
1(Cg1 − Cg2)2

P

]
,

A+ = 2a2
1(Cg1 − Cg2)2

P
, A− = 2a2

1(Cg1 − Cg2)2

P
. (20)

Subsequently, we have

A+ = A− = 2a2
1(Cg1 − Cg2)2

P
, φ+ − φ− =

(
a2

1 + b2
1

)
(Cg1 − Cg2)2

a1
[(

a2
1 + b2

1

)
(Cg1 − Cg2)2 − σ 2

] ln
(a1 + a2)2 + (b1 − b2)2

(a1 − a2)2 + (b1 − b2)2
, (21)

which reveal that the amplitude of that branch remains unchanged after the interaction while the phase shift occurs. (2) When
ϒ± = 0 and �± < 0, the same results as presented in Eqs. (21) are obtained except that the phase shift becomes the opposite.
(3) When ϒ± > 0 and �± = 0, we derive the velocity, amplitude, and phase shift of the other branch of the second-order solitary
waves as

v± =
(
a2

2 + b2
2

)
Cg1(Cg1 − Cg2)2 − σ 2Cg2(

a2
2 + b2

2

)
(Cg1 − Cg2)2 − σ 2

, A± = 2a2
2(Cg1 − Cg2)2

P
,

φ+ − φ− =
(
a2

2 + b2
2

)
(Cg1 − Cg2)2

a2
[(

a2
2 + b2

2

)
(Cg1 − Cg2)2 − σ 2

] ln
(a1 + a2)2 + (b1 − b2)2

(a1 − a2)2 + (b1 − b2)2
. (22)

It is found that the velocity and amplitude of the
other branch also remain unchanged after the interaction.
(4) When ϒ± > 0 and �± = 0, the same results as expressed
in Eqs. (22) are obtained except that the phase shift turns
to be the opposite. In the above four cases, the interactions
between the two solitary waves look like “elastic”. (5) For
the case ϒ± = 0 and �± = 0, lim

T →+∞
|A||X=v±T +φ± �= 0 exist

if and only if a2 = a1 and b2 = b1. At this point the second-
order solitary waves degenerate into the first-order solitary
waves. Apart from the behaviors in the above five cases,
the aforementioned two branches of the second-order solitary
waves can also be characterized by the periodic variations in
their own shapes and velocities, and this periodic variation
characteristic becomes more visible when they become closer,
where the distances between those two branches are related to
c1 and c2, as seen in Figs. 8 and 9. In Fig. 8, the bound-state
solitary waves caused by the periodic interactions of the two
solitary waves are observed. Figure 9 presents an interaction
in which those two branches harmonize and do not bring into
the wave packet more unexpected high peaks and low valleys.
Hence, the we call them oscillation-state and bi-oscillation-
state solitary waves.

2. Case B: Interactions between the Type-II–Type-II,
Type-II–Type-III, and Type-III–Type-III solitary waves of Eqs. (1)

For α(τ ) �≡ 0, the two branches of the second-order soli-
tary waves are both the modulated solitary waves. When
a2

1 + b2
1 = a2

2 + b2
2, the bound-state, oscillation-state, and bi-

oscillation-state solitary waves can also be observed during

the interaction of the two modulated solitary waves. As ex-
pected, two interactive Type-II solitary waves lead to the
short-time variations in their shapes, while two interactive

FIG. 8. Interaction between the two Type-I solitary waves
brings into being the bound-state solitary waves via solutions
(9), with k1 = 5

2 + 3
√

3
2 i, k2 = −2 + 3i, σ =5, P=Cg2 = 1, Cg1 =

2, ϕ(τ ) = −120, �1 =3, �2 = 2 (the first line), and �1 = �2 = 0
(the second line).
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FIG. 9. Interaction between the two Type-I solitary waves
brings into being the oscillation-state and bi-oscillation-state soli-
tary waves via solutions (9), with k1 = 2 − 3i, k2 = −2 + 3i, σ =
5, P = Cg2 = 1, Cg1 = 2, ϕ(τ ) = −120, �1 = �2 = −5 (the first
line), �1 = �2 = 0 (the second line), and �1 = �2 = 1 (the third line).

Type-III solitary waves lead to the appearance of the bulges,
as seen in Figs. 10 and 11. Figure 12 shows that the weak
oscillations may appear in the interaction zone of Type-II and
Type-III solitary waves. In fact, if we set α(τ ) ≡ 0 or reset the
phase of one solitary wave in Fig. 12, Type-II and Type-III

FIG. 10. Interaction between the two Type-II solitary waves
via solutions (9), with k1 = 2 − 3i, k2 = −2 + 3i, �1 = �2 = 1,
σ = 5,P = Cg2 = 1,Cg1 = 2, ϕ(τ ) = 10 sech(τ ) − 120.

FIG. 11. Interaction between the two Type-III solitary waves
via solutions (9), with k1 = 2 − 3i, k2 = −2 + 3i, �1 = �2 = 0,
σ = 5,P = Cg2 = 1,Cg1 = 2, ϕ(τ ) = 40 sech(τ ) − 120.

solitary waves will lead to the same oscillations as those in
Fig. 6 except that the oscillations are weakened.

III. BREATHER AND ROGUE WAVE MODES OF THE
BAROCLINIC WAVE PACKETS

In this section, we will investigate the modulation effects of
the long waves on the breathers and rogue waves. Assuming
that

g = λei[Qξ+R(τ )][1 + ϑ1eKξ+W (τ )+! + ϑ2eK∗ξ+W ∗(τ )+!∗

+ pϑ1ϑ2e(K+K∗ )ξ+W (τ )+W ∗(τ )+!+!∗
],

f = 1 + eKξ+W (τ )+! + eK∗ξ+W ∗(τ )+!∗

+ pe(K+K∗ )ξ+W (τ )+W ∗(τ )+!+!∗
, (23)

and substituting them in bilinear forms (8), we present
�, p, ϑ1, ϑ2, R(τ ), and W (τ ) in Appendix B with K (K �=
0) and ! being the complex constants, and λ and Q being the
nonzero real constants. Then, the breather solutions of Eqs. (4)

FIG. 12. Interaction between Type-II and Type-III solitary
waves via solutions (9), with k1 = 2 − 3i, k2 = −2, �1 = 0,
�2 = 25, σ = 5, P = Cg2 = 1, Cg1 = 2, ϕ(τ ) = 40 sech(τ ) − 120.
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are presented as

ψ1 = λei[Qξ+R(τ )] 1 + ϑ1eKξ+W (τ )+! + ϑ2eK∗ξ+W ∗(τ )+!∗ + pϑ1ϑ2e(K+K∗ )ξ+W (τ )+W ∗(τ )+!+!∗

1 + eKξ+W (τ )+! + eK∗ξ+W ∗(τ )+!∗ + pe(K+K∗ )ξ+W (τ )+W ∗(τ )+!+!∗ ,

ψ2 = 2
∂2

∂ξ∂τ
ln[1 + eKξ+W (τ )+! + eK∗ξ+W ∗(τ )+!∗ + pe(K+K∗ )ξ+W (τ )+W ∗(τ )+!+!∗

] + α(τ ). (24)

Setting ! = iπ and taking K → 0, we obtain the rogue wave
solutions of Eqs. (4) as

ψ1 = λei[Qξ+R(τ )]

(
1 + ĝ

f̂

)
,

(25)

ψ2 = 2
∂2 ln f̂

∂ξ∂τ
+ α(τ ),

with

f̂ = (Q2 + 2λ2ς )(2λ2ξ 2ς + 1) + 2λ2ςR(τ )[R(τ ) − 2Qξ ],

ĝ = 8iλ2ςR(τ ) − 4(Q2 + 2λ2ς ).

Substituting Eqs. (24) and (25) into Eqs. (3), respectively,
we can obtain the modulated breathers and rogue waves
of Eqs. (1). Due to the modulation of the long wave
(Cg1−Cg2 )2

Cg2P α(T − C−1
g2 X ), evolution behaviors of the wave pack-

ets (whether in the form of the breathers or rogue waves) are
enriched, as described in Figs. 13 and 14. In Refs. [14–17], the
breathers without the modulations propagate with the periodic
shape variations on several straight lines, and the rogue waves
without the modulations possess the symmetrical structures
composed of multiple peaks and valleys. Apart from those
behaviors, the wave packets can also exhibit the following
additional behaviors.

On the one hand, for the modulated breathers, evolution
trajectories of the wave packets lose the linear property and
are determined by α(τ ), while the modifications of the basic
flow propagate with the long-wave backgrounds. Besides,
each element of the breathers, which is actually a rogue wave,
is distorted and stretched. Those distortions and stretches
become more visible in the evolution of the modulated rogue
waves. Taking the first-order rogue waves as an example, we
find that the connections between the two valleys and one peak
lose the original collinearity. On the other hand, modulated
rogue waves exhibit more peaks and valleys on the X -T plane

FIG. 13. Breathers via solutions (24), with P = Cg2 = Q =
σ = λ = 1,Cg1 = K = 2,! = 0, α(τ ) = 10 sech(τ ) + 10 sech(τ +
10) + 10 sech(τ − 10).

than the unmodulated rogue waves, and changing α(τ ) we
can adjust the numbers of the peaks and valleys of the rogue
waves. For instance, if α(τ ) is selected as a linear function, via
the analysis on Eqs. (25), there will be at most two peaks and
four valleys on the X -T plane for the first-order rogue waves,
and certainly, with the parameter regulations, we may obtain
the rogue waves with one peak and three valleys. Similarly,
if α(τ ) is a quadratic function, we will observe the first-order
rogue waves with three peaks and six valleys at most. If α(τ )
is a sine function, we will observe the rogue waves with the
innumerable peaks and valleys. Note that the maximum am-
plitudes of the modulated breathers and rogue waves are un-
related to α(τ ). In addition, under the condition α(τ ) ≡ δ, the
breathers develop into the M- or W-shaped solitary waves or
multipeak solitary waves, while the rogue waves develop into
the W-shaped solitary waves, as described in Figs. 15 and 16.

IV. CONCLUSIONS

In this paper, we have investigated the quasigeostrophic
two-layer model, as shown in Fig. 1, which is used to describe
the nonlinear evolution of the wave packets in a marginally
stable or unstable baroclinic shear flow. Introducing certain
long waves into the wave-induced modifications of the basic
flow, we have found that the wave packets are modulated by
the long waves, resulting in different behaviors from those
in Refs. [2,3,11–21]. With the bilinear method, modulated
N th-order solitary waves (9), breathers (24), and rogue waves
(25) for wave-packet equations (1) have been constructed.
Based on the modulation effects of the long waves, the solitary
waves have been classified into three types: Type-I, Type-
II, and Type-III solitary waves, as described in Figs. 2–5.
It has been found that Type-I solitary waves, without the
modulations, propagate with the constant velocities and per-
manent bell shapes; that Type-II solitary waves, with the
weak modulations, are shape changing within a short time and

FIG. 14. Rogue waves via solutions (25), with P= 1
5 ,Cg2 =

Q=σ =λ=1,Cg1 = 2, α(τ ) = 3 sech(τ ) + 3 sech(τ + 10)
+ 3 sech(τ − 10).
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FIG. 15. Multipeak solitary waves via solutions (25), with P =
Cg2 = Q = σ = λ = 1, Cg1 = 2, K = 2 + 3i, ! = 0, α(τ ) = 1.

subsequently return to the bell-shaped state; and that Type-III
solitary waves, with the strong modulations, propagate with
not only the shape variations but also the appearances, splits,
combinations, and disappearances of certain bulges. For the
interaction between the two unmodulated solitary waves, it
has been revealed that the two Type-I solitary waves with
different velocities can bring about the oscillations in the
interaction zone, as described in Figs. 6 and 7, and that the
two Type-I solitary waves with the same velocity bring into
being the bound-state, oscillation-state, and bi-oscillation-
state solitary waves, as described in Figs. 8 and 9. For
the interaction between the two modulated solitary waves,
bound-state, oscillation-state, and bi-oscillation-state solitary
waves with short-time variations of shapes or appearances
of the bulges have been observed, as seen in Figs. 10–12.
Due to the modulations of the long waves, breathers and
rogue waves have been distorted and stretched in the evo-
lution, as shown in Figs. 13 and 14. Those distortions and

FIG. 16. W-shaped solitary waves via solutions (25), with P =
1
5 , Cg2 = Q = σ = λ = 1, Cg1 = 2, α(τ ) = 1.

stretches have been seen to be mainly manifested in two
aspects: one is the evolution trajectories for the breathers; the
other is the shape variations for each element of the breathers
as well as the rogue waves. Numbers of peaks and valleys
for the rogue waves have been demonstrated to be adjustable
via the modulations. In addition, we have found that the
modulated breathers and rogue waves can degenerate into the
M- or W-shaped or multipeak solitary waves under certain
conditions, as presented in Figs. 15 and 16.
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APPENDIX A
The |g1 + g3|2 and |1 + f2 + f4|2 are presented as

|g1 + g3|2 = e2H + e2G + 2 cos θeH+G + P
(
h1a2

2 + h2a2
1

)
4a2

1a2
2s2

1(Cg1 − Cg2)2
e2H+2G + P(h1 cos θ + q1 sin θ )

4a2
1s2

1(Cg1 − Cg2)2
e3H+G

+ P(h2 cos θ − q2 sin θ )

4a2
2s2

1(Cg1 − Cg2)2
eH+3G + P2[(q1q2 + h1h2) cos θ + (q1h2 − q2h1) sin θ ]

32a2
1a2

2s4
1(Cg1 − Cg2)4

e3H+3G

+ P2
(
q2

1 + h2
1

)
64a4

1s4
1(Cg1 − Cg2)4

e4H+2G + P2
(
q2

2 + h2
2

)
64a4

2s4
1(Cg1 − Cg2)4

e2H+4G,

|1 + f2 + f4|2 = 1 + Pe2H

4a2
1(Cg1 − Cg2)2

+ Pe2G

4a2
2(Cg1 − Cg2)2

+ 2rPeH+G

s2
1(Cg1 − Cg2)2

+ P2e4H

64a4
1(Cg1 − Cg2)4

+ P2e4G

64a4
2(Cg1 − Cg2)4

+ rP2e3H+G

4a2
1s2

1(Cg1 − Cg2)4
+ rP2eH+3G

4a2
2s2

1(Cg1 − Cg2)4
+ r2P2e2H+2G

s4
1(Cg1 − Cg2)4

+
(
s2

1 + s2
2

)
P2e2H+2G

32a2
1a2

2s2
1(Cg1 − Cg2)4

+ rs2
2P3e3H+3G

32a2
1a2

2s4
1(Cg1 − Cg2)6

+ s2
2P3e4H+2G

256a4
1a2

2s2
1(Cg1 − Cg2)6

+ s2
2P3e2H+4G

256a2
1a4

2s2
1(Cg1 − Cg2)6

+ s4
2P4e4H+4G

4096a4
1a4

2s4
1(Cg1 − Cg2)8

,
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with

s1 = (a1 + a2)2 + (b1 − b2)2, s2 = (a1 − a2)2 + (b1 − b2)2,

q1 = 4a1(b1 − b2)
[
a2

1 − a2
2 − (b1 − b2)2

]
, q2 = 4a2(b1 − b2)

[
a2

1 − a2
2 + (b1 − b2)2

]
,

h1 = [
a2

2 − a2
1 + (b1 − b2)2

]2 − 4a2
1(b1 − b2)2, h2 = [

a2
1 − a2

2 + (b1 − b2)2
]2 − 4a2

2(b1 − b2)2,

r = cos θ [(a1 + a2)2 − (b1 − b2)2] + 2 sin θ (a1 + a2)(b1 − b2),

H = c1 − a1M

a2
1 + b2

1

+ a1X

[
1 − σ 2(

a2
1 + b2

1

)
(Cg1 − Cg2)2

]
− a1T

[
Cg1 − σ 2Cg2(

a2
1 + b2

1

)
(Cg1 − Cg2)2

]
,

G = c2 − a2M

a2
2 + b2

2

+ a2X

[
1 − σ 2(

a2
2 + b2

2

)
(Cg1 − Cg2)2

]
− a2T

[
Cg1 − σ 2Cg2(

a2
2 + b2

2

)
(Cg1 − Cg2)2

]
,

θ = d1 − d2 + Mb1

a2
1 + b2

1

− Mb2

a2
2 + b2

2

+ X

[
b1 − b2 + σ 2b1(

a2
1 + b2

1

)
(Cg1 − Cg2)2

− σ 2b2(
a2

2 + b2
2

)
(Cg1 − Cg2)2

]

− T

[
(b1 − b2)Cg1 + σ 2b1Cg2(

a2
1 + b2

1

)
(Cg1 − Cg2)2

− σ 2b2Cg2(
a2

2 + b2
2

)
(Cg1 − Cg2)2

]
.

APPENDIX B
The � , p, ϑ1, ϑ2, R(τ ), and W (τ ) are expressed as

� = λ2ς, R(τ ) = − 1

Q

∫
[δ − α(τ )]dτ, ϑ1 = K2 + λ2ς ±

√
K2(K2 + 2λ2ς )

λ2ς
,

ϑ2 = K∗2 + λ2ς ∓
√

K∗2(K∗2 + 2λ2ς )

λ2ς
, W (τ ) = −QK ∓ i

√
K2(K2 + 2λ2ς )

Q2 + K2 + 2λ2ς
R(τ ),

p = −2(K − K∗)2 + λ2ς [2 − (ϑ1ϑ
∗
1 + ϑ2ϑ

∗
2 )]

2(K + K∗)2 + λ2ς [2 − (ϑ1ϑ2 + ϑ∗
1ϑ

∗
2 )]

.
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