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Turing-complete mechanical processor via automated nonlinear system design
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Nanomechanical computers promise a greatly improved energetic efficiency compared to their electrical
counterparts. However, progress towards this goal is hindered by a lack of modular components, such as logic
gates or transistors, and systematic design strategies. This article describes a universal logic gate implemented as
a nonlinear mass-spring-damper model, followed by an automated method to translate computations, expressed
as source code of arbitrary complexity, into combinations of this basic building block. The proposed approach is
validated numerically in two steps: First, a set of discrete models are generated from code. The models implement
computations with increasing complexity, starting by a simple adder and ending in a eight-bit Turing complete
mechanical processor. Then the models are forward integrated to demonstrate their computing performance. The
processor is validated by executing the Erathostenes’ sieve algorithm to mechanically compute prime numbers.
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I. INTRODUCTION

Nanomechanical computers [1] have the potential for ultra-
low-energy information processing, which makes them attrac-
tive for implantable, wearable, remote, or embedded appli-
cations where computational performance requirements are
light but energy is scarce. They are also ideal for deeply
cryogenic environments: In contrast with conventional elec-
tronics, nanomechanical resonators are unaffected by carrier
freezeout phenomena, and dissipate extremely small amounts
of heat (on the order of pW [2], compared to tens of μW for
a high-mobility electrical transistor [3]), fitting the require-
ments for cryogenic quantum computing applications (e.g.,
as readout circuitry for spin qubits). Additionally, mechanical
logic gates can operate in extreme environments and have a
significantly reduced electromagnetic signature [4], making
them attractive for low-noise or stealth applications. While
this potential has been known for quite some time [5–7],
most recent works exploring mechanical information pro-
cessing are limited to trivial computations, require complex
geometries or heterogeneous materials, and do not provide
a straightforward path to scalability [4,7–11]. This limitation
exists despite the significant progress in systematic design of
mechanical systems with thousands of degrees of freedom,
driven primarily by the metamaterials community. In these
recent works, the desired performance is first expressed as
a set of symmetries [12,13], a stiffness or deformation map
[14–16], or a discrete mass-spring model [17,18]. Then it is
translated by a systematic algorithm into a device geometry
that can be fabricated. However, this work flow is not suf-
ficient for the goal of mechanical computation, because en-
coding a computation into symmetries, stiffnesses, or discrete
models is a profoundly hard problem, and explicit attempts to
compute with metamaterials have been so far limited to linear
operations such as differentiation or integration [19,20].
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This paper addresses the problem of encoding complex
computations into discrete nonlinear models, which is a nec-
essary step towards the realization of practical mechanical
computers, but also of fundamental physical interest. The
proposed solution (Fig. 1) starts by writing the desired compu-
tation as code in a high-level language. This is much simpler
than directly designing the discrete model, because code is
a natural way to represent computations. Then the code is
translated into nonlinear mass-spring-damper models. This
translation is performed in two steps: First, an existing, open-
source tool [21] is used to map the computation into a graph
of elementary logic operations. Then the elementary logic
operations are replaced by mass-spring-damper systems with
suitable input-output characteristics. The resulting models
can have more than 104 oscillating degrees of freedom, are
not subject to any periodicity assumptions, and therefore are
prohibitively complex to design without automation.

In this work, computations will take place in the digital
domain using a binary representation. Each bit of information
will be encoded as the amplitude of vibration of a mass-spring
resonator, with some range of amplitudes corresponding to a
binary zero and some range of amplitudes corresponding to
a binary one. It should be noted that there is no requirement
that a binary zero be represented by a near-zero amplitude.
Through this work, x and y will denote logical variables,
which can take only zero or one values. Physical variables will
be denoted by u and F , corresponding to displacements and
forces, respectively. Physical variables can take a continuum
of values and will generally follow harmonic trajectories.
Inputs will be implemented by applying a harmonic force,
with angular frequency ω, to an input degree of freedom,
F (t ) = F0 sin(ωt ), where F0 will be chosen from the zero or
one ranges to implement a zero or one input, respectively. Out-
puts will be determined by monitoring the vibration amplitude
of an output degree of freedom and checking whether it lies
in the zero or one range. Here the range for zero is defined
as being between 36.5% and 67% of a reference force FR or
displacement uR (see Appendix A), while one is defined as
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FIG. 1. Building mechanical logic from code. This paper ad-
dresses the problem of generating discrete models from a set of
logic gates. Translating the resulting models into devices will not be
discussed here but has been investigated previously [17,18], although
future work will be required to address aspects such as nonlinearity
and damping.

being between 92% and 102.5% of the reference. This also
provides a recipe to compose logical functions: they should be
connected with a spring of strength kC = FR/uR, so an output
vibration amplitude in the zero or one range will produce an
input force in the zero or one range, respectively.

The paper will be structured in three parts. The first part
will focus on combinatorial logic circuits, whose outputs are
a function of the current inputs only and do not depend on
the past input-output history. Combinatorial circuits will be
built by combining instances of a basic building block using
automated design tools. The section will cover the design
process of the building block, including the requirements that
it must satisfy in order to be able to combine a large number
of them to form an advanced logical function. In the second
part, sequential circuits will be considered, whose output
depends on both the current input and previous input history.
For these, an additional element incorporating memory will
be introduced. In the third part, a full processor will be
demonstrated. In contrast with the previous examples, where
a discrete model can solve a single problem, the processor
can be programmed to solve different problems by setting the
initial conditions.

II. COMBINATORIAL LOGIC

Combinatorial logic circuits are those whose steady-state
output �y(t → ∞) is an arbitrary logical function of the input
vector �x, �y(t → ∞) = f (�x). When the input is changed to a
new state �x1, the output will eventually converge to the new
updated f (�x1). In the interval right after the input is changed,
there will be a transient and the output may temporarily take
incorrect values [Fig. 2(a)].

It is a well-known result that any arbitrary logical function
f (�x) can be implemented as a network of realizations of a
single universal logic gate [Fig. 2(b)]. Therefore, building
a combinatorial mechanical computer requires, minimally,
finding a mechanical analog of such universal gate (plus
potentially some rules on how gates should be “wired” to-
gether). The resulting implementation is not unique, and the
network providing the best speed of computation may not be
the one that requires the smallest number of logic gates. In
this work, all systems will be built by combining instances
of a mechanical NOR gate. Having access to a broader set
of building blocks may result in increased performance, and
software mapping logical functions into graphs of gates will
attempt to use all available gate types to reach predefined
goals of complexity and speed.
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FIG. 2. Combinatorial logic circuits. (a) Input-output response of
a combinatorial system with three inputs and two outputs. When the
inputs are changed, the outputs eventually converge to the correct
value but may take incorrect values during the transient period.
These temporary, incorrect values are called hazards in the language
of digital electronics. (b) NOR gate schematic symbol and input-
output response (truth table) (left) and potential realization of the
combinatorial circuit in (a) by combination of NOR gates (right).

A. Requirements for the basic building block

Prior works in mechanical logic have focused on simple
systems consisting of isolated logic gates [6,8,22,23] or, at
most, pairs of them [10]. This masks emergent phenomena
that arise in the presence of a large number of gates. Since
the objective of this work is to implement arbitrarily complex
computations, it becomes crucial to design a building block
that is robust when combining a large number of instances.
This modularity can be formalized into a set of six require-
ments, similar to those considered by the photonic computing
community [24]:

(1) A free-standing basic building block must not present
multistability under valid logical inputs; that is, the steady-
state output must be known from its inputs, without regard to
the past input-output history. The requirement follows directly
from the definition of combinatorial logic; however, it is not
met by some of the proposals in the literature [10]. This
requirement does not apply when the inputs are outside the
valid zero or one range or if the building block is embedded in
a network containing logic loops, with the later configuration
being used to implement memories in the sequential logic
section of this paper.

(2) The basic building block must operate at a single
frequency, meaning that the frequency of the output must
be the same as the frequencies driving the inputs. This is
necessary to allow concatenation of multiple logic operations.
Such requirement was not met by some earlier proposals for
mechanical logic [9] but has since then been recognized [10].

(3) The building block must be capable of fanout, i.e.,
driving multiple inputs from a single output. This requirement
is well-understood in photonic computing [24] but has not
been explicitly demonstrated in mechanical logic.

(4) The inputs must be “easy to drive,” meaning that
an input’s force-displacement response at the operating
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frequency must be a simple (ideally linear) function and
not have complex dependencies on the other inputs and the
output. The motivation behind this requirement is to enable
the computationally efficient combination of a large number
of building blocks. When this requirement is met, gates in a
logical network can be optimized individually, by lumping all
other elements into a single mass-spring dashpot. The diffi-
culty in meeting this requirement is one of the reasons why
automated design of mechanical systems has been thought to
be extremely hard or impossible [25].

(5) The block must produce digital-level reconstruction
[24], meaning that (sufficiently small) deviations from the
exact zero and one values should be self-correcting, resulting
in an output that is closer to the correct value than the inputs.

(6) The building block must be insensitive to the phase
of the oscillation driving its inputs, because such depen-
dence imposes the onerous requirement that total phase shifts
be controlled to less than a quarter of a period over the whole
length of a computation. Phase-sensitive interference effects
were originally proposed for mechanical logic [6] but have
since been understood by the photonics community to be
critically difficult to realize [24].

In addition, and while this work is exclusively numerical,
some additional requirements will be considered to ensure that
the resulting discrete models are not too dissimilar from what
can be accessed in existing experimental platforms:

(1) The building block must be constructed using a single
type of nonlinearity, which must be low-order. This ensures
that the resulting equations are not stiff, constrains the search
space, and makes the system more universal as low-order non-
linearities appear in a broad range of experimental platforms,
offering multiple avenues for experimental realization.

(2) The block must contain a small number of degrees of
freedom, in order to minimize simulation or fabrication costs.
This is in contrast with some works in the field of mechanical
logic [9,10], that attempt to mimic conventional transistors
based on bulk lattice phenomena and therefore intentionally
utilize a large number of degrees of freedom.

A potential ninth requirement, namely, that the perfor-
mance of the system be insensitive to small changes in the
properties of the building block, will not be considered here
but may be of prime importance for experimental realizations
where fabrication defects are unavoidable.

B. NOR gate design and principle of operation

The basic building block or logic gate [shown in a simpli-
fied form in Figs. 3(a) and 3(b) and in full form in Fig. 3(c)]
acts as a “valve,” allowing or blocking the flow of mechanical
energy between a source and a drain harmonic oscillators, de-
pending on the presence of an excitation on its input terminals
and according to the gate’s truth table. Here we refer to the
input terminals as gates, in analogy with field-effect transis-
tors, whose control terminal is called the gate. The distinction
between gate as input terminal and gate as basic logic building
block should be obvious from context. The source and drain
terminals are not directly connected by springs. Instead, they
are both connected to a channel harmonic oscillator. When the
channel’s natural frequency is in resonance with the excitation
frequency, the channel’s vibration amplitude is high, and this

FIG. 3. Building block for mechanical logic. (a) Simplified dis-
crete model for a mechanical NOR gate. Circles represent har-
monic oscillators, connected by linear and nonlinear (inset) springs.
Grayed-out degrees of freedom are shared between building blocks
(i.e., the drain of a building block will actually be the gate of a
different block). (b) Implementation of (a) with strings (orange) and
a cantilever (blue), and channel resonance (inset) with excitation
amplitude (red arrow). (c) Full discrete model for the NOR gate.
(d) Steady-state relation between the channel vibration amplitude
and the forces acting on the input gates. The color corresponds to the
channel vibration ampltiude (red = zero region, blue = one region,
white = ambiguous region). (e) Channel oscillation under varying
gate excitation amplitudes. The shaded area denotes an invalid
(ambiguous) output. (f) Output (channel) displacement for a system
of three cascaded NOR gates. Deviations from the correct amplitude
levels are reduced after each NOR application. (g) Transient response
of the one-gate (blue) and three gate (orange) system; the delay is
TD = 500 periods/gate.

results in a large energy transfer between source and drain.
When the channel is off-resonance, there is little motion and
lower source-drain energy transfer. The logic gate-operating
mechanism consists in using nonlinearity to shift the natural
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frequency of the channel depending on the presence or ab-
sence of excitation at the gates.

Gate-dependent adjustment of the channel’s resonance fre-
quency is accomplished by means of a nonlinear interaction
that couples the gates and channel through an intermediate
harmonic oscillator called the insulator [Fig. 3(a)]. The insu-
lator degree of freedom prevents the direct flow of mechan-
ical energy between inputs and outputs, allowing only for a
gate-mediated channel frequency modulation that takes place
on a slower timescale than the gate-channel oscillation. The
gate-insulator and insulator-channel nonlinear interaction is
derived from a potential of the form H = γ u2v [see inset in
Fig. 3(a)]. This type of low-order nonlinear interaction is very
common in nature, arising in optomechanical systems [26],
magnet lattices [27], and vibrating strings [28], among others.

To provide an intuitive understanding of the principle of
operation behind the building block, it is worth looking at
an implementation based on vibrating strings and cantilevers
[Fig. 3(b)], similar to the setups in Refs. [28,29]. It should
be noted that this implementation is provided to aid in un-
derstanding and may not be an optimal avenue to the exper-
imental realization of mechanical computers. In this imple-
mentation, the gates and the channel are vibrating strings.
The insulator is a cantilever to which gates and channel are
attached. When the gates are driven by a large harmonic force,
their amplitude of oscillation increases. As a consequence,
their tension increases (vibrating strings spend more time in
a curved configuration that is longer, and therefore has higher
tension, than an equivalent string at rest). The gates’ dynamic
tension bends the insulator (cantilever) and adds tension to the
channel, increasing its resonance frequency, as in the tuning
of a guitar string. This tuning-detuning mechanism drives the
channel in and out of resonance and is responsible for the
gate-mediated modulation of the source-drain energy transfer.

The equations of motion for a free-standing building block
are given by

HC − 2γICuI uC = FC sin(ωt ), (1)

HI − γICu2
C + γIGu2

G1 + γIGu2
G2 = 0, (2)

HG1 + 2γIGuI uG1 = FG1 sin(ωt ), (3)

HG2 + 2γIGuI uG2 = FG2 sin(ωt ), (4)

where the subindices C, I , G1, and G2 denote the channel,
insulator, and two gates, respectively, the excitation frequency
is ω, and the nonlinear couplings between insulator-channel
and insulator gate are given by γIC and γIG. HX = 0 is the
equation of motion for a simple harmonic oscillator:

HX = mX üX + mX ωX

QX
u̇X + mX ω2

X uX , (5)

where, for a degree of freedom X ∈ {C, I, G1, G2}, mX is the
oscillating mass, QX is the quality factor, and ωX is the natural
frequency. All parameters are provided in Appendix A as well
as in the Supplemental Material [30].

The system does not include equations of motion for
the source and drain. This is because in the digital designs
considered here, these will be typically shared among various
devices. The source of all devices will be a single high-mass

degree of freedom used to input energy into the system and
will oscillate at constant amplitude. Therefore, once coupled
to the channel, it will act as a harmonic force given by
FC sin(ωt ), where FC = kSCAS with kSC being the source-
channel spring constant and AS being the source amplitude.
When concatenating multiple devices, the role of the drain
will be played by the gate of a building block downstream.

C. Numerical simulation of the NOR gate

Equations (1)–(5) are integrated using a fourth-order
Runge-Kutta algorithm written in C++ [31], with a time step
of 0.03–0.025 periods of oscillation, after verifying that such
time step is sufficiently small to converge to the correct
solution within plotting precision. The C++ file containing
the equations of motion is generated and compiled from a
high-level description of the system’s degrees of freedom and
interactions, written in PYTHON (Jupyter). The steady-state
response can also be calculated semianalytically, prescribing
the location of the insulator degree of freedom, calculating
the amplitudes of the gates and channel by treating them as
linear harmonic oscillators, using the calculated amplitudes to
determine the mean force acting on the insulator, and iterating
until static equilibrium is attained, i.e., 〈FI〉 = −γIC〈u2

C〉 +
γIG〈u2

G1 + u2
G2〉 = −KI uI . All code files, which enable the

rapid exploration of mechanical logic devices, are provided
in the Supplemental Material [30].

Numerical simulations of an isolated building block, as
presented in Figs. 3(a) and 3(b) and described by Eqs. (1)–(5),
produce satisfactory results (not shown) in terms of input-
output characteristics, digital-level reconstruction, and lack
of multistability. However, attempts at connecting multiple
building blocks to implement advanced logic functions have
been unsuccessful. The cause of this failure is that the basic
building block, as described in Figs. 3(a) and 3(b), violates
the requirement of being “easy to drive”; i.e., the gate stiffness
is highly dependent on the insulator displacement due to
back-action of the gate-insulator nonlinear coupling. As a
consequence, when connecting two building blocks (using
a linear spring to connect the channel of the first block to
the gate of the second block), the effective stiffness of the
channel in the first block becomes sensitive to the second
block insulator location. In these conditions, it has not been
possible to find a value for the system’s parameters that
achieves the right operating conditions for all insulator lo-
cations. This issue highlights a core motivation behind the
present paper: Combining a large number of building blocks
gives rise to unexpected issues that may not be easy to foresee,
and therefore proposals for mechanical logic should be tested
in sufficiently complex examples.

D. Energy dissipation in the NOR gate

One of the motivations to develop mechanical logic is
the potential for lower energy consumption. While specific
implementation details are not the main object of this work,
here a cursory look is given at energy dissipation of the device
in Fig. 3(b). Two factors determine the energy consumption
of the device: At the most fundamental level, limits are set
by the laws of thermodynamics due to the irreversible nature
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of the computing approach [32]. Thermodynamics will enter
the system in the form of thermomechanical vibrations in
the equations of motion [28,33], which will introduce errors
unless vibration amplitudes are significantly higher than the
noise. In practical systems, instrumentation limits will require
the amplitude to be large enough to be readily measurable.

To compute the energy dissipation, the three vibrating
strings will be modeled as nanotube resonators with a vi-
brating frequency of 3.1 GHz and amplitude of 0.2 nm [34].
Assuming the material parameters and damping of Ref. [34]
results in a power dissipation of 3.8 nW. This single-device
power dissipation compares advantageously to experimental
reports of high-mobility electron transistor devices [3], con-
suming more than 10 μW. These devices share use cases
with mechanical logic (e.g., in cryogenic quantum computing
applications). While the power consumption is significantly
lower in the proposed mechanical logic gate than in electronic
equivalents, the mechanical system consumes energy even
when no operation is taking place. Therefore, when imple-
menting low-power applications, care must be taken to shut
down the device when no calculation is taking place.

Several additional remarks should be made about power
dissipation: First, the number of periods required to reach
steady state (and hence complete a computation) decreases
with decreasing quality factor, but the energy dissipation per
period increases. Future works should investigate if there is
an optimal value for the damping, as such optimal value
would be indicative of a fundamental limit for irreversible
dynamic computing with vibrating masses. Second, since
thermomechanical noise can be observed experimentally in
nanotube resonators [35], the work hints at the potential
for experimental investigations of thermodynamic effects in
mechanical information processing. Of particular interest are
reversible computing approaches [36,37], due to their poten-
tial for energy efficiency beyond the Landauer limit and the
fact that they can be implemented in mechanical resonator
platforms [23].

E. Scalable coupling of multiple building blocks

A solution to the stiffness back-action issue is presented
in Fig. 3(c). It consists in using two physical gates for every
logical input. When cascading multiple blocks, the two gates
are connected asymmetrically: one with a linear spring, pre-
senting a force-displacement relation F = kC (u2 − u1), and
one with a dashpot, described by a force-velocity relation
F = (kC/ω)(u̇2 − u̇1). (Here kC is the coupling strength, and
u1 and u2 are the two coupled degrees of freedom, typically
a channel and a gate.) Since in a harmonic oscillator the
velocity is shifted by π/2 with respect to the displacement,
the force acting on the dashpot-driven gate will be shifted
by π/2 with respect to the spring-driven gate, resulting in
a phase shift of π/2 between gates. For the dashpot gate,
the corresponding back-action force done by the gate into
the channel will accumulate an additional shift of π/2 for
the same reason, giving a total phase shift of π . In contrast,
the back-action force from the spring-coupled gate will not
suffer either phase shift. Therefore, gate back-actions will
differ by a factor of π and experience destructive interference.
By adjusting the spring and dashpot coupling constants to

produce forces of identical magnitude, it is possible to create
an aggregate back-action that, at the frequency of operation,
is insensitive to the insulator location.

From an energy conservation point of view, this destructive
interference must be understood as the system consuming
a maximal amount of energy at all times, irrespectively of
whether this energy is dissipated at the gates or at the coupling
damper. Experimentally, physical dashpots are not necessary
to produce destructive interference. The effect can also be
obtained by using wave guides with lengths differing by
λ/4. In addition, it may be possible to obtain a more robust
cancellation by using ideas from topological physics [38],
where there are known examples of mass-spring systems that
are immune to stiffness changes acting symmetrically on
pairs of resonators [39]. However, these approaches are not
investigated here, because they use a much higher number of
degrees of freedom.

The building block’s operation as NOR gate is validated
by numerical simulations of its steady-state [Fig. 3(d)] and
transient [Fig. 3(e)] responses. The steady-state response in
Fig. 3(d) demonstrates the digital-level reconstruction that is
desired of a digital component. Even significant deviations
from an acceptable input will result in an output that lies in
the correct range, though the margin is thin for a small range
of amplitude pairs near the transition region. These results
have been obtained by performing only cursory optimiza-
tion of the system’s parameters, suggesting the potential for
greater margins and a much more robust noise immunity. The
tendency of the system to reconstruct deviations from ideal
logic values can be observed by concatenating multiple logic
gates. Figure 3(f) depicts the output of the logical function
y(x1, x2) = (((x1 NOR x2) NOR 0) NOR 0), which is equivalent
to y(x1, x2) = x1 NOR x2 depicted in Fig. 3(f), but where the
signal has gone through two additional gates. It can be seen
that the output presents much less variability than the result of
a single gate.

The ability to produce a correct digital output for a broad
range of input values has its origins in the steep, asymmetric
frequency-amplitude response of the channel, which can be
seen in the inset of Fig. 3(b). This asymmetry arises from
a feedback mechanism that can be understood easily in the
string-cantilever representation of Fig. 3(b): When the chan-
nel’s amplitude decreases, its own dynamic tension decreases.
As a consequence, the cantilever experiences lower bending
resistance and displaces even more, increasing the resonance
frequency shift and causing additional amplitude decrease.
Using this nonlinear mechanism for digital-level reconstruc-
tion requires paying attention to several aspects: First, the
location of the steep jump is highly sensitive to damping. This
is not an issue in numerical simulations, where damping can
be prescribed exactly, but may be a problem for experiments
where damping is typically hard to control. Second, the mech-
anism can introduce bistability, as it occurs in optomechanical
systems [26]. Here it has been numerically observed that
bistability does not occur when the gate excitation amplitude
lies in the ranges corresponding to a valid 0 or 1. Third, near
the bifurcation point where the system transitions between
having a single and multiple solutions, some of the effective
time constants governing convergence to the steady state be-
come increasingly long (being infinite at the exact bifurcation
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point, where the system has no tendency to converge between
the two stable solutions). While exploring this phenomenon is
outside the scope of this work, a discussion on this issue for a
related system can be found in the supplementary material of
Ref. [40]. Here it is confirmed numerically that the speed of
convergence is not significantly slowed down by nonlinearity
as the system is essentially fully converged after 3QC pe-
riods [Fig. 3(g)], corresponding to a propagation delay of
166 ns when considering the 3.1 GHz nanowire of Ref. [34].
While these three issues do not pose significant challenges
in a numerical study, future experimental realizations may
benefit from considering alternative mechanisms of response
steepening for digital-level reconstruction, for example, the
use of composite channels containing more than one harmonic
oscillator.

F. Automatic synthesis of combinatorial circuits

Once it has been established that the basic building block
meets the requirements for digital computation, it is possible
to implement advanced logic functions in an automated man-
ner. In this paper, this is done in the following approach: First,
the target computation is described using the high-level lan-
guage Verilog. Then the open-source tool Yosys [21] is used
to map the high-level description into a graph of logic gates.
The graph of logic gates is then translated into a graph of
harmonic oscillators, connected via linear springs, nonlinear
springs, and dashpots, by replacing each logic gate by the
corresponding mass-spring model as depicted in Fig. 3(c).
The coupling strength for the intergate springs and dashpots
is determined using the relation between reference force and
reference amplitude introduced previously. Finally, the result-
ing dynamical system is forward-integrated numerically to
confirm its ability to perform correct computations.

This approach is first demonstrated for a digital adder that
takes two two-bit numbers and generates a three-bit result
containing the sum of the two operands. The Verilog code for
the adder consists of three lines of code and results in 17 logic
gates that translate to 102 harmonic oscillators interacting
via 19 linear springs, 85 nonlinear springs, and 19 dashpots.
Figure 4 shows a numerical simulation of the adder for all
possible inputs.

III. SEQUENTIAL LOGIC

Combinatorial logic allows the realization of mechanical
systems implementing arbitrarily complex functions. How-
ever, it presents several limitations: First, it does not offer a
notion of memory or state, which is crucial in many com-
puting applications. Second, the number of gates required to
realize a multistep computation may be prohibitively high, as
the implementation must have independent, separate logical
circuits for every step of the computation. Sequential logic,
where the output of a system will depend on the previous
history in addition to the inputs, presents a solution to these
problems. The dependence on previous history will introduce
a means to store information, and it will be possible to reuse
the same logical circuit for multiple steps of the same com-
putation, by performing the steps at different points in time
and using the previous state dependence to store intermediate
results. There are several approaches to sequential logic. This
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FIG. 4. Numerical simulation of a mechanical adder. Each panel
plots the displacement of the three outputs (with the trace corre-
sponding to the least significant bit on the top). The inputs of the
adder are zero during the first half of the simulation and then are
suddenly set to the value given by the row and column. Dynamic
hazards can be observed in some of the transitions.

paper will focus on synchronous sequential logic, where state
transitions are driven by a periodic clock.

A. Latches and flip-flops

Implementing sequential logic requires the introduction of
a new building block capable of storing information. This de-
vice will have two inputs and an output. One of the inputs will
contain the data to be stored, and the second input will indicate
when the data should be committed to memory. The output
will contain the current data in the block and will change
upon receipt of a store command. Unless such a command
is received, the output will be insensitive to changes in the
data input. In conventional digital electronics, two classes of
devices are commonly employed for this task: latches and flip-
flops. Latches store information whenever the enable input is
at digital level 1, while flip-flops store information when the
clock input switches from 0 to 1. Flip-flops are more common
than latches in conventional electronics, but here we will use
latches as basic building blocks because they are simpler.

A latch can be implemented using a two-way multiplexer
[MUX; Fig. 5(a)]. A two-way multiplexer is a combinatorial
device that has one output and three inputs (A, B, and select).
When select is low, the output will be equal to A, while when
select is high, the output will be equal to B. The logical
function that describes the multiplexer is f (A, B, select ) =
(A AND (NOT select )) OR (B AND select ). The latch is created
by introducing a loop between the output and input A. Now,
when select is low, the output will stay at the same value.
When select is high, the output will change to match the
input. The latch implemented in this work follows a somewhat
more symmetric design [41] [Fig. 5(a)] that prevents issues
due to output hazards. The mechanical AND and NOT gates in
Fig. 5(a) are implemented by combining instances of the NOR

gate defined in Fig. 3(c). Numerical simulations of a dynami-
cal system implementing a latch are presented in Fig. 5(b).
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FIG. 5. Mechanical implementation of a digital latch. (a) The
latch can be understood as a multiplexer (MUX) that selects between
keeping the same output or updating the output with the contents
of the data input (top). Implementations are highly symmetrical to
avoid output hazards that might prevent latching (bottom). (b) Nu-
merical simulation of the mechanical latch, implemented in terms of
the building block introduced in Fig. 3. When the enable input is
pulsed high, the output is updated to match the data input. (c) Finite-
state machine, implemented by combining a combinatorial transition
function and a set of latches to store the state. (d) Propagation delay
in the latch, ensuring that the output does not update until the latching
pulse has ended.

B. Finite-state machines

One of the most common applications of sequential logic
is in the realization of finite-state machines. Finite-state
machines are characterized by being in one state out of a
finite set and transitioning to a different state in response
to an external event or after an interval of time, according
to its transition function. An example finite-state machine
is shown in Fig. 5(c). In this example, the state is stored
in a set of four latches. A combinatorial transition function
determines the next state, as a function of the current state
and external inputs into the machine. When the clock “ticks,”
presenting a value of one at the enable inputs of the latches,
the output of the combinatorial function gets stored and
becomes the current state. For finite-state machines to operate
correctly, it is necessary that the output of the transition
function remains constant during the latching interval. This
is accomplished by using a relatively short latch pulse of
2500 periods [Fig. 5(d)] and adding an additional delay to
the output of the latch. Because of this intentional delay, the
output of the latches (and therefore the inputs and outputs
of the transition function) will not start changing until the
latching pulse has already ended [Fig. 5(d)]. The delay is
implemented by concatenating five NOR gate pairs, each pair
performing an identity function, I (x) = (x NOR 0) NOR 0,
but adding a delay of its own. The total delay is measured

to be on the order of 6500 periods. This is consistent with
the TD = 500 periods/gate determined in Fig. 3(g), as the
signal must propagate through an AND gate (composed of two
cascaded NOR gates) and a NOR gate, plus five gate pairs for
the output delay, adding to a total of 13 NOR gates.

C. Automatic synthesis of sequential circuits

The Verilog-Yosys workflow that was used to generate
combinatorial logic can be extended to the sequential case.
This is accomplished by adding a flip-flop element to the
Yosys library and assigning it to the latch device of Fig. 5(a).
The latch will store data every time the clock signal pulses,
in contrast to a real flip-flop, that would store it when the
clock signal presents an edge. However, this does not have
an impact in the performance of the designs, provided that the
clock pulse is short enough and that only positive or negative
edges are used as triggers in the Verilog code. This limitation
can be overcome by utilizing two separate clock signals to
emulate positive or negative edge triggers, or by implementing
a genuine flip-flop using loops of combinatorial elements.
To illustrate the capability of automatically synthesizing se-
quential logic in a nontrivial computation, the next example
will demonstrate a mass-spring-dashpot system that calculates
square roots. The example operates by binary search. It starts
by partitioning the search interval in half. The value at the
middle of the search interval is then combinatorially squared
and compared to the number whose square root is being cal-
culated. Depending on the result of the comparison, the search
interval is restricted to the upper half or the lower half of the
previous search interval. Figure 6(a) shows the architecture of
the square root calculator. The example, written in Verilog, is
15 lines of code long and generates a nonlinear mechanical
system containing 3006 harmonic oscillators interacting via
685 linear springs, 2505 nonlinear springs, and 685 dashpots.
The system is numerically integrated and the results are shown
in Fig. 6(b). Latches are driven by pulses that are 2500 periods
long, with 25 000 periods of pause between pulses to ensure
enough time for the signal to propagate through the combina-
torial network. After 2 × 105 periods of oscillation, the result
has converged to the correct value.

IV. DEMONSTRATION OF A MECHANICAL PROCESSOR

The finite-state machine introduced in Fig. 6 can solve a
single problem, that is, calculating square roots. However, it
is possible to create universal processors that can evaluate
arbitrary functions. These contain logical circuits capable of
performing a range of operations, called instructions. The pro-
cessor determines which instruction is executed by reading a
stored program from a memory, and can also use the memory
to hold intermediate results. This section will cover a mass-
spring-dashpot model describing a mechanical processor.

The processor cannot solve problems stand-alone, it also
requires a memory where the program, intermediate values
and final results are stored. Processor and memory can be
thought of as black boxes communicating through a set of
shared degrees of freedom. These degrees of freedom are
split into two separate ports: A read port, which the processor
uses to ask the memory for information, and a write port,
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FIG. 6. Calculation of the square root with a mechanical finite-
state machine. (a) Architecture of the machine, based on binary
search. The solid rectangles denote combinatorial functions, while
the dotted ones represent registers (groups of latches that store a
state). The current guess for the square root (initialized at zero)
is combinatorially increased by half the search interval and then
is combinatorially squared. A multiplexer chooses the next guess
between the initial condition of zero (when reset equals one), the
current guess (if adding half the interval causes the square to exceed
the input value), or the current guess plus half the interval (if the
calculated square is equal to or below the target value). The search in-
terval is halved at every step, and a multiplexer chooses between the
halved interval (under normal operation) or the maximum interval,
to prepare for a new computation (when reset equals one). When the
clock ticks, the next result and next interval are latched and become
the current state. (b) Numerical simulation of the machine during
calculation of the square root of 2809. At every clock cycle, one bit
of the result converges to the final value, until the correct value of 53
is reached.

which the processor uses to store information in the memory.
The processor’s read port consists of eight output degrees of
freedom (containing a number indicating which of the 256
memory addresses is being read) and eight input degrees
of freedom (that receive an oscillatory force from from the
memory, encoding the data stored at the requested memory
address). The write port contains 17 output degrees of free-
dom. Eight of them contain the data to be written, another
eight contain address where the data should be written, and
the last one indicates when the output data is valid and should
be committed to memory. Mechanically, all outputs will be
channel oscillators from a building block like the one in
Fig. 3(c), whose amplitude of vibration will communicate the
address and data to the memory. The inputs will be gate os-
cillators and be driven by a harmonic force from the memory.
Here only the processor will be simulated numerically. The
memory will be emulated by adding an additional function
to the numerical simulation that actively monitors the output
degrees of freedom and generates excitation forces according
to the requested address and the contents of a data array. There
are no fundamental restrictions preventing the realization of a
mechanical memory composed of latches, but this is not done
here because it results in a very high number of degrees of
freedom (>105) and makes numerical simulation extremely
time-consuming.

While open-source processor designs written in Verilog
exist, here a custom design is introduced. This is done for
two reasons: First, since the processor has to be numeri-
cally simulated in full, it is crucial to have an absolutely

minimum number of logic gates. This is typically not as se-
rious of a consideration in electronics, as physical transistors
are inexpensive. Second, most electronic designs make use
of a feature called tristating, where the same line can act
both as an output (being set to states “0” or “1”) or as an
input (by being set to what is typically called state “Z”).
While there is no fundamental reason for tristating to be
impossible in a mechanical system, that would require an
additional building block whose development is outside the
scope of this paper. The processor introduced here has six
internal eight-bit registers, each of them implemented as a
set of eight latches as described in Fig. 5. The first three
registers will contain the memory address currently being
read, the memory address currently being written, and the data
currently being written. The remaining four registers, labeled
A, B, C, and D, will contain the operands and results of the
instruction currently being executed. The architecture of the
processor is as follows: A combinatorial data path section
calculates the potential next values of the seven memories for
all potential instructions. Then a multiplexer chooses which
of the potential values should be committed to the register,
based on the instruction currently present at the data input
(which is read from the main memory). Figure 7 illustrates
this architecture. The processor clock is set to execute one
instruction every 25 k periods of channel oscillation. If the
channels and gates are implemented with nanotubes such
as those in Ref. [34], that corresponds to a clock rate of
124 kHz. This clock frequency, while significantly lower than
a conventional electronic computer, is sufficient for a large
number of embedded, low-power applications.

The processor can execute the following 16 instructions
divided into four categories. Register management instruc-
tions are SWAP_AC, SWAP_BD, SWAP_AB: Swap the con-
tents of the A–C, B–D, and A–B registers respectively, and
COPY_AC: Copies the content of A into C, leaving A in-
tact. Load-store instructions: SAVE_AB: Stores the content
of register A in the memory address contained in register
B. LOAD_AB: Loads the content of the memory address
specified in register A into register B. LDNX_AB: Loads the
contents of the memory address right after that of the instruc-
tion currently being executed and places them in register A.

A READ-DATAB C D WD

A

READ-ADDR
WRITE-ADDR
WRITE-DATA
WRT/ENABLE

MUX

DATAPATH

B C D

Init. 
condit.

RST

CLK

WARA

RA WA WD

FIG. 7. Architecture of the mechanical processor. The proces-
sor contains a set of registers implemented with latches (dashed
rectangles). A combinatorial function (data path) determines all the
potential future values for the registers. A multiplexer (MUX) selects
which of the values should be stored in the registers, depending on
the instruction currently being read from memory. When the clock
“ticks,” the future value of the registers gets latched and becomes the
present value.
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Instruction execution will continue at the current address +
2. Flow control instructions: SKPNX_A_GRT_B: Skips the
next instruction if the value in register A is greater than that
in register B, SKPNX_A_DIF_B: Skips the next instruction
if the content of register A are different from that of register
B, and SKPNX_OVER: Skips the next instruction if the last
arithmetic addition resulted in an overflow, i.e., the sum of the
two operands exceeded 255. JMP_C: Resumes the execution
at the memory address given by the register C. Arithmetic and
logic instructions: NOT_C: Replaces the content of register C
by its bitwise negation, ANORB_TO_C: Computes a bitwise
NOR between registers A and B and stores it in register C, and
APLUSB_TO_D: Computes the sum of register A and B and
stores the result in register D. RSL_D: Computes a logical
right shift of register D (all bits are shifted to the right, and the
most significant bit is replaced by zero). RSA_D: Computes
an arithmetic right shift of register D: All bits are shifted to
the right, but the most significant bit is left intact.

The mechanical processor spans 128 lines of Verilog code.
It synthesizes to 11754 harmonic oscillators interacting via
2744 linear springs, 9795 nonlinear springs, and 2744 dash-
pots.

The mechanical processor is tested by executing the
Erathostenes’ sieve algorithm to produce prime numbers
smaller than NMAX (here taken to be 32). This particular prob-
lem is chosen because prime numbers rarely appear in a dy-
namical system (in contrast with, e.g., additions or sine func-
tions). Therefore, the ability to mechanically generate them
demonstrates the flexibility of the approach. The algorithm
works as follows: An array (here represented by memory
addresses 128–160) will store the primality of numbers. The
array will be initialized at zero, indicating that all numbers
are presumed prime to begin with. The algorithm will start by
checking the smallest prime number, 2. It will keep adding the
number to itself and marking the resulting memory address
as composite, until the end of the array is reached. Then the
next number will be considered. If the number has not been
found composite, the same marking process will take place;
if the number has been found composite, the marking process
will be skipped and the next number will be considered. Only
numbers up to

√
NMAX need to be considered. The algorithm

is 48 bytes long, including instructions and constants (e.g.,
memory addresses, initial values, and ranges). The code of
the algorithm, together with an execution trace, is provided in
the Supplemental Material [30]. The code for the algorithm
is loaded into the processor by setting it as initial condition
for the emulated memory. Then the processor’s dynamics
are numerically simulated for 719 clock periods, until the
algorithm reaches the halt condition. This corresponds to an
execution time of 5.7 ms under the experimental assumptions
introduced previously. The simulation takes 50 h and 22 min
to complete on a Core i7 laptop from 2015, indicating that,
while a complex task, these problems can be handled with-
out access to supercomputing resources. Figure 8 shows the
contents of the system’s memory at different points during the
execution of the algorithm.

The Erathostenes’ sieve algorithm example illustrates how
an engineered mechanical system can produce an output,
prime numbers, that does not naturally appear in dynamical
systems. However, the question remains on how general is the

1 clock period 288 clock periods

600 clock periods 719 clock periods

FIG. 8. Numerical simulation of a mechanical processor during
the execution of the Erathostenes’ sieve algorithm. Each of the four
panels depict the contents of the system’s memory at a different point
during the execution of the algorithm. The 16 × 16 small squares
represent each memory address, where the color indicates the value
stored. The green rectangle indicates the memory address currently
being read, and the red rectangle indicates the memory address
currently being written. Memory addresses grow first along rows
and then through columns, with the zero address corresponding to
the bottom left corner. The bottom three rows are the 48 bytes that
contain the instructions of the program. The region starting at address
128 (dotted rectangle) is where the primality of numbers is stored. Its
value changes during the execution. The top 32 larger squares in each
panel present a magnified view of this memory region.

class of problems that this processor can solve. The answer
is that any computable function can be evaluated with such a
device. This is captured by the notion of Turing completeness:
Once a processor attains a certain level of complexity, adding
additional instructions may make it more efficient but does
not increase the number of problems that it can solve. For ex-
ample, multiplication can be simulated by repeated addition,
and therefore a processor does not need dedicated multiplying
logic to be able to solve problems involving products. The
same is true for exponentiation, which can be emulated by
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repeated multiplication. In order to evaluate arbitrary com-
putable functions, though, a processor needs access to an un-
bounded memory. Since unbounded memory does not exist in
practice, the label Turing-complete is generally used to refer
to processors that could evaluate any computable functions if
they were to be augmented by an unbounded memory. Turing
completeness is proven in Appendix B by constructing an
emulator for a known Universal Turing Machine.

V. CONCLUSIONS

The numerical results in this paper demonstrate nonlinear
mass-spring-damper models capable of performing complex
computations, ranging from a simple two-bit adder to a
Turing-complete processor. This has been accomplished by
designing a highly modular building block implementing a
basic logic operation and utilizing existing tools to map
advanced computations into instances of this basic logic
operation. While this work demonstrates a route towards
advanced mechanical information processing, two crucial ob-
stacles must be overcome for its experimental realization:
First, there is no automated mechanism to generate geome-
tries implementing the resulting discrete models. The design
approach introduced in the context of perturbative metama-
terials [17,18] provides a route towards this goal but is so
far limited to linear systems. Second, the systems discussed
here are highly dependent on hard-to-control parameters such
as damping. More robust building blocks need to be found,
which will probably require the use of additional degrees
of freedom. These two problems cannot be considered sepa-
rately; the optimization of the building block must be done
once an experimental platform has been established and a
realistic range of parameters and uncertainties has been de-
termined.

The set of examples developed here are sufficiently com-
plex to demonstrate the flexibility of the approach, but suf-
ficiently simple to be simulated numerically without over-
whelming computational requirements, and can be used as a
benchmark for future works involving mechanical logic. The
importance of performing these tests has also been highlighted
by the observation that apparently functional building blocks,
such as the one presented in Fig. 3(a), cannot be scaled into
more complex designs due to effects that are hard to foresee.
Finally, here, a set of mechanical systems have been gener-
ated automatically from a code description of their intended
behavior. This approach is extremely successful in the field
of electrical engineering, where integrated circuits containing
billions of transistors are generated from source code de-
scriptions of their functionality. However, the possibility of
applying a similar design methodology to mechanical systems
has been the subject of a long-standing debate [25,42]. The
results presented here support the position that, in the light
of recent advances in mechanical modeling and optimization
[12–18], the automated design of ultracomplex mechanical
systems can soon become a reality.
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APPENDIX A: SYSTEM PARAMETERS

The gate parameters are mG = 0.2[M], QG = 200, kG =
mGω2

G = 25.582[F ]/[L]. Insulator parameters are mI =
1.0[M], QI = 1.5, kI = mIω

2
I = 0.394784[F ]/[L]. Chan-

nel parameters are mC = 6.0[M], QC = 1.5 kC = mCω2
C =

14311.8[F ]/[L]. Nonlinear couplings are γIG = 12[F ]/[L2]
and γIC = 6[F ]/[L2] The reference forces and displacements
are FR = 0.7[F ] and uR = 0.0182[L]. The channel excitation
is FC = 1.326[F ]. Exceeding these force values may result
in diverging simulations due to the gate or insulator stiffness
becoming negative. Local parameters must stay the same
when cascading devices to form logical networks, so the local
stiffness and damping have to be adjusted to compensate
for the contribution of the coupling springs and dashpots.
This may result in negative values. While these are attainable
experimentally (e.g., through magnetic forces, buckling, or
stored elastic energy for the stiffness and through parametric
or optomechanical pumping for the damping), further opti-
mization to remove them may be advisable before experimen-
tal realization.

APPENDIX B: PROOF OF TURING COMPLETENESS

Turing completeness is proven if the processor is able
to simulate a known Universal Turing Machine (UTM), as
UTMs are characterized by being able to evaluate any com-
putable function. A UTM U (m, n) is a finite-state machine
that can be in one out of m states. The machine has an
unbounded tape where the program is stored. Each cell of
the tape contains a symbol from a set of n symbols. At
every iteration, the machine reads a symbol from a position
(typically called the head location) and, as a function of the
current state and last read symbol, performs the following
three tasks: writes a new symbol in the current head location,
moves the head to right or to left, and transitions to a new
state. The particular UTM considered here has n = 5 possible
symbols and m = 5 possible states [43]).

To show that the processor presented here is Turing-
complete, the processor must be augmented with some mech-
anism to access external storage. In digital electronics, a
common way to accomplish this is to use memory-mapped
registers (MMRs). A MMR is a memory address that is
singled out and used to provide input and output to the
system. The processor does not distinguish between MMRs
and conventional addresses. However, when data are read
from or written to the MMR, the data are sent to an output or
read from an external input rather than from the main memory.
To implement a MMR, a combinatorial multiplexer is inserted
between the processor and the memory. When the read or
write address is different from the MMR address, information
is directed to and from the memory. However, if the read or
write address matches the MMR address, read data are taken
from the system’s input, and write data are sent to the external
output. A MMR can be used to access the tape of the UTM.
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The eight-bit output register can be used to control the tape,
with three bits representing the symbol to be written (only
five of the eight possible values will be used) and one bit
representing the direction of motion for the tape. Then the
current symbol under the head can be read using the input
MMR. Once a means to control the external tape has been
established, a UTM can be simulated in a straightforward
manner: The memory is initialized so one 25-byte region, the
“output table,” contains a byte oi indicating the symbol to be
written and movement to be performed, for each of the 25
possible combinations of current state and read symbol. The
output corresponding to the state pi and last-read symbol s j

will be stored at the address a = aout + in + j, where i, j ∈
{0, 1, 2, 3, 4}. Another 25-byte region is initialized to contain
the next state as a function of the current state and read

symbol (here called the “transition table”), at addresses a =
atrans + in + j. The state pi will be represented by aout + in
to simplify emulation. Then, assuming that the initial state is
contained in a processor register, the emulation algorithm is as
follows: First, the current symbol is read by loading the MMR
into another processor register. The two registers are added
together to calculate a location in the “output table.” The
content of that location is read and saved into the memory-
mapped register to produce the required output or motion.
Then the memory distance between the transition table and
the output table atrans − aout is added to the location in the
output table, to generate the location in the transition table.
The contents from the generated address are read and become
the new current state. At this moment, the algorithm jumps to
the initial position.
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