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Self-organization of multiarmed spiral waves in excitable media
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We present an investigation of self-organized multiarmed spiral waves pinned to unexcitable circular obstacles
in a thin layer of the excitable Belousov-Zhabotinsky reaction and in simulations using the Oregonator model.
The multiarmed waves are initiated by a series of wave stimuli. In the proximity of the obstacle boundary,
the wave rotation around the obstacle causes damped oscillations of the wave periods of all spiral arms. The
dynamics of wave periods cause the wave velocities as well as the angular displacements between the adjacent
arms to oscillate with decaying amplitudes. Eventually, all displacements approach approximately the same
stable value so that all arms are distributed evenly around the obstacle. A further theoretical analysis reveals that
the temporal dynamics of the angular displacements can be interpreted as underdamped harmonic oscillations.
Far from the obstacles, the wave dynamics are less pronounced. The wave period becomes stable very soon after
the initiation. When the number of spiral arms increases, the rotation of individual arms slows down but the wave
period of the multiarmed spiral waves decreases. Due to their short period, multiarmed spiral waves emerging in
the heart potentially result in severe pathological conditions.

DOI: 10.1103/PhysRevE.100.042203

I. INTRODUCTION

Spiral waves have been studied in various nonlinear reac-
tive systems, for instance, in the CO oxidation on a platinum
surface [1], in cell aggregation in slime mold colonies [2],
as calcium waves in Xenopus oocytes [3], in the Belousov-
Zhabotinsky (BZ) reaction [4], and as electrical spiral waves
of excitation in heart tissue [5]. It is conjectured that the
electrical spiral waves in heart tissue are related to tachycar-
dia which can lead to sudden cardiac death by ventricular
fibrillation [6,7]. These pathological cardiac conditions may
last over a prolonged time period when the spiral waves are
pinned to anatomical obstacles, e.g., blood vessels or scars
[5]. Therefore, it is important to study the dynamics of pinned
spiral waves in order to effectively eliminate the waves.

Unexcitable disks have been often used as obstacles to
study their influence on the dynamics of spiral waves. The
wave period, wavelength, and wave velocity of pinned spiral
waves increase with the obstacle diameter [8–12]. Further-
more, elimination of the pinned spiral waves was also found to
be affected by the obstacle size: unpinning a spiral wave from
a larger obstacle required stronger external forcing including
the application of a wave train [13,14] or an electrical field
[15,16].

Interaction of spiral waves results in complex dynamics
in excitable systems, for example, multiarmed spiral waves,
which are multiple spiral waves that rotate in the same di-
rection around a common center. Agladze and Krinsky [17]
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have demonstrated the creation of multiarmed spiral waves in
the Belousov-Zhabotinsky (BZ) reaction where a KCl droplet
was used as the obstacle. They mentioned that the multiarmed
spiral waves cannot exist in real excitable systems without an
obstacle. Steinbock and Müller [18] used a laser spot to create
a temporary obstacle for pinning multiarmed spiral waves in a
photo-sensitive BZ reaction. After the laser spot was switched
off, the obstacle area became excitable and individual cores
were formed for each arm.

Multiarmed spiral waves were also investigated in bio-
logical excitable media. They were formed in mounds of
Dictyostelium discoideum by a convergence of single spiral
waves located close to each other [19]. In a rabbit heart,
multiarmed spiral waves appeared to be associated with the
underlying anatomic structure [20]. In cardiac cell culture
samples, a short and rapid train of electrical stimuli created
multiarmed spiral waves rotating with a frequency higher than
that of single spiral waves [21].

In this article, we present the dynamics of multiarmed
spiral waves pinned to circular unexcitable obstacles in the
BZ reaction by using a series of wave stimuli close to an
impermeable partition. The experiments are corroborated by
simulations using the Oregonator model [22]. The dynamics
of waves close to and far from the obstacles are analyzed.

II. EXPERIMENTS

A. Experimental methods

The BZ reaction used in our experiments is composed of
NaBrO3, malonic acid (MA), H2SO4, and ferroin, all pur-
chased from Merck. In addition, a small amount of surfactant,
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FIG. 1. Initiation of a three-armed spiral wave pinned to an
obstacle in the BZ reaction. (a) A planar wave front is ignited close to
the partition to create the first arm. (b) The second and third arms are
generated. The labels 1, 2, and 3 depict the order of wave initiation.
(c) The partition is removed to allow autonomous wave propagation.
(d) After a transient interval, the forms of all arms are identical, and
the distances become alike.

sodium dodecyl sulfate (SDS, from Fluka), is added to the
solution to reduce the production of CO2 bubbles, which are
uncontrollable inhomogeneities. Stock solutions of NaBrO3

(1 M), MA (1 M), and SDS (1 M) are freshly prepared by
dissolving powder in deionized water, whereas stock solutions
of H2SO4 (2.5 M) and ferroin (25 mM) are commercially
available. Appropriate volumes of the stock solutions are
mixed and diluted in deionized water to form BZ solutions
with initial concentrations [NaBrO3] = 50 mM, [MA] =
50 mM, [ferroin] = 0.625 mM, [SDS] = 0.05 mM, and
[H2SO4] = 160 mM. To prevent hydrodynamic perturbations,
the reaction is prepared in 0.5% agar gel.

The experiments are performed using a transparent rect-
angular reactor with a volume of 100 × 50 × 10 mm3 and
its top plane (area 100 × 50 mm2). It is in contact with a
thermostating transparent bath to control the temperature at
22 ± 1 ◦C. The reactor is set between a white light source and
a color CCD camera (Super-HAD, Sony) to record the images
of the medium at intervals of 1 s with a spatial resolution of
100 μm pixel−1.

B. Experimental results

Figure 1 demonstrates the initiation of a three-armed spi-
ral wave using a partition method. A thin rectangular glass
plate and a chemically inert plastic cylinder are used as the
partition and the obstacle, respectively. The obstacle (6 mm
in diameter and 3 mm in height) is attached at the middle of
the reactor using silicone paste [see the circle in the middle
of Fig. 1(a)]. The partition is set between an inner wall of
the reactor and the obstacle [see the vertical thin line in the
middle of Fig. 1(a)]. A volume of 20 ml BZ solution is filled
into the reactor so that the thickness of the solution layer is
approximately 3–4 mm. Immersion of a silver plate into the
medium (close to the partition) stimulates two planar wave
fronts [thick band in Fig. 1(a)]. In the course of time, one wave
front propagating towards the partition will be annihilated
and the other will move away from the partition with its end
contacting the obstacle. This process is repeated to initiate
the second and the third wave fronts, as shown in Fig. 1(b).
Subsequently, the partition is removed so that the thin line

FIG. 2. Dynamics of the three-armed spiral wave. (a) Pixels
along the closed loop (dashed circle) are taken to construct (b) a
time-space plot (θ , t). Labels 1, 2, and 3 indicate the spiral arms
in the order of initiation. (c) The angular displacements between
adjacent spiral arms S12, S23, and S31 (solid, dashed, and dotted lines,
respectively) and (d) the angular velocities of the spiral arms ω1, ω2,
and ω3 (solid, dashed, and dotted lines, respectively) are plotted as a
function of time.

of partition disappears as shown in Fig. 1(c). Finally, the
distances between the adjacent spiral arms, which are initially
different, gradually become equal in the course of time; i.e.,
the structure follows a self-organized rotation, as shown in
Fig. 1(d).

Figure 2 illustrates an analysis of the dynamics of the
three-armed spiral waves. To elucidate the motion of the spiral
fronts attached to the obstacle, we take the gray level of the
pixels along a circular path close to the obstacle boundary, the
dashed circle as in Fig. 2(a), to formulate a time-space plot
shown in Fig. 2(b). The spiral fronts appear as bright lines in
this plot. In order to quantify the distribution of spiral arms
around the obstacle, we measure the angular displacement
between adjacent arms as follows.

At a given time, the angular positions (θ1, θ2, and θ3) of
the spiral arms in the time-space plot are identified. Then the
angular displacement Si j between two adjacent arms i and j
is calculated. Si j is the counterclockwise angle from arm i to
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arm j. The temporal evolution of angular displacements S12,
S23, and S31 is plotted in Fig. 2(c). For better understanding
of the wave dynamics, we calculate the angular velocity ωi of
each arm (ω1, ω2, and ω3), which is the temporal change of
the angular positions (θ1, θ2, and θ3, respectively) as shown in
Fig. 2(d).

The angular displacements S12, S23, and S31 [Fig. 2(c)]
oscillate with damped amplitudes. These oscillations are
caused by the three spiral arms rotating with angular velocities
ω1, ω2, and ω3 [Fig. 2(d)]. The time-dependent behavior of
the angular velocities originates, in fact, from the interaction
of the spiral arms. In the beginning, the first arm propagates
with a high velocity since the medium has a relatively high
excitability. The second arm has a lower velocity (ω1 > ω2)
because it is moving in the wake of the first one. This also
applies for the third arm so it has the lowest velocity. When the
measurement started at t = 0 min, the displacement between
arm 1 and arm 2 (S12) is larger than that between arm 2 and
arm 3 (S23) because the relation of the velocities is ω1 > ω2 >

ω3 (10.1 > 8.7 > 6.7◦ min−1).
We now describe the oscillation of the displacement S12

that is affected by the velocities ω1 and ω2. Soon after the
measurement starts, S12 increases because the first arm rotates
faster than the second one (ω1 > ω2). When the first arm
travels into the refractory tail of the third arm (θ1 > 90◦),
its velocity ω1 starts to decrease. S12 reaches a maximum at
20 min (i.e., when ω1 and ω2 are equal) and subsequently
decreases since the first arm becomes slower than the second
one (ω1 < ω2). After 40 min, ω1 increases from a minimum
until it equals ω2 at 60 min, so that S12 reaches a minimum
at this time. Then the first arm rotates again faster that the
second arm (ω1 > ω2), so that S12 increases until it reaches
a maximum at t = 105 min. The oscillation of S12 continues
with decreased amplitude, since the difference of ω1 and ω2

decreases in the further course of time.
Like S12, the oscillations of other displacements can be

explained by considering the velocities ω2 and ω3 (for S23)
or ω3 and ω1 (for S31). All displacements S12, S23, and S31 and
velocities ω1, ω2, and ω3 continually oscillate with amplitudes
decaying in time. After 120 min, the three arms are distributed
quite evenly around the obstacle: all angular displacements
approach 120.0◦ ± 1.5◦, and all arms rotate with a similar
angular velocity of 10.5◦ min−1 ± 0.2◦ min−1.

To gain a deeper understanding of the oscillations, the wave
periods of the spiral arms close to the obstacle Tobs are derived
from the time-space plot [Fig. 2(b)]. At a given instance of
time, the wave period of a spiral arm is defined as the delay
time between current and preceding spiral arms reaching
the same position θ . Note that the positions of all spiral
arms θ1, θ2, and θ3, where the periods are measured, change
with time since the fronts always move. Figure 3(a) shows
that the wave periods of spiral arms 1, 2 and 3 (T1obs, T2obs,
and T3obs) oscillate with damped amplitudes similar to their
corresponding angular velocities ω1, ω2, and ω3 [Fig. 2(d)].
Figure 3(b) illustrates the dispersion relation, which is a plot
of all wave velocities [Fig. 2(d)] as a function of the wave
periods [Fig. 3(a)]. Even though these variables are measured
close to the obstacle where the wave fronts are curved,
the velocity increases monotonously with the wave period,
similar to earlier results for propagating plane waves in the

FIG. 3. (a) Time-dependent wave periods close to the obstacle
Tobs of the spiral arms 1, 2, and 3: T1obs, T2obs, and T3obs (solid, dashed,
and dotted lines, respectively) and (b) dispersion relation of the three-
armed spiral wave. Circles represent the average value of measured
angular velocities corresponding to a given wave period; standard
deviation indicated by bars.

BZ reaction [23,24]. Thus, the damped oscillations of the
velocities [Fig. 2(d)] as well as the displacements [Fig. 2(d)]
originate from the dispersion relation and the oscillations of
the wave periods.

To analyze the wave dynamics far from the obstacle, the
wave period of the wave fronts emitted by the three-armed
spiral wave is measured. We performed additional experi-
ments to generate single-armed and two-armed spiral waves
in order to investigate the effect of the number of arms on the
wave period far from the obstacles. Unlike the oscillations in
Figs. 2(c) and 2(d), the wave periods change monotonously
at the beginning and subsequently approach stable values, as
shown in Fig. 4. When the number of arms increases, the
wave period decreases, i.e., the periods for the single-armed,
two-armed, and three-armed spiral waves are T1 = 26.2, T2 =
15.3, and T3 = 11.6 min, respectively. However, each of their
spiral arms completes one revolution within an interval that

FIG. 4. The wave period of multiarmed spiral waves. It is mea-
sured far from the obstacle (i.e., at the left bottom corner in Fig. 1).
Squares, circles, and triangles depict the period of single-armed,
two-armed, and three-armed spiral waves, respectively.
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increases with the number of arms: T1 = 26.2, 2T2 = 30.6,
and 3T3 = 34.8 min, and wave velocities are 1.13, 0.84, and
0.73 mm min−1 for the cases of one, two, and three arms,
respectively. Thus, the interaction of the spiral arms via the
refractory tail causes each arm to slow down.

III. SIMULATIONS

A. Simulation methods

Numerical simulations have been performed using the two-
variable Oregonator model to describe the dynamics of the
two variables u and v (corresponding to the concentrations of
HBrO2 and the catalyst, respectively, in the BZ reaction) as in
Eq. (1):

∂u

∂t
= 1

ε

(
u − u2 − f v

u − q

u + q

)
+ Du∇2u,

∂v

∂t
= u − v + Dv∇2v. (1)

Parameters ε = 0.01, q = 0.002, and f = 1.4, and diffusion
coefficients Du = 1.0 and Dv = 0.6 are chosen as in a study
by Jahnke and Winfree [25]. The variables u and v in Eq. (1)
are calculated using an explicit Euler method with a nine-point
approximation of the two-dimensional Laplacian operator on
a discrete system with a uniform grid space �x = �y = 0.1
space unit (s.u.) and a time step �t = 3.0 × 10−3 time unit
(t.u.), as required for numerical stability [�t � (3/8)(�x)2

[26]].
The dimensionless size of the system is 80 × 80 s.u.

(corresponding to 800 × 800 grid points). To initiate mul-
tiarmed spiral waves pinned to a circular obstacle using a
partition method, a series of planar waves close to the partition
is triggered by setting a five-grid-point strip to an excited state
(u = 1.0). The boundaries of the system, the partition, and
the circular obstacle have no-flux conditions as described in
Ref. [27].

B. Simulation results

Figure 5 shows the evolution of a simulated three-armed
spiral wave pinned to an obstacle with 10.0 s.u. in diameter.
After they are ignited, the three arms rotate clockwise, and
their front widths are noticeably different, i.e., the following
fronts become thinner [Fig. 5(a)]. When the first arm pass the
line prior occupied by the partition, i.e., into the refractory
tail of the third arm, its width strongly decreases [Fig. 5(b)].
Then the first arm becomes the thinnest one so that the second
arm has the thickest front [Fig. 5(c)]. In this initial phase, the
distances between adjacent arms are different. In the course
of time, the three-armed spiral wave gradually adjusts form
and distance, until all arms have the same front width and stay
apart from each other at the same distance [Fig. 5(d)].

The dynamics of the simulated three-armed spiral wave
are analyzed in the same manner as in the experimental part.
The gray level of the pixels on a circle close to the obstacle
boundary, as shown in Fig. 6(a), are taken to construct a time-
space plot [Fig. 6(b)] in which the spiral fronts appear as dark
lines. At a given time, the angular positions (θ1, θ2, and θ3) of
the spiral arms are identified, and the angular displacements
(S12, S23, and S31) between two adjacent arms are calculated.

FIG. 5. Dynamics of a three-armed spiral wave pinned to an
obstacle with a diameter of 10.0 s.u. in the Oregonator model.
(a) Three wave fronts (labeled 1, 2, and 3) are subsequently ignited
on the right of the partition (the dashed line). (b) A part of the first
arm (1) becomes thinner when it travels into the wake of the third
one. (c) Then the second arm (2) becomes the thickest front. (d)
Finally, all arms attain the same width and are distributed evenly
around the obstacle.

The displacements are plotted with time in Fig. 6(c). The
angular velocities of all spiral arms (ω1, ω2, and ω3), shown
in Fig. 6(d), are estimated from the local slopes of the lines in
the time-space plot.

As found in the experiments, the interaction between adja-
cent arms results in time-dependent angular velocities ω1, ω2,
and ω3, which in turn cause the angular displacements S12,
S23, and S31 to oscillate in time. In the beginning, each arm
has a different velocity depending on the order of initiation:
the later the initiation, the slower the propagation. At t = 0,

ω1, ω2, and ω3 are 116.8, 68.7, and 36.6◦ t.u.−1, respectively,
so that the displacement between arm 1 and arm 2 (S12) is
larger than that between arm 2 and arm 3 (S23).

The temporal dynamics of the displacement S12 are af-
fected by the velocities ω1 and ω2 as follows. When the
measurement starts S12 increases, since the first arm rotates
faster than the second one (ω1 > ω2). Shortly after the first
arm passes the partition location (at t = 0.7) and propagates
into the wake of the third arm, its velocity ω1 rapidly decreases
while the velocity of the second arm ω2 continually increases.
At t = 1.0, ω1 and ω2 approach the same value so that S12

reaches a local maximum. After that, ω1 is smaller than ω2

and S12 decreases. ω1 reaches a minimum at t = 2.0 before
it becomes larger until it equals ω2 at t = 4.0 where S12

decreases to a minimum. From this time on, the first arm
rotates again faster than the second arm (ω1 > ω2), so that
S12 continually increases to a maximum at t = 10.0. Then
the oscillations of ω1, ω2, and S12 keep going while their
amplitudes decrease in time.

Similar to S12, the displacements S23 and S31 are affected by
the corresponding velocities, i.e., ω2 and ω3 (for S23) or ω3 and
ω1 (for S31). All displacements S12, S23, and S31 and velocities
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FIG. 6. Dynamics of the three-armed spiral wave in the simu-
lations. (a) Pixels along the dashed circle are taken to create (b)
a time-space plot. The spiral arms are labeled 1, 2, and 3 with
respect to the initiation order. (c) The angular displacements between
adjacent spiral arms S12, S23, and S31 (solid, dashed, and dotted lines,
respectively) and (d) the angular velocities of the spiral arms ω1, ω2,
and ω3 (solid, dashed, and dotted lines, respectively) are plotted as a
function of time.

ω1, ω2, and ω3 continually oscillate with gradually damped
amplitudes. After t = 40 [not shown in Figs. 6(c) and 6(d)]
all arms are distributed evenly around the obstacle with the
displacement of 120.0◦ ± 0.5◦ and propagate with velocity of
70.8◦ t.u.−1 ± 0.6◦ t.u.−1.

Wave periods of the spiral arms close to the obstacle Tobs

are derived from the time-space plot [Fig. 6(b)] using the
same method as in the experimental results. The wave periods
T1obs, T2obs, and T3obs of all spiral arms in Fig. 7(a) oscillate
with damped amplitudes similar to their corresponding an-
gular velocities ω1, ω2, and ω3 [Fig. 6(d)], and the velocity
increases monotonously with the wave period [Fig. 7(b)] as
found in the experimental part. These results show that the
damped oscillations of the displacements [Fig. 6(c)] and wave
velocities [Fig. 6(d)] originate from the oscillation of the wave
periods of all spiral arms and the dispersion relation.

We perform a further analysis of the temporal dynamics
of the angular displacements [in Fig. 6(c)] of the simulated

FIG. 7. (a) Time-dependent wave periods close to the obstacle
Tobs of the spiral arms 1, 2, and 3: T1obs, T2obs, and T3obs (solid, dashed,
and dotted lines, respectively) and (b) dispersion relation of the three-
armed spiral wave in the simulations. Circles represent the average
value of measured angular velocities corresponding to a given wave
period; standard deviation indicated by bars.

multiarmed spiral wave by fitting to an underdamped har-
monic oscillation:

S = S0 + Ae−at sin[2π (t − t0)/w], (2)

where S is the angular displacement, S0 the offset, A the
oscillation amplitude, α the damping parameter, t0 the starting
time, and w the oscillation period. As shown in Fig. 8, the
function fits well with the displacements in Fig. 6(c) when the
parameter values are as follows: S0 = 120◦ and w = 8.4 for
all S12, S23, and S31, while A = 87.8◦, 63.1◦, and 75.4◦; α =
0.146, 0.107, and 0.128; and t0 = −1.25, 1.62, and 4.17 for
S12, S23, and S31, respectively.

We now consider the wave dynamics far from the obstacle.
As in the experiments, we perform additional simulations on
single-armed and two-armed spiral waves to investigate the ef-
fect of the number of arms on the wave period far from the ob-
stacles. The wave period is measured at the left bottom corner
of the systems. Similar to the experimental results in Fig. 4,
the wave periods change monotonously at the beginning and
approach stationary values, as shown in Fig. 9. An increment
of the number of arms results in a decrease of the wave
period. For the single-armed, two-armed, and three-armed
spiral waves, we find their periods T1 = 2.97, T2 = 2.03, and
T3 = 1.71 t.u., respectively. Each spiral arm completes one
revolution within an interval prolonged by the number of
arms: T1 = 2.97, 2T2 = 4.06, and 3T3 = 5.13 t.u., and wave
velocities are 12.12, 9.23, and 7.66 s.u. t.u.−1 for one, two,
and three arms, respectively. Thus, the wave interaction slows
the rotation of spiral arms, as found in the experiments.

Finally, we perform simulations with more arms in order
to study the effect of the spiral arm number on the wave
dynamics. To complete the wave initiation using the same
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FIG. 8. Fitting of the angular displacements to an underdamped
harmonic oscillation [Eq. (2)]: (a) S12, (b) S23, and (c) S31. Solid
and dotted lines depict the results from the functions and from the
simulations, respectively.

method, the obstacle needs to be enlarged from 10.0 s.u. to
15.0, 21.0, and 250 s.u. for four, five, and six arms, respec-
tively. In all cases, we observe typical damped oscillations
similar to those of three-armed spiral waves. Therefore, we
expect that the damped oscillation dynamics are generic for
pinned multiarmed spiral waves initiated by multiple stimuli
as in this study.

IV. DISCUSSION AND CONCLUSION

We have presented a study of the dynamics of mul-
tiarmed spiral waves pinned to an obstacle in the
Belousov-Zhabotinsky reaction as well as in simulations with

FIG. 9. The wave period of multiarmed spiral waves in the
Oregonator model, measured far from the obstacle (i.e., at the left
bottom corner in Fig. 5). Squares, circles, and triangles depict the
period of single-armed, two-armed, and three-armed spiral waves,
respectively.

the Oregonator model. To generate the multiarmed spiral
waves, wave fronts are initiated by a series of wave stimuli
close to a single partition located between an inner wall and
the boundary of the obstacle. The spiral arms interact with
each other via the refractory tail created by preceding waves.

Close to the obstacle boundary, an intricate dynamics of
the multiarmed spiral waves is observed. As a result of the
interaction between spiral arms, the arms initiated later have
at the beginning a lower angular velocity. Subsequently, all
angular velocities oscillate with some phase shifts, i.e., they
reach local minima and maxima at different times. This tem-
poral dynamics of angular velocities causes angular displace-
ments between adjacent arms to oscillate with phase shifts
too. In the course of time, the oscillating amplitudes of all
angular velocities and those of angular displacements decay
until they reach stationary values. The simulated data allow
a further interpretation of this temporal evolution of angular
displacements as underdamped harmonic oscillations. During
the adjustment of the displacements, the wave periods also
oscillate with damped amplitudes. Beside the oscillations, the
velocities increase monotonously with the wave periods.

It is well known that the propagation of sequential wave
fronts obey the dispersion relation in which the wave velocity
is a hyperbolic tangent function of the wave period [24].
As a result, multiple wave fronts created from a series of
stimuli reach a given position with wave period and velocity
monotonously decreasing in time. In this study, the pinned
fronts evolve at obstacles as “reentrant waves” (the fronts
revisit the positions that they have previously passed). In con-
trast to multiple plane waves [23,24], the wave periods close
to the obstacles of these reentrant waves do not monotonously
decrease in time but they oscillate with decreasing amplitude.
The oscillations of the wave periods, in turn, generate damped
oscillations of the wave velocities and the displacements.

The presented dynamics of pinned waves close to obstacles
are similar to a uniform traffic flow in simulations of cars on
a single circular path [28]. In such a case, all cars have the
same velocity and are equally distributed when the velocity
of each individual car is set properly, e.g., as a hyperbolic
tangent function [28] of its headway (distance of the car
and its preceding one). The final state of the pinned waves
presented here looks similar to that of a propagating chemical
wave train in a thin ring-shaped reaction field, where the uni-
formed distribution of waves is developed via a monotonously
relaxation [29].

It has been shown that multiarmed spiral waves are stabi-
lized by pinning to obstacles [17,18], but after the obstacles
(i.e., a Cl− droplet in Ref. [17] and a laser spot in Ref. [18])
are removed, the spiral arms separate and rotate around in-
dividual centers and subsequently interact with each other.
In the presence of the obstacle, we expect that complicated
interactions of the multiarmed spiral waves may occur when
they are forced to be temporally unpinned (the wave ends
alternately detached and reattached to the obstacle [27]).

We expect an important impact of multiarmed pinned spiral
waves on the dynamics of excitable media, e.g., the Belousov-
Zhabotinsky reaction, slime mold colonies, or cardiac sys-
tems. Obstacles are found to stabilize rotating spiral waves
even in media subject to gradients [5], and the pinned waves
are released from the obstacles only under a sufficiently strong
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external forcing [13–16]. On the other hand, multiarmed
spiral waves have a frequency increasing with the number
of arms [30]. Multiarmed spiral waves pinned to obstacles
would act as high-frequency sources of excitation, which are
robust against perturbations and thus result potentially in quite
severe pathological conditions when they occur in the heart.
Therefore, it is important to elucidate the dynamical features
as well as the conditions for eliminating multiarmed spiral
waves by external perturbations, e.g., wave trains [13,14] or
electrical forcing [15,16].
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