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We investigate the propagation characteristics of the chirped self-similar solitary waves in non-Kerr nonlinear
media within the framework of the generalized nonlinear Schrödinger equation with distributed dispersion, two-
power-law nonlinearities, and gain or loss. This model contains many special types of nonlinear equations that
appear in various branches of contemporary physics. We extend the self-similar analysis presented for searching
chirped self-similar structures of the cubic model to a more general problem involving two nonlinear terms of
arbitrary power. A variety of exact linearly chirped localized solutions with interesting properties are derived in
the presence of all physical effects. The solutions comprise bright, kink and antikink, and algebraic solitary wave
solutions, illustrating the potentially rich set of self-similar pulses of the model. It is shown that these optical
pulses possess a linear chirp that leads to efficient compression or amplification, and thus are particularly useful
in the design of optical fiber amplifiers, optical pulse compressors, and solitary wave based communication links.
Finally, the stability of the self-similar solutions is discussed numerically under finite initial perturbations.
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I. INTRODUCTION

Self-similar pulse propagation in single-mode optical
fibers is currently a subject of intensive theoretical and exper-
imental studies [1–7]. These self-similar waves are potentially
useful for various applications in optical soliton telecommuni-
cations, since they can maintain their overall shapes but allow
their amplitudes and widths to change with the modulation
of the system parameters such as dispersion, nonlinearity,
gain, inhomogeneity, and so on [8,9]. The underlying model
frequently exploited is the generalized nonlinear Schrödinger
equation (NLSE) with distributed dispersion, nonlinearity,
and gain or loss, which possesses a rich variety of linearly
chirped self-similar solutions under different parametric con-
ditions (see, e.g., Refs. [1,2]).

However, many practical materials have been shown to
display important physical effects, such as saturation, which
requires further generalizations of the NLSE to describe the
behavior of propagating envelopes. In such non-Kerr materi-
als, the nonlinear refractive index deviates from the Kerr law
leading to the appearance of additional higher-order physical
effects such as the quintic nonlinearity. Experimentally, the
competing cubic-quintic nonlinearity appears in many optical
materials, such as chalcogenide glasses [10], organic materi-
als [11], colloids [12], dye solutions [13], and ferroelectrics
[14]. For these media, an extension of NLSE including the
cubic-quintic nonlinearity is used to model the propagation
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of light pulses. It is worthy to note that the cubic-quintic
NLSE can also be seen as a particular form of the much more
generic NLSE with two-power-law nonlinearities, which has
attracted much interest in recent years [15–17]. This equation
governs the evolution of optical fields in a broad range of
nonlinear materials whose nonlinear refractive index presents
a generic power-law–type dependence on the electric field
amplitude E as [16] n = n0 + np|E |p + n2p|E |2p, where n0

is the linear index, np and n2p are the nonlinear coefficients,
and the exponent p is a positive constant [16]. For the case of
nonlinear saturation, we must have npn2p < 0 [16].

Recently, Kruglov et al. introduced an interesting self-
similar analysis to search for self-similar solutions to the
generalized NLSE with distributed dispersion, nonlinearity,
and gain or loss [1,2]. This analysis has been extended to
study chirped self-similar solutions of the generalized NLSE
with additional nonlinear gain or absorption term [5]. More re-
cently, the use of self-similar analysis has also been extended
to the case of cubic-quintic optical media, where the chirped
bright soliton solutions have been obtained in the anomalous
and normal dispersion regimes [18]. Until now, no attempts
had been made to find self-similar localized structures in NLS
models with two nonlinear terms of arbitrary power. This
problem is of prime importance since the governing equation
covers all types of single and competing nonlinearities that
are of physical interest in applications to various branches of
contemporary physics [15–19]. On the basis of this motiva-
tion, we adopt the self-similar analysis for investigating the
various exact self-similar solutions of the generalized NLSE
with distributed arbitrary two-power-law nonlinearities. As
is well known, solitary waves in non-Kerr nonlinear media
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differ fundamentally from solitons in a pure Kerr medium,
both in shape and interaction. It is interesting to note that
having an analytic self-similar solution with arbitrary power
has the advantage that we can also consider all particular cases
analytically, including the solutions that have been studied in
recent works. In addition, exact stable self-similar solutions
are of great significance for understanding of the nonlinear
dynamics and their relevant applications.

The paper is structured as follows. An extension of the self-
similar analysis to investigate chirped self-similar localized
solutions of the NLS model with arbitrary power-law non-
linearities is presented in Sec. II. Analytical results for exact
self-similar solitary wave solutions are collected in Sec. III.
The stability of those self-similar structures is addressed in
Sec. IV. The paper is concluded with Sec. V, where we also
put forward an extension of the self-similarity problem for
the case of propagating optical beams in a cubic-quintic-
septimal nonlinear medium which has been studied recently,
both experimentally and theoretically (see Refs. [20–25]).

II. MODEL AND SELF-SIMILAR ANALYSIS

We consider the evolution of optical pulses in a nonlinear
medium exhibiting two-power-law nonlinearities wherein the
pulse propagation is described by the generalized NLSE with
distributed coefficients:

iψz − β(z)

2
ψττ + γ1(z)|ψ |pψ − γ2(z)|ψ |2pψ − i

g(z)

2
ψ = 0,

(1)
where ψ (z, τ ) is the complex envelope of the electric field
and z and τ , respectively, represent the propagation distance
and retarded time. β(z) and g(z) represent the group-velocity
dispersion and the distributed gain or loss function, respec-
tively. The functions γ1(z) and γ2(z) stand for the nonlinearity
parameters related to the terms |u|pu and |u|2pu, respectively.

As we all know, in the absence of gain, Eq. (1) with
constant dispersion and nonlinearity coefficients has been
studied in abundant sets [15–17], and different types of soliton
solutions have been obtained. The one-soliton solution of the
case of dual-power law nonlinearity has also been investigated
using the traveling wave technique in Ref. [26]. Here, we
focus on self-similar solitary wave solutions of the model
with variable dispersion, variable power-law nonlinearities,
and variable gain or loss. Such a study is significant especially
for practical application in both optical fiber amplifier systems
and in fiber compressors.

Equation (1) contains many interesting particular cases
such as the generalized cubic NLSE (p = 2 and γ2(z) = 0)
[1,2], and the generalized cubic-quintic NLSE (p = 2) [18].
Considering the simplest case p = 1, g(z) = 0, and γ2 is
a constant, Eq. (1) reduces to the so-called quadratic-cubic
NLSE, which has been recently studied as an approximate
model of a relatively dense quasi-one-dimensional Bose-
Einstein condensate with repulsive contact interactions be-
tween atoms and a long-range dipole-dipole attraction be-
tween them [27]. Below, we consider the most general case, in
which p is arbitrary, and search for various exact self-similar
solutions, especially solitary wave solutions for the present
model. A variety of exact self-similar localized solutions is
found in the presence of all the physical parameters. This

allows the construction of exact propagating self-similar
waves for a subclass of NLS models with any particular
nonlinearity, such as the quadratic-cubic NLSE (for p = 1),
the cubic-quintic NLSE (for p = 2), and so on.

Now, we adopt the self-similar analysis to the cubic NLSE
[1,2] to investigate the chirped soliton solutions of the general
model (1). We start with the representation of the complex
field ψ (z, τ ) in the form

ψ (z, τ ) = U (z, τ )eiφ(z,τ ), (2)

where U and φ are the real amplitude and phase, which are
functions of z and τ. Insertion of Eq. (2) into Eq. (1) leads
to coupled real equations for U and φ that have a rather
cumbersome form. To simplify them, and in order to find the
linearly chirped self-similar solutions of Eq. (1), we assume a
quadratic phase given by

φ(z, τ ) = a(z) + c(z)(τ − τc)2, (3)

where a(z) and c(z) are functions of z and τc is the center of
the pulse. Moreover, the amplitude U (z, τ ) of the self-similar
solutions can be expressed in the form,

U (z, τ ) = 1√
�(z)

F (T ) exp

[
G(z)

2

]
, (4)

where the scaling variable T and the function G(z) are defined
by

T = τ − τc

�(z)
, G(z) =

∫ z

0
g(z′)dz′. (5)

Here, G(z) and F (T ) are some functions to be determined.
Without loss of generality, the function �(z) at z = 0 is
assumed to take the value �(0) = 1.

Substituting the solution (2) with the phase (3) into Eq. (1)
and separating into real and imaginary parts, we obtain the
following two equations:

U

[
da

dz
+ dc

dz
(τ − τc)2

]
= 2β(z)c2(z)(τ − τc)2U − β(z)

2
Uττ

+ γ1(z)U p+1 − γ2(z)U 2p+1 (6)

and

Uz = β(z)c(z)U + 2β(z)c(z)(τ − τc)Uτ + g(z)

2
U . (7)

Setting the coefficients of independent terms (τ − τc) j (with
j = 0, 2) in Eq. (6) equal to zero, one gets

dc

dz
= 2β(z)c2(z), (8)

U
da

dz
= −β(z)

2
Uττ + γ1(z)U p+1 − γ2(z)U 2p+1. (9)

On further substitution of Eq. (4) into Eq. (7), we find that
Eq. (7) is satisfied if the function �(z) is expressed as

1

�(z)

d�

dz
= −2β(z)c(z). (10)

Solving Eqs. (8) and (10) gives

c(z) = c0

1 − c0D(z)
, �(z) = 1 − c0D(z), (11)
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where c0 = c(0) is a nonzero integration constant and D(z)
represents the accumulated dispersion function given by

D(z) = 2
∫ z

0
β(z′)dz′. (12)

Upon substitution of the amplitude (4) into Eq. (9), we
arrive at the following nonlinear differential equation:

d2F

dT 2
+ 2�2

β

da

dz
F − 2γ1�

2−p/2

β
exp

[ p

2
G(z)

]
F p+1

+ 2γ2�
2−p

β
exp[pG(z)]F 2p+1 = 0, (13)

in terms of the function F (T ), which is only dependent on the
scaling variable T . Generally, the coefficients in Eq. (13) are
functions of variable z and as a result they must be constants
in order to find nontrivial solutions F (T ), i.e.,

−2�2

β

da

dz
= λ1, (14)

γ1�
2−p/2

β
exp

[ p

2
G(z)

]
= λ2, (15)

−γ2�
2−p

β
exp[pG(z)] = λ3, (16)

where λi(with i = 1, 2, 3) are constants. From Eqs. (14)–(16),
we obtain

λ1 = − 2

β(0)

da

dz

∣∣∣∣
z=0

, λ2 = γ1(0)

β(0)
, λ3 = −γ2(0)

β(0)
, (17)

because �(0) = 1 and G(0) = 0. In addition, the phase offset
a(z) can be determined by using Eq. (14) as

a(z) = a0 − λ1

2

∫ z

0

β(z′)dz′

[1 − c0D(z′)]2
, (18)

where we used the expression of �(z) given in Eq. (11) and
a0 is an integration constant. As a consequence, Eqs. (12) and
(18) yield an expression for a(z) as

a(z) = a0 − λ1D(z)

4[1 − c0D(z)]
. (19)

Combining Eqs. (3), (11), and (19), we can obtain the
expression of the function φ(z, τ ) as

φ(z, τ ) = a0 − λ1D(z)

4[1 − c0D(z)]
+ c0(τ − τc)2

1 − c0D(z)
, (20)

which reveals that the phase of the complex field can be well
controlled by engineering the dispersion profile for given c0

and τc. As concerns the amplitude evolution equation, one can
see that, for a nontrivial case, Eq. (13) can be written as

d2F

dT 2
− λ1F − 2λ2F p+1 − 2λ3F 2p+1 = 0. (21)

Employing the transformation [2] θ = T/τ0, one can con-
vert the preceding equation to the following form:(

dF

dθ

)2

= Kτ 2
0 + λ1τ

2
0 F 2 + 4λ2τ

2
0

(p + 2)
F p+2 + 2λ3τ

2
0

(p + 1)
F 2(p+1),

(22)

where τ0 is the initial pulse width and K is the integration
constant.

Now we proceed to find the distributed gain function using
Eqs. (15) and (16) and the same is given by

g(z) = 2

p

1

η(z)

dη(z)

dz
− 2c0β(z)

�(z)
, (23)

where we define the function η(z) as

η(z) = γ1(z)

γ2(z)
, η(0) = γ1(0)

γ2(0)
. (24)

From Eqs. (15) and (16), the condition for the variation of the
nonlinear parameter γ2(z) is

γ2(z) = −λ3

λ2
2

γ 2
1 (z)�2(z)

β(z)
. (25)

Based on all these findings, we can present the amplitude
of the self-similar solution of Eq. (1) as

U (z, τ ) =
(

ρ2(z)

ρ1(z)

ρ1(0)

ρ2(0)

)1/p

F

(
τ − τc

τ0[1 − c0D(z)]

)
, (26)

where we define the functions ρ1(z) and ρ2(z) as

ρ1(z) = β(z)

γ1(z)
, ρ2(z) = β(z)

γ2(z)
, (27)

ρ1(0) = β(0)

γ1(0)
, ρ2(0) = β(0)

γ2(0)
. (28)

Making use of the quantity ρ(z) = ρ2(z)/ρ1(z), we finally
write Eq. (26) in the form

U (z, τ ) =
(

ρ(z)

ρ(0)

)1/p

F

(
τ − τc

τ0[1 − c0D(z)]

)
. (29)

To summarize, the results given in Eqs. (11), (12), (17),
(19), and (22)–(25) are the required conditions for the exis-
tence of self-similar solutions in Eqs. (2)–(5) of the general-
ized NLSE with distributed coefficients given in Eq. (1).

III. CHIRPED SELF-SIMILAR SOLITARY
WAVE SOLUTIONS

In this section, we analytically solve the nonlinear dif-
ferential equation (22) and obtain many types of nontrivial
self-similar solutions under some parametric conditions. As
will be shown below, the functional form of these solutions
is dependent on the power of the nonlinearity p which can
take any integer value, and therefore enables us to get self-
similar solutions for any subclass of the general model (1). In
the following subsections, we intend to investigate the three
important self-similar solitary waves, namely, bright, kink,
and antikink and algebraic.

A. Chirped self-similar bright solitary waves

We first integrate Eq. (22) for the case K = 0 and use
Eq. (29) to obtain the following amplitude of the solitary wave
solution:

U (z, τ ) =
(

ρ(z)

ρ(0)

)1/p
[

Ab

cosh
[
μb

(
τ−τc

τ0[1−c0D(z)]

)] + B

]1/p

, (30)
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FIG. 1. Pulse compression of chirped self-similar bright soliton
when ρ1 = 1, ρ2 = 0.4, τ0 = 0.3, τc = −0.3, p = 2, and c0 = 0.1.

where Ab, B, and μb are real parameters given by the relations

Ab = − (p + 2)λ1B

2λ2
, μb = pτ0

√
λ1, (31)

with

B = ±
[

1 − (p + 2)2λ1λ3

2(p + 1)λ2
2

]−1/2

, (32)

provided that the arbitrary constant λ1 > 0 in order to ensure

the pulse width μb to be real, and λ1 < | 2(p+1)λ2
2

(p+2)2λ3
|.

Expression (30) together with the representation (2) de-
scribes a linearly chirped self-similar bright solitary pulse,
which propagates in a self-similar manner in a nonlinear
medium exhibiting two-power-law nonlinearities. In general,
it is well known that the chirping is highly useful in realizing
either a compressor or an optical amplifier. However, here,
we delineate the compression of chirped self-similar bright
solitary pulse under the influence of two-power-law nonlin-
earities. Figure 1 illustrates the compression of chirped self-
similar bright solitary pulse at various stages of propagation.

The above solution is a generalization of a particular
bright solution found in Ref. [18] for the case of the cubic-
quintic model. Specifically, when p = 2 and g(z) = 0, one can
obtain the relations λ2 = �

ρ1
, λ3 = − 1

ρ2
, and ρ(z)

ρ(0) = 1
�

from
Eqs. (15)–(17) and (27). In this case, and for the choice λ1 =
τ−2

0 and θ = τ−τc
τ0[1−c0D(z)] , the solution (30) can be reduced to a

simplified form

U (z, τ ) = 1

τ0[1 − c0D(z)]

×

⎡
⎢⎢⎣ ∓2ρ1√

1 + 8ρ2
1

3ρ2τ
2
0 [1−c0D(z)]2 cosh(2θ ) ± 1

⎤
⎥⎥⎦

1
2

, (33)

which when inserted in (2) yields the bright solitary pulse
solution of the cubic-quintic model found in Ref. [18].

It is worth noting that many sets of bright solitary waves
propagating in different nonlinear non-Kerr media can be

�4 �2 0 2 4

0

1

2

3

4

5

U
(
)

antikink

kink

ttikiikikiki

kinkinkikinkinkinkinkinkinkinkinkinkkinnkinkkinkinkkkkkkkkkkkkkkkkkk

FIG. 2. Propagation of chirped self-similar kink and antikink
solitary wave when λ3 = 0.9, λ2 = 0.7, p = 2, τc = −0.6, τ0 = 0.6,
and c0 = 0.2.

obtained from Eq. (30) if the value of the nonlinearity power
p is selected.

B. Chirped self-similar kink and antikink solitary waves

Another type of self-similar solution follows from

Eqs. (22) and (29) under the conditions λ1 = 2(p+1)λ2
2

(p+2)2λ3
and

K = 0. In this case, the amplitude of the solitary wave solution
takes the form

U (z, τ ) =
(

ρ(z)

ρ(0)

)1/p

×
[

Ak

(
1 ± tanh

[
μk

(
τ − τc

τ0[1 − c0D(z)]

)])]1/p

,

(34)

where

Ak = −λ1(p + 2)

4λ2
, μk = pτ0

√
λ1

2
, (35)

provided that λ1 > 0 to ensure the parameter μk to be real. We
also assume that λ2 < 0 and λ3 > 0.

Equation (34) together with the representation (2) de-
scribes kink structures, where the upper sign corresponds to
the kink-shaped solitary wave, while the lower sign corre-
sponds to the antikink-shaped solution. Figure 2 represents
the propagation of chirped self-similar kink and antikink
type solitary pulses under the influence of two-power-law
nonlinearities.

C. Chirped self-similar algebraic solitary waves

We also report another interesting solitary wave solution
for Eq. (22) under the parametric condition K = λ1 = 0. In
particular, for λ2 > 0 and λ3 < 0, we find the solution of
Eq. (22) with (29) is of the following form:

U (z, τ ) =
(

ρ(z)

ρ(0)

)1/p( 2λ2(p + 1)(p + 2)

2λ2
2τ

2
0 p2(p + 1)θ2 − λ3(p + 2)2

)1/p

,

(36)

where θ = τ−τc
τ0[1−c0D(z)] .
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FIG. 3. Propagation of chirped self-similar algebraic solitary
wave when λ3 = −0.2, λ2 = 0.5, p = 2, τc = −0.3, τ0 = 0.3, and
c0 = 0.15.

Solution (36) together with Eq. (2) describes a lin-
early chirped self-similar algebraic solitary pulse and its
propagation is depicted in Fig. 3 in a nonlinear medium ex-
hibiting two-power-law nonlinearities. It should be noted that
Eq. (22) could also admit other types of self-similar solutions
such as periodic and singular wave solutions. However, as
these solutions are beyond the scope of the paper, they will
be reported elsewhere.

Before we leave this section, we would like to mention
that Eqs. (30), (34), and (36) together with the representation
(2) interestingly describe the exact linearly chirped solitary
pulse solutions that can propagate self-similarly in non-Kerr
media with varying dispersion, two-power-law nonlinearities,
and gain and/or loss. Different from their simplest form given
within the constant-coefficient NLSE with two-power-law
nonlinear terms framework [15–17,26], the obtained solitary
wave solutions would take a different fundamental form; it
can exhibit a self-similar nature, which continually compress
or expand while propagating with a developing chirp in the
presence of gain or loss, respectively. This interesting property
has not been singled out so far in the setting of NLS models
with two nonlinear terms of arbitrary power.

IV. STABILITY OF THE CHIRPED SOLITARY WAVES

The stability of solitary wave solutions is of prime im-
portance for its physical feasibility. Note that only stable (or
weakly unstable) solitary waves can be observed experimen-
tally [28]. It is also interesting to note that the solitary waves
propagating in non-Kerr nonlinear media preserve their shape,
but their stability is not assured due to the nonintegrability of
the underlying generalized NLSE. In fact, their stability under
finite perturbation is a crucial issue. It is then essential to
analyze the stability of the evolution of exact solutions against
small perturbations.

To check the solution stability of the self-similar structures
presented earlier, as a representative case, we consider

FIG. 4. Simulation of stable self-similar propagation of
input profile given by Eq. (30). The parameters of the
simulation are β = −0.5 ps2m−1, γ1 = 0.2362 W−1m−1, γ2 =
0.4724 W−2m−1, τ0 = 5 ps, σ = 0.005 m−1, and g = 0.

Eq. (30), and perform the stability analysis using a split-step
Fourier method. The analysis is twofold: first we study the
propagation characteristics through direct numerical simula-
tion based on Eq. (1), followed by the stability check against
perturbation such as photon noise. Figure 4 shows the numer-
ical simulation of stable propagation of the self-similar solu-
tion. The parameters of choice are β = −0.5 ps2m−1, γ1 =
0.2362 W−1m−1, γ2 = 0.4724 W−2m−1, τ0 = 5 ps, σ =
0.005 m−1, and g = 0. Its worth noting that Fig. 4 attributes
to an ideal environment, which is not the case exactly
in real world problems. There are numerous effects that can
contribute to instability in the propagation of stable structures.
Therefore, it becomes necessary to study the stability of the
solution in an environment subject to external noise or
perturbations. To this end, we generated a photon noise,
which corresponds to 0.045% of the average power of the
input profile. This is indeed an appreciable noise level, which
can potentially perturb propagation characteristics. It is quite
evident from Fig. 5 that the present self-similar solution shows
a remarkable stability, despite a strong noise perturbation.

FIG. 5. Stability of the self-similar solution against perturba-
tion for parameters β = −0.5 ps2m−1, γ1 = 0.2362 W−1m−1, γ2 =
0.4724 W−2m−1, τ0 = 5 ps, σ = 0.005 m−1, and g = 0. The rela-
tive strength of the noise is 0.045%.
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FIG. 6. Evolution of the intensity profile and the colliding dy-
namics off self-similar structures as a function of propagation
distance.

For further insight into the robustness of the self-similar
structures, we extend to inspect the stability through a more
powerful test than the noise perturbation, namely, collision
stability. To perform the stability against collision, we syn-
thesize two similar entities and inject into two channels of
the waveguide. The simulation parameters are tuned in such
a way that the two entities collide within the simulation
window while they propagate down the fiber. Let U1 and U2

be the input profiles (z = 0) given by Eq. (30). The temporal
shift between the two input pulses is set to be 80 ps. The
system parameters are the same as defined before (refer to
caption). Figure 6 shows the propagation dynamics of the two
identical self-similar structures in the opposite channel. The
two entities converge during propagation and at a distance
Zc ≈ 60 m they collide as shown in Fig. 6. It is quite evident
from the intensity profile that the two pulse profiles collide
elastically and continue their propagation. This further con-
firms the remarkable stability and robustness of the underlined
self-similar structures.

V. CONCLUSION

In conclusion, we would like to point out that the present
work is a natural but significant generalization of envelope

soliton solutions propagating in non-Kerr media in the pres-
ence of two-power-law nonlinearities by considering dis-
tributed parameters of group velocity dispersion, power-law
nonlinearities, and gain or loss. We have studied ultrashort
pulse propagation in such media within the framework of the
generalized nonlinear Schrödinger equation with coefficients
varying with the propagation distance. A variety of exact
linearly chirped solitary pulse solutions that can propagate
self-similarly of this model have been found by means of
the self-similar scaling analysis. The solutions comprise the
chirped self-similar optical bright-, kink-, and antikink-type
solitary waves. We have also obtained the chirped self-similar
algebraic solitary wave solutions, which are very meaningful
in contemporary optics. The conditions on the model param-
eters for the existence of the derived self-similar structures
have also been presented. These conditions show a subtle
balance among the distributed dispersion, gain (loss), and two-
power-law nonlinearities, which have a profound implication
to control the solitary wave dynamics. It is found that the
functional form of these propagating envelopes is dependent
on the power of the nonlinearity which can take arbitrary
integer values, thus allowing us to obtain exact analytic self-
similar solutions of special models. These results provide
a significant generalization of chirped self-similar localized
waves propagating in non-Kerr media in the presence of two-
power-law nonlinearities. We are of the opinion that the results
reported in this work shall pave the way to realize very com-
pact and highly efficient pulse compressors whose advantages
would be the high degree of compression and the high quality
of the transform-limited compressed pulses.

It would be particularly relevant to extend the above anal-
ysis to study the self-similar propagation of optical beams
inside a nonlinear medium exhibiting nonlinearities up to the
seventh order. For such a problem, the beam propagation will
be governed by the generalized nonlinear Schrödinger equa-
tion with distributed dispersion, cubic, quintic, and septimal
nonlinearities and gain and/or loss. We note that the investi-
gation of soliton pulse propagation within the framework of
the cubic-quintic-septimal model with constant coefficients
has attracted much interest in recent years, because such
combined nonlinearities have been recently observed in some
optical materials (see Refs. [20–25]). Such studies will be
deferred to future work.
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