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Predominance of the weakest species in Lotka-Volterra and May-Leonard
formulations of the rock-paper-scissors model
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We revisit the problem of the predominance of the “weakest” species in the context of Lotka-Volterra and
May-Leonard formulations of a spatial stochastic rock-paper-scissors model in which one of the species has
its predation probability reduced by 0 < Pw < 1. We show that, despite the different population dynamics and
spatial patterns, these two formulations lead to qualitatively similar results for the late time values of the relative
abundances of the three species (as a function of Pw), as long as the simulation lattices are sufficiently large
for coexistence to prevail—the “weakest” species generally having an advantage over the others (specially over
its predator). However, for smaller simulation lattices, we find that the relatively large oscillations at the initial
stages of simulations with random initial conditions may result in a significant dependence of the probability of
species survival on the lattice size.
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I. INTRODUCTION

Nonhierarchical competition interactions have been shown
to play a crucial role in the preservation of coexistence. The
classical rock-paper-scissors (RPS) model [1,2], the simplest
cyclic predator-prey model, describes the dynamics of three
different species subject to interspecific competition (see
Refs. [3–5] for the pioneer work by Lotka and Volterra and
then May and Leonard). The spatial RPS model incorporates
some of the major ingredients associated to the observed
dynamics of biological and ecological systems, including in-
terspecific predation, reproduction, and mobility interactions.
It allows for the stable coexistence of all three species and
successfully reproduces some of the main dynamical features
observed in simple biological systems with cyclic selection
interactions [1,6–9]. Cyclic interactions also play a funda-
mental role in public goods games with positive and negative
incentives [10–15].

Simulations of the spatial RPS model are usually per-
formed on a square lattice (see Refs. [16–19], however, for
other lattice configurations) and consider nearest-neighbor
cyclic predator-prey interactions. There are two standard
formulations of the RPS model with three species. One is
the Lotka-Volterra formulation (three-state), in which each
site is occupied by a single individual of one of the three
species and there is a conservation law for the total number
of individuals. The other is the May-Leonard formulation
(four-state), in which the lattice sites can either be occupied
by a single individual or left empty, resulting, in general, in
a nonconservation of the number of individuals. For small-
enough mobility rates, both Lotka-Volterra and May-Leonard
formulations of spatial RPS models have been shown to
generally lead to the stable coexistence of all three species.

However, complex spiralling patterns, observed in stochastic
simulations of the May-Leonard formulation of the spatial
RPS model, appear to be absent in square lattice simulations
of the Lotka-Volterra formulation [20]—this is no longer
the case when off-lattice simulations of the Lotka-Volterra
formulation are considered [21] (see Ref. [22] and references
therein for a detailed account of the differences between the
two formulations of the PRS model).

Generalizations of the RPS model involving additional
species and interactions have also been investigated in recent
years [22–39]. Complex dynamical spatial structures (such as
spirals with an arbitrary number of arms [26,36,40], domain
interfaces, with or without nontrivial internal dynamics [41],
and string networks, with or without junctions [42,43]), di-
verse scaling laws [26,34], and phase transitions [6,10,44–
50] have been shown to naturally emerge in some of these
scenarios.

In most of these models the species may be characterized
as having equal strength, with the survival probability being
mainly dependent on initial conditions. However, there are
other situations in which there is a competitive difference
between species, such as in the case of a RPS model in
which one of the species (often termed the “weakest”) has
a reduced predation probability Pw. It has been shown in
Refs. [51,52] that in a Lotka-Volterra formulation of this
model, the “weakest” species tends to be the most abundant.
This is particularly interesting and counterintuitive, consider-
ing that in Darwin’s theory of evolution the strongest species
are expected to dominate. These results have recently been
challenged in Ref. [53], with the authors claiming that some
of the model parameters have a significant impact on which
species survives in a May-Leonard formulation.
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In this paper we shall address the question of whether
the predominance of the “weakest” species generally occurs
in both Lotka-Volterra and May-Leonard formulations of the
RPS model. The outline of this paper is as follows. In Sec. II
we start by considering a nonspatial RPS model in which one
of the species has a reduced predation probability, discussing
the properties of its stationary solutions in both Lotka-Volterra
and May-Leonard formulations. In Sec. III we describe these
two formulations of the spatial stochastic RPS model and
present the corresponding results. Special emphasis is given
to the dependence of the survival probability on the size of
the simulation lattice, and to the way the average densities of
the three species depend on the reduced predation probability,
parameterized by Pw, for sufficiently large simulation lattices.
Finally, we conclude in Sec. IV.

II. NONSPATIAL RPS MODEL

Let us start by considering Lotka-Volterra and May-
Leonard formulations of the nonspatial RPS model.

A. Lotka-Volterra

A Lotka-Volterra formulation of the RPS model considers
three species with densities ρ1, ρ2, and ρ3, such that ρ1 + ρ2 +
ρ3 = 1 (the total density is normalized to unity). At each time
step an individual of one of the species i is selected at random
and the predation interaction

i (i + 1) → i i,

with i = 1, . . . , 3, is performed with probability pi. In this
paper, modular arithmetic, where integers wrap around on
reaching 1 or 3, is assumed (the integers i and j represent the
same species whenever i = j mod 3, where mod denotes the
modulo operation).

With an appropriate choice of time unit, the equations for
the evolution of the densities of the different species may be
written as

ρ̇i = pi ρi ρi+1 − pi−1 ρi−1 ρi, (1)

where a dot represents a derivative with respect to time.
Stationary solutions to Eq. (1) satisfy the condition ρ̇i = 0 and
are, therefore, characterized by

ρi+1 = pi−1

pi
ρi−1,

3∑

i=1

ρi = 1. (2)

Here we shall be interested in the case where p1 = Pw p and
p2 = p3 = p, with 0 < Pw < 1, so that ρ1 = ρ2 = ρ3/Pw.
Hence, Eq. (2) implies that the stationary solutions of Eq. (1)
are characterized by

ρ1 = ρ2 = 1

2 + Pw

ρ3 = Pw

2 + Pw

, (3)

with ρ1 = ρ2 > ρ3.

B. May-Leonard

In a May-Leonard formulation of the RPS model the total
density of individuals is no longer conserved. In this case,
ρ0 + ρ1 + ρ2 + ρ3 = 1 where, for uniformity of notation, ρ0

shall be referred to as the density of empty sites—denoted by
a “0”—even when considering a nonspatial RPS model. At
each time step an individual of one of the species i is selected
at random and an interaction is performed: either predation

i (i + 1) → i 0,

with probability pi, or reproduction

i 0 → ii,

with probability r (assumed to be the same for all the
species)—notice that predation has a different meaning in
Lotka-Volterra and May-Leonard formulations of the RPS
model. Again, with an appropriate choice of time unit, the
equations for the evolution of the densities of the different
species may be written as

ρ̇i = r ρi ρ0 − pi−1 ρi−1 ρi, (4)

while the evolution of the density of empty sites is given by

ρ̇0 = −r ρ0

3∑

i=1

ρi +
3∑

i=1

pi−1 ρi−1 ρi. (5)

Stationary solutions to Eqs. (4) and (5) satisfy the conditions
ρ̇i = 0 and ρ̇0 = 0 and are, therefore, characterized by

pi−1 ρi−1 = r ρ0, ρ0 +
3∑

i=1

ρi = 1. (6)

Again, we shall be interested in the case where p1 = Pw p,
with p2 = p3 = p, with 0 < Pw < 1. Equation (6) implies
that the stationary solutions to Eqs. (4) and (5) are charac-
terized by

ρ0 = 1

1 + r
p

(
2 + 1

Pw

) , (7)

ρ1 =
r

pPw

1 + r
p

(
2 + 1

Pw

) , (8)

ρ2 = ρ3 =
r
p

1 + r
p

(
2 + 1

Pw

) , (9)

with ρ1 = ρ2/Pw = ρ3/Pw, so that ρ1 > ρ2 = ρ3.
Hence, we may conclude that in both Lotka-Volterra and

May-Leonard formulations of the nonspatial RPS model the
“weakest” species (1) has a competitive advantage. In a May-
Leonard formulation the stationary density of individuals of
the “weakest” species is larger than that of the other two
species. On the other hand, in a Lotka-Volterra formulation the
competitive advantage is less pronounced, since the stationary
density of the “weakest” species is only larger than that of its
predator (its prey having an equal density).

III. SPATIAL ROCK-PAPER-SCISSORS MODEL

In this section we shall describe Lotka-Volterrra and May-
Leonard formulations of the spatial RPS model which we
shall investigate in the present paper. To this end, we shall
consider a N2 square lattice—N shall be referred to as its
linear size—with N sites and periodic boundary conditions.
In a Lotka-Volterra formulation every site is occupied by
a single individual of one of the three-species, while in a
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FIG. 1. The upper and lower panels display snapshots of the
spatial distribution of the different species on a 10002 lattice at t0 =
0, t1 = 16, t2 = 23, t3 = 30, t4 = 40, t5 = 48, t6 = 98, and t7 = 500
for a single Lotka-Volterra realization of the spatial stochastic RPS
model with random initial conditions (for m = 0.5, p = 0.5, and
Pw = 0.5). The central panel shows the evolution of the density of
the different species ρi for the entire time span of the simulation—the
weakest species being the most abundant at late times. Notice the
change in the overall color tone of the upper and lower panels,
associated to changes in the densities shown in the central panel.

May-Leonard formulation there is also the possibility of a
site being empty. The number of individuals of the species
i and the number of empty sites will be denoted by Ii and I0,
respectively—the density of individuals of the species i and
the density of empty sites shall be defined by ρi = Ii/N and
ρ0 = I0/N , respectively (note that ρ0 = 0 in a Lotka-Volterra
formulation). The possible interactions are the ones described
in the case of the nonspatial RPS model, plus mobility

i � → � i,

where � represents either an individual of any species or an
empty site.

At every simulation step, the algorithm randomly picks
an occupied site to be the active one, randomly selects one
of its adjacent neighbor sites to be the passive one, and
randomly chooses an interaction to be executed by the in-
dividual at the active position: predation, mobility, or repro-
duction with probabilities p, m, and r, respectively (r = 0
in a Lotka-Volterra formulation)—except if stated otherwise,
in this paper we use the von Neumann neighborhood (or
4-neighborhood) composed of a central cell (the active one)
and its four nondiagonal adjacent cells. These three actions
are repeated until a possible interaction is selected—note that
in both formulations of the RPS model the interaction cannot
be carried out whenever predation is selected and the passive
is not a prey of the active, while in a May-Leonard formulation

FIG. 2. The upper and lower panels display snapshots of the
spatial distribution of the different species on a 10002 lattice at t0 =
0, t1 = 17, t2 = 51, t3 = 118, t4 = 264, t5 = 454, t6 = 740, and t7 =
5000 for a single May-Leonard realization of the spatial stochastic
RPS model with random initial conditions (for m = 0.5, p = 0.25,
m = 0.25, and Pw = 0.5). The central panel shows the density of
the different species and empty sites (ρi and ρ0, respectively) for
the entire time span of the simulation—the weakest species being
generally the most abundant at late times. Notice the presence of
distinctive compact spatial domains of increasing characteristic size
in a variable one-species background up to t ∼ 103.

the interaction is not completed also if reproduction is selected
and the passive is not an empty site.

A generation time (our time unit) is defined as the time
necessary for N successive interactions to be completed.

A. Results

Figures 1 and 2 show, respectively, the population network
evolution in Lotka-Volterra and May-Leonard formulations
of the spatial stochastic RPS model with random initial
conditions—each site being initially occupied by a randomly
chosen single individual of any of the three species with a
uniform discrete probability of 1/3.

In Fig. 1 (Lotka-Volterra formulation) the upper and lower
panels display snapshots of the spatial distribution of the
different species on a 10002 lattice at t0 = 0, t1 = 16, t2 = 23,
t3 = 30, t4 = 40, t5 = 48, t6 = 98, and t7 = 500 for a single
Lotka-Volterra realization of the spatial stochastic RPS model
with m = 0.5, p = 0.5, and Pw = 0.5—species 1, 2, and 3 are
represented in red, blue, and green, respectively. Notice the
change in the overall color tone which takes place in the early
stages of the simulation, associated to changes in the densities
of the three species. Such oscillations are clearly visible in
the central panel of Fig. 1 which shows the evolution of the
density ρi of the different species for the entire time span of
the simulation—the red, blue, and green lines (from top to
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FIG. 3. Probability of single species survival and coexistence as
a function of the linear lattice size for a May-Leonard formulation of
the spatial stochastic RPS model with m = 0.3, p = 0.35, r = 0.35,
and Pw = 0.5. Each point was estimated from 104 simulations with
a total simulation time equal to 2 × 104 generations, starting from
random initial conditions with ρ1 = ρ2 = ρ3 = 1/3. The error bars
are always much smaller than the size of the symbols.

bottom, respectively) representing the densities of species 1,
2, and 3, respectively. Figure 1 shows that after short transient
initial stage, with relatively large coherent oscillations, the
densities of the three species quickly approach nearly constant
values, with ρ1 > ρ2 > ρ3. It reveals the predominance of the
“weakest” species (1), especially over its predator (3).

In Fig. 2 (May-Leonard formulation) the upper and lower
panels show snapshots of the spatial distribution of the differ-
ent species on a 10002 lattice at t0 = 0, t1 = 17, t2 = 51, t3 =
118, t4 = 264, t5 = 454, t6 = 740, and t7 = 5000, for a single
May-Leonard realization of the spatial stochastic RPS model
with m = 0.5, p = 0.25, r = 0.25, and Pw = 0.5—species
1, 2, and 3, and empty sites are represented in red, blue,
green, and white, respectively. The most prominent feature in
the snapshots shown in Fig. 2 is the presence of distinctive
compact spatial domains of increasing characteristic size in a
variable one-species background up to t ∼ 103. At larger t the
percolation between three-species spatial domains eventually
leads to a population network of spiral patterns. The central
panel of Fig. 2 depicts the evolution of the density of the
different species and empty sites (ρi and ρ0, respectively).
As in Fig. 1, the red, blue, and green lines represent the
densities of species 1, 2, and 3, respectively, but in this case
there are also empty sites whose density is given by the
gray bottom line. Figure 2 shows that in a May-Leonard
formulation there is also a transient initial stage prior to an
asymptotic regime in which the densities of the three species
quickly approach nearly constant values, with ρ1 ∼> ρ2 > ρ3.
However, the evolution is considerably slower and the fluctu-
ations are considerably larger compared to a Lotka-Volterra
formulation.

In the case of a May-Leonard formulation, the large coher-
ent oscillations of the abundances of the various species in the
early stages of simulations of the spatial RPS model with ran-
dom initial conditions may result in a significant dependence
of the surviving or most abundant species on the linear size of
the lattice bellow a given linear size threshold Nth, even in the
case of simulations with a large total simulation time. This is
shown in Fig. 3 which depicts the probability of single species
survival and coexistence as a function of the linear size of the
simulation lattice for a May-Leonard formulation of the spa-
tial stochastic RPS model with m = 0.3, p = 0.35, r = 0.35,

FIG. 4. The same as in Fig. 5 but for m = 0.5, p = 0.25, r =
0.25, and Pw = 0.5. Figures 3 and 4 show that above a threshold
linear size Nth (Nth ∼ 30 and Nth ∼ 110, respectively), the “weakest”
species has the largest probability to survive, but this no longer holds
for N < Nth.

and Pw = 0.5. Each point was estimated from 104 simulations
with a total simulation time equal to 2 × 104 generations,
starting from random initial conditions with ρ1 = ρ2 = ρ3 =
1/3. The error bars are always much smaller than the size of
the symbols: The one-sigma uncertainty in the value of P,
at each point, may be estimated as [P(1 − P)/104]1/2, with
a maximum of 5 × 10−3 for P = 0.5. Figure 3 shows that
for linear sizes N > Nth ∼ 30, the “weakest” species has the
largest probability to survive, but this no longer holds for
N < Nth.

Figure 4 is analogous to Fig. 3 but considers a different
choice of model parameters: m = 0.5, p = 0.25, r = 0.25,
and Pw = 0.5. The larger mobility leads to an increase of
the lattice linear size above which the “weakest” is the most
likely to survive (in this case, Nth ∼ 110), thus showing
that this threshold is strongly dependent on the choice of
models parameters. We also verified that the use of a Moore
neighborhood—composed of a central cell (the active one)
and the eight cells that surround it—leads to similar quali-
tative results to the ones presented in Figs. 3 and 4 for a von
Neumann neighborhood, albeit with significantly larger linear
thresholds (Nth ∼ 70 and Nth ∼ 370, respectively). Hence, the
small linear size (N = 50) associated to the limited total
simulation time (t = 250) of the simulations performed in
Ref. [53] using a Moore neighborhood explains the reported
impact of some of the model parameters on the determination
of the surviving species in a May-Leonard formulation of the
RPS model. The crucial role played by the size of the lattice
has also been recognized in the context of public goods games
with cyclic interactions, where some solutions can remain
completely invisible if the lattice size is not large enough [15].

Figure 5 shows the value of the average density of the three
species as a function of Pw for a Lotka-Volterra formulation
of the spatial stochastic RPS model. The data points result
from an average over the last 104 generations of simulations
with a time span equal to 1.5 × 103 generations performed on
a 10002 lattice. The results for Pw = 1 were computed first,
starting from random initial conditions (as in Fig. 1). The final
conditions of each simulation with Pw = 1 were used as ini-
tial conditions for a new simulation with Pw = 1 − 0.01. This
procedure was repeated until Pw = 0.01 was reached. Such
an approach was used in order to allow for a fast convergence
(we verified that, with such conditions, 5 × 103 generations
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FIG. 5. The value of the average density as a function of Pw for a
Lotka-Volterra formulation of the spatial stochastic RPS model with
m = 0.5 and p = 0.5. Each point results from an average over the last
104 generations of 10002 simulations with a time span equal to 1.5 ×
103 generations. The lines represent the stationary solution, given
in Eq. (3), for the density of the species 1 and 2 (solid line) and 3
(dashed line) obtained in the context of a Lotka-Volterra formulation
of the RPS model.

are sufficient for 〈ρi〉 to attain its asymptotic value). In this
way the large oscillations at the initial stages of simulations
with random initial conditions shown in Figs. 1 and 2—which,
depending on the value of Pw could be responsible for the loss
of coexistence on a relatively short timescale—are avoided.
Hence, this choice of initial conditions allowed us to obtain
results which, in the case random initial conditions, would
require larger simulation lattices. Figure 5 shows that the
“weakest” species is always the most abundant, thus having
a competitive advantage over the others, especially over its
predator. Figure 5 also shows that competitive advantage over
the other species increases as Pw decreases—the “weakest”
species and its prey having similar abundances for Pw > 0.6.
The lines in Fig. 5 represent the stationary solution, given in
Eq. (3), for the density of the species 1 and 2 (solid line) and
3 (dashed line) obtained in the context of a Lotka-Volterra
formulation of the nonspatial RPS model. Notice the remark-
able agreement between the spatial and nonspatial results in a
Lotka-Volterra formulation of the RPS model.

Figure 6 is analogous to Fig. 5, except that, in this case,
a May-Leonard realization of the RPS model with m = 0.5,
p = r = 0.25 is considered. Notice that, despite the consid-
erably different population dynamics and spatial patterns,
the late time asymptotic values of the relative abundances
of the three species (as a function of Pw) obtained for a
May-Leonard formulation are qualitatively similar to the ones
shown in Fig. 5 for a Lotka-Volterra formulation. In both cases
the “weakest” species generally has a competitive advantage
over the others—especially over its predator. Again, this is
particularly true at low values of Pw in both formulations.
However, in a May-Leonard formulation there is a regime,
for 0.6 < Pw < 1, in which the prey of the “weakest” species
(species 2) is the dominant one, albeit only by a small margin.
The lines in Fig. 6 represent the stationary solution, given in
Eqs. (7)–(9), for the density of the species 1 (solid line) and of
species 2 and 3 and empty sites (dashed line) obtained in the
context of a May-Leonard formulation of the nonspatial RPS
model with r = p. In the case of a May-Leonard formulation
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FIG. 6. Same as in Fig. 5 but for a May-Leonard realization of
the RPS model with m = 0.5 and p = r = 0.25. The lines represent
the stationary solution, given in Eqs. (7)–(9), for the density of the
species 1 (solid line) and of species 2 and 3, and empty sites (dashed
line) obtained in the context of a May-Leonard formulation of the
RPS model with p = r. Figures 5 and 6 show that for sufficiently
large lattices the “weakest” species generally has a competitive
advantage over the others, specially over its predator, both in the
Lotka-Volterra and May-Leonard formulations of the RPS model.

of the RPS model the differences between the spatial and
nonspatial results are significant. This is a result of the distinct
spatial structure and of the associated dynamics generated in
a May-Leonard formulation of the spatial RPS model.

We verified that the results shown in Figs. 5 and 6 would
remain essentially unchanged if a Moore neighborhood had
been used instead of a von Neumann one. We also checked
that for other values of p, m, and r (with r = 0 in the
case of a Lotka-Volterra formulation) the results obtained
for the dependence of the values of the average densities on
Pw are qualitatively similar to the ones shown in Figs. 5
and 6. This is partially explained by the fact that different
choices of the parameters may, to some extent, be absorbed
by a redefinition of time and spatial units. In particular, the
stationary solution for the values of the average densities in
the nonspatial Lotka-Volterra formulation given in Eq. (3)
only depends on Pw—any dependence on p may be absorbed
in the choice of a different time unit, which does not affect the
stationary solutions. In the case of a May-Leonard formulation
the stationary average densities given in Eqs. (7)–(9) depend
both on Pw and r/p, but the dependence on r/p has no
impact on which species is the most abundant one. In a spatial
version of the PRS model mobility also plays an important
role. However, in a mean-field description of a May-Leonard
formulation of the RPS model changes of m may be absorbed
by an appropriate redefinition of spatial units [2].

IV. CONCLUSIONS

In this paper we revisited the problem of the predominance
of the “weakest” species in the context of Lotka-Volterra
and May-Leonard formulations of a spatial stochastic RPS
model in which one of the species has a reduced preda-
tion probability. We have shown that, despite the signifi-
cant dynamical differences between Lotka-Volterra and May-
Leonard formulations of the RPS model, for sufficiently large
lattices the late time values of the relative abundances of the
various species display similar qualitative dependencies on the
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reduced predation probability (parameterized by Pw)—with
the “weakest” species being the most abundant or having an
average density extremely close to that of the most abundant
species. We have also found that if the linear size of the
lattice is not sufficiently large, then the probability of species
survival is strongly dependent on initial conditions, in which
case a higher probability of survival of the “weakest” species
does not generally happen, even in the case of random initial
conditions.

Our results are consistent with those obtained in Ref. [54],
where the basins of attraction for species extinction and coex-
istence have been investigated in the context a May-Leonard
formulation of the standard spatial RPS model. In Ref. [54]
it has been shown that the coexistence basin, consisting of
the set of initial conditions which generate a final state in
which all three species survive and coexist, shrinks as m/N
is enhanced and vanishes above a critical threshold value
of m/N . Furthermore, outside the coexistence basin which
species survives has been found to depend crucially on initial
conditions. In the present paper, we have confirmed that, for
a fixed m, the coexistence basin increases with N also in the
context of a spatial RPS model in which one of the species
has a reduced predation probability. Furthermore, we have
characterized the dependence of the late time average density
of the various species in the limit of large N as a function

of the reduced predation probability parameter Pw—in the
case studied in Ref. [54], all three species have equal strength
and therefore would have the same asymptotic average density
inside the coexistence basin.

On the other hand, the crucial dependence of the surviving
species on initial conditions outside the coexistence basin
found in Ref. [54] is perfectly consistent with the fact that
the relatively large oscillations at the initial stages of simu-
lations with random initial conditions do lead to a significant
dependence of the probability of species survival on the lattice
size, which has been quantified in the present paper for a
fixed (large) simulation time. Note that in Ref. [53] this
dependence has not been properly taken into account, thus
leading to misleading conclusions which have been amended
in the present paper.
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