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Out-of-time-ordered correlators (OTOCs) have been proposed as a probe of chaos in quantum mechanics, on
the basis of their short-time exponential growth found in some particular setups. However, it has been seen that
this behavior is not universal. Therefore, we query other quantum chaos manifestations arising from the OTOCs,
and we thus study their long-time behavior in systems of completely different nature: quantum maps, which are
the simplest chaotic one-body system, and spin chains, which are many-body systems without a classical limit.
It is shown that studying the long-time regime of the OTOC:s it is possible to detect and gauge the transition
between integrability and chaos, and we benchmark the transition with other indicators of quantum chaos based
on the spectra and the eigenstates of the systems considered. For systems with a classical analog, we show
that the proposed OTOC indicators have a very high accuracy that allow us to detect subtle features along the

integrability-to-chaos transition.

DOI: 10.1103/PhysRevE.100.042201

I. INTRODUCTION

The original Bohr-Sommerfeld formulation of quantum
mechanics addressed integrable classical systems, with as
many conserved quantities as degrees of freedom. Einstein’s
1917 observation that such a quantization scheme remained
extremely limited (as integrability is a singularity among
dynamical systems) remained relatively unnoticed until the
late 1950s, probably due to the success of the Schrodinger
equation [1,2]. The quantization of chaotic systems, as well
as the understanding of the consequences of classical chaos
on quantum observables such as the level statistics, developed
in the 1970s and 1980s [3,4], provided the connection of
quantum mechanics with fully chaotic systems, which con-
stitute another singularity within the ensemble of dynamical
systems. The connection of classical and quantum properties
in the generic case of mixed systems, away from the two
previously mentioned singularities, remains, comparatively,
less understood and more difficult to quantify.

Two important aspects spur our interest in the intermediate
behavior between fully integrable and completely chaotic
regimes. On the one hand, in quantum systems without a clas-
sical analog the notion of integrability is still valid, although
defined through the separability and the soluble character of
the quantum problem. On the other hand, in multidimensional
and many-body systems the “no-man’s land” between the two
singular behaviors is difficult to avoid.

Within this context, the recent impressive development
of experimental techniques for many-body quantum systems
[5-9], monitoring in time complex processes like localization
or thermalization, enhanced the need to understand quantum
dynamics and its connection with the concepts of integrability,
chaos, and ergodicity. A useful tool towards this task, which
has lately received considerable attention is the out-of-time
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ordered correlator (OTOC), defined from the commutator of
two operators V and W (¢) (the Heisenberg time evolution of
operator W) as

Ct) = (W@), VI'IW (1), V1), (1)

where the angular brackets denote the average over an initial
state. While this time-dependent quantity was first considered
in a semiclassical study of superconductivity [10], the present
interest results from its use as a measure of quantum informa-
tion scrambling [11-19], which, in addition, is accessible to
experiments [9,20-22].

For chaotic many-body systems the scrambling measured
by the OTOC was conjectured to increase exponentially in
time, with a temperature-dependent bound on the growth
rate [11]. The strongly coupled, exactly solvable Sachdev-
Ye-Kitaev many-body quantum model [23,24] saturates the
bound, while being dually related to black holes via the anti-
de Sitter—conformal field theory (AdS-CFT) correspondence
[25].

The exponential short-time behavior has been demon-
strated to hold in some many-body systems such as the Dicke
[26] and the Sachdev-Ye-Kitaev [27,28] models, and the cor-
responding systems have then been dubbed “fast scramblers”
[29]. Systems with a classical counterpart, like quantum maps
and billiards, also exhibit an exponential growth of the OTOC,
with a rate that can be either equal [30,31] or proportional
[32-34] to the Lyapunov exponent, depending on the initial
state. However, the exponential growth does not constitute a
universal behavior. Other examples, like spin chains in the
presence of random fields [13], Luttinger liquids [35], or
weakly chaotic systems [36], exhibit a polynomial increase
of the OTOC (and have then been dubbed ““‘slow scramblers”).
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While the exponential growth of the OTOC for relatively
short times was the initial focus for the above-cited studies,
it later appeared that the long-time properties of the OTOC
were equally interesting from a quantum chaos point of view
[30,37].

The comparatively fewer studies of the long-time behavior
of the OTOC [30,31,33,37-39] have been centered on the
saturation obtained in finite-size classically chaotic systems.
A semiclassical theory for fully chaotic many-body systems
linked the saturation with quantum interference [37]. In the
simpler case of quantum maps, the approach to the saturation
was shown to be exponential and dominated by the largest
nontrivial Ruelle-Pollicott resonance of their chaotic classi-
cal counterparts [30]. More recently the long-time regime
in the case of two interacting maps was also considered
[40,41]. In addition, the appearance of oscillations in the long-
time regime for critical many-body systems was studied in
Ref. [42]. The long-time behavior of the OTOC is particularly
interesting in view of its consequences for thermalization
processes in many-body systems [5,43—46].

The goal of this work is to try to provide a connection
between the degree of integrability and the characteristic
features of the OTOC dynamics for the case of mixed systems.
We will show that such a connection is firmly established
using the long-time dynamics of the OTOC, where we can
match the quantum and classical chaos indicator with pro-
posed OTOC indicators.

In order to test the universality of the established con-
nection, we study one-particle systems having a classical
counterpart (two quantum maps) where a parameter can be
used to tune the transition from integrability to chaos, as well
as many-particle systems without a classical analog (three
different spin chains) where chaos is typically driven by an
interaction parameter and characterized by the nearest-level
spacing-distribution.

This work has the following structure. In Sec. II we review
the OTOC and its most relevant properties, while in Sec. III
two of the canonical quantum chaos indicators are exposed.
Both previous sections provide the mechanisms to analyze
the systems studied in this work. In Sec. IV we present
the physical systems to be used in numerical simulations,
consisting of quantum maps (Sec. IV C) and three many-body
spin chain systems (Sec. IV D). We present our conclusions
and outlook in Sec. V. In Appendix A the mathematical details
of the calculations for the short-time behavior in spin chains
are included, and in Appendix B we explain a method to
measure the area of the chaotic region in the phase space.

II. SHORT- AND LONG-TIME BEHAVIOR OF THE
OUT-OF-TIME-ORDERED CORRELATOR

We will work with initial thermal states in the infinite
temperature limit, for which (O) = Tr{O/D}, where D is the
dimension of the Hilbert space. Moreover, taking the W and
V operators to be Hermitian, the OTOC defined in Eq. (1)
becomes

C(t)= %{Tr(VWz(t)V) —Re[Tr(W)VW@OV)]}.  (2)
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FIG. 1. Sketch of the typical time dependence of the OTOC
for one-body and finite-size many-body systems exhibiting different
behavior in the short- and long-time regimes.

Typically, the time dependence of the OTOC appears as
schematically presented in Fig. 1, with two well-defined time
regimes.

The short-time growth of the OTOC is given by the
operator spread, or scrambling, where the initial quantum
information spreads over the available degrees of freedom in
a quantum system. As discussed in the introduction, the short-
time growth is exponential in many cases [11,26,30,32,34,37].
But such a behavior of fast scramblers is not generic. Ex-
amples of slow scramblers have been predicted for weakly
chaotic systems, where the short-time growth has been shown
to be linear [36], for Luttinger liquids, where a quadratic
initial-state-independent behavior has been obtained [35], for
a random-field XX spin chain, where the initial growth ex-
hibits a power law given twice the distance between the sites
associated with the chosen operators [13], as well as for the
anomalous phases of the interacting Aubry-André model [47].
The rich, nonuniversal initial behavior of the OTOC hinted
at the usefulness of using it in order to characterize different
many-body phases [15-19,47-49].

The dotted region defined in violet in the sketch of Fig. 1
stands for the variety of possible outcomes for the OTOC’s
short-time growth. Even if in this work we concentrate our-
selves in the infinite-temperature limit, it is worth mentioning
that in the general case of an initial thermal state, the extent
of the growth regime can be strongly dependent on the tem-
perature. For instance, the exponentially increasing regime
in the case of a chaotic billiard appears in a limited time
window that shrinks as the temperature increases [31]. While
most of the results concerning the initial growth of the OTOC
were obtained through numerical calculations, there exist
some analytic results: among them, the short-time exponential
growth-rate for the “cat map” that has been analytically shown
to be given by the classical Lyapunov exponent [30], and the
semiclassical approaches that allowed researchers to establish
a connection with the classical Lyapunov exponent for a
chaotic stadium billiard [31] and for an interacting boson
system [37].

As stated in the introduction, the long-time behavior of the
OTOC in the chaotic case is characterized by a clear saturation
[30,31,33,37-39]. Unitarity, ergodicity, and finite-size yield,
for definition (2) of the infinite temperature case, a limiting
value of 1. In the general case of an initial thermal state, the
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limiting value depends on the chosen operators, and for the
canonical choice of position and momentum operators, it is
proportional to the temperature [31,38].

Classically integrable systems do not show a clear satu-
ration of the OTOC, and the long-time limit is characterized
by strong oscillations. In the case of the square billiard, large
periodic oscillations arising from the commensurability char-
acter of its energy spectrum prevent the approach to saturation
in the long-time limit [38]. The typical long-time behavior for
the intermediate case of mixed systems is sketched in Fig. 1,
where irregular oscillations are superposed to a saturation
value. The main result of this paper is the characterization
of these aperiodic oscillations in very different systems and
linking this information with the one stemming from other
quantum and classical chaos indicators.

III. QUANTUM CHAOS INDICATORS

We will characterize different mixed quantum systems with
two widely used quantum chaos indicators in order to gauge
the transition from integrability to chaos. The first indicator is
the Brody parameter §, obtained by fitting the level-spacing
distribution P(s) with the Brody distribution [50], defined as

B+1
Pa(s) = (B + DbsPe ™", ”ZH%)] 9

where I'(x) is the gamma function. The Brody distribution
Pg(s) approaches a Poisson distribution Pp(s) for § — 0
and resembles the Wigner-Dyson (WD) distribution Pwp(s)
when 8 — 1. Since the seminal works by Berry and Tabor
[51] and Bohigas, Gianoni, and Schmidt [4] it is by now
well established that a Poisson distribution is associated to
nonergodic, regular systems, while a behavior resembling a
Gaussian ensemble and characterized by a WD distribution is
associated to quantum chaotic dynamics.

The second indicator that we consider is the localization
of eigenstates, characterized by the inverse participation ratio
(IPR). Suppose |;) is an eigenstate of the system of interest
written in an arbitrary basis {|¢ j>}?;ol as [¥) = Y aijl¢)).
We will denote the IPR of the eigenstate as the inverse of the
second moment of the distribution elements

-1

D—1
g =Y layl*| €
j=0

Therefore & is a measure of localization relative to the
original basis and is defined as where small values of &z char-
acterize a localized eigenstate while larger values signal delo-
calization. For systems with a WD distribution the coefficients
a;; are independent random variables. These types of states are
completely delocalized, having the direct consequence that
égel"c ~ D/3, because the coefficients |a; j|2 fluctuate [52,53].
In the numerical calculations we will consider the average
over all the eigenstates

_ |

§p = FSEIOC ZEE(i). &)

i=0

While the two previous indicators have been consistently
employed in quantum chaos studies [54], they are known to
exhibit some shortcomings. On the one hand, the measure (5)
is basis dependent. On the other hand, the Brody distribution
is purely empirical, lacking a sound theoretical foundation.
We therefore benchmark the previous indicators with two
alternative measures, defined below.

The Berry-Robnik (BR) distribution [55], defined as

Pgr(s) = [2(1 —p)p+ %p3s:|e—(1—ﬁ)s—%ﬁzsz
(6)
+ (- p)%rfC(%EpS)e(lﬁ)s’

describes the gradual transition from Poisson-like to Wigner-
like behavior under the evolution between integrable and
completely chaotic regimes. While (6) is not the most gen-
eral BR distribution, it is accurate for the vast majority of
systems (see Ref. [55]). Here p” plays the same role as
the parameter § does in the Brody distribution, and for the
systems considered in our numerical work, both parameters
are in qualitative agreement. It has been shown that, in the
asymptotic semiclassical limit, the BR distribution represents
an exact description for the spectral properties of the mixed
dynamics [56] and that the fitted BR parameter coincides
with the value obtained from the phase-space portions of the
integrable and the nonintegrable parts [54].

In the context of many-body systems, another quantity
related to level spacing distributions can be used as a bench-
mark. The distribution of min(1/r, r) [57-59], with r being
the ratio between the two nearest neighbor spacings of a
given level, has the advantage of not requiring an energy
unfolding—thus, avoiding an important difficulty encountered
in many-body systems, where the functional form of the level
density is typically not known and there might not be enough
statistics to extract it. The mean value min(1/r, r) attains a
minimum /p =~ 0.386 when the statistics is Poissonian and a
maximum lywp &~ 0.586 when the statistics is Wigner-Dyson.
Therefore, we can define the quantity

min(l/r, r) —Ip

n (N

Iyp — Ip
Consistently with the 8 and p* parameters, n — 0 signals if
the system is regular and n — 1 if the system is chaotic.

IV. SYSTEMS AND RESULTS

A. Overview

We start by presenting numerical studies of the OTOC in
the long-time regime using a one-body system (the Harper
map, whose precise description is given in Sec. IVC?2) in
which the transition from integrability to chaos is clear from
the available classical counterpart. In Fig. 2 such a transition
is obtained by varying the parameter K of the corresponding
Hamiltonian and represented by the color change from violet
to green, and then to blue. Figures 2(c), 2(d), and 2(e) present
the corresponding classical phase portraits as a Poincaré sur-
face of section for K = 0.063, 0.19, and 0.75, respectively.
Figures 2(a) and 2(b) show, respectively, the long- and short-
time regimes of the OTOC C(¢) of the quantum map for the
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FIG. 2. Main panel: (a) example of the typical behavior of C(¢)
across a transition from integrability to chaos. The system is the
Harper map described in Sec. IV C2, having K = 0.063 (large
amplitude oscillations, violet), 0.19 (medium amplitude oscillations,
green), and 0.75 (small amplitude oscillations, blue), with D = 200.
Insets: (b) Short-time of the OTOC for the previous values of K, but
with D = 1024. The same color code is used, and the symbols are
open circles, squares, and circles, by increasing values of K. The red
line shows ~e?*L’; (c—e) Phase portraits for K = 0.063, 0.19, 0.75
(from left to right) using the same color code as before.

three different cases. For short times the growth of C(z) is
strongly dependent on K, and only in the completely chaotic
case can an exponential growth with the Lyapunov exponent
(red line) be identified, as was shown in Ref. [30]. For the
very long times of the main panel C(z) oscillates around the
saturation value. In the integrable case a strong oscillatory
behavior is observed (violet curve). The oscillations are char-
acterized by a large amplitude and a seemingly small number
of frequency components. The amplitude of the oscillations
decreases as the chaos parameter K becomes larger (green
curve), approaching small quasirandom fluctuations around
a constant saturation value in the fully chaotic regime (blue
curve). The presented behavior is generic to other one-particle
systems (data not shown).

The conclusions extracted from the previously discussed
one-body example carry over to the many-body case. Fig-
ure 3(a) shows the long-time behavior of the OTOC for
an Ising chain with a tilted magnetic field (described in
Sec. IVD?2). The transition from integrability to chaos is
driven by the angle 6 and represented by the color change
from violet to green, and then to blue. Like in the one-body
example, the oscillations around the saturation value decrease
upon approaching the chaotic limit. The insets portray the
magnitude square of the Fourier transform C(w), which helps
to characterize the long-time OTOC oscillations and is used to
define the & . parameter of Eq. (8).

B. Long-time indicators for the OTOC

The generic behavior of the OTOC presented in the previ-
ous section led us to conjecture that measuring and quantify-

w5—0>0 025 05 0 025 05 0 025 05 075
o (b) ©) @)
Sost :
SIN T

ol _ L
/E 1 .nlli lhl MM %
J [T wrvwwwv "V"’U“”U‘ i
Jos b

% 200 400 ) 600 800 1000

FIG. 3. Main panel: (a) typical behavior of C(¢)/(C,;),(I = 1)
across the transition from integrability to chaos for the Ising model
with tilted magnetic field described in Sec. IV D 2. The chain length
is L =8 (D = 256). The chosen angles are 8 = 0.087 /2 (large
amplitude oscillations, violet), 0.317 /2 (medium amplitude oscilla-
tions, green), and 0.797 /2 (small amplitude oscillations, blue). Up-
per panels: (b-d) normalized OTOC FFT distribution of frequencies
|5zz(a))|2, from the data of the main panel (a) for increasing values of
0 (from left to right) using the same color code as before.

ing the oscillatory behavior of C(¢) in the long-time regime
allow us to assess the chaotic nature of the quantum system.
The suggested link between the integrability of a quantum
system and the long-time oscillations of C(#) makes it nec-
essary to develop quantum indicators that are able to gauge
the importance of these oscillations.

A direct quantity to be used in order to charac-
terize the oscillations is the standard deviation o, =

(C(t)*) — (C(1))2, where the averages are taken over in-
termediate time windows. A second useful quantity is the
localization in Fourier space, obtained by computing the
inverse participation ratio of the Fourier transform C(w) of

C(t) through
00 -1
Soroc = [ /0 dw|C(w)|“} : ®)

To avoid the initial transient and a resulting large peak
around w = 0, we compute the Fourier transform of C(z >
tp) — (C(t > tp)). Examples of C(a)) across the transition
from integrability to chaos for the case of an Ising chain
with a tilted magnetic field are given in the upper panels of
Fig. 3.

Just like the previously defined &g, a small & . character-
izes a very localized signal, meaning that a small number of
frequencies are present, which is characteristic in the weakly
chaotic chase. On the contrary a large &_,,. corresponds to de-
localization in frequency space and an almost constant value
for C(t). In the following sections we test if the long-time
regime of the OTOC can detect the quantum chaos transition
in paradigmatic models of one- and many-body systems.
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We note that we will consider systems that depend on
a parameter, and we are interested in the variation of &,
and o, with the parameter. To compare both quantities
behavior in a unique plot, we normalize them with respect to
their maximum value present in the studied parameter ranges,

~—1 _ _—1 min \—1 = _ max
Ooroc = OOTOC/ (JOTOC) and SOTOC - UTOC/ s0'1'oc'

C. One-body systems: Quantum maps

Classical maps on the 2-torus are the simplest systems
which can have all the essential features of chaotic motion.
Here we will consider quantum maps on the torus, which are
the quantized counterparts of a classical canonical transfor-
mation corresponding to these classical maps [60,61]. The
torus structure implies periodicity in position and momentum.
This periodicity results upon quantization in a discrete Hilbert
space of dimension D and an effective Planck constant s =
1/(2n D). Given a classical map M the corresponding quan-
tum map Uy, is then a unitary operator with an D x D matrix
representation, and the time evolution is given in discrete steps
by Uj,, with ¢ an integer.

Quantum maps have been extensively used to study quan-
tum chaos [62] and irreversibility [63]. Moreover there exist
efficient quantum algorithms for many of the well-known
quantum maps [64—67], making them interesting test beds of
quantum chaos in experiments using quantum simulators.

The OTOC that we will consider for maps is

1 . R
C@) = Tr{X@), PP, €))

where X (1) = (U)X U, and

Us— U
2i

) V-V
X ., pP=2_5 (10)
20

are Hermitian operators defined in terms of the unitary
Schwinger shift operators [68]. If |g), |p) are, respectively,
position and momentum states related by (p|q) = e~ >7iaP/P
(withg,p=0,...,D — 1), then
Vslg) =1lg+1). Uslp)=e""P1p). (D

In the semiclassical limit X and P approximate the position
and momentum operators, respectively.

The two maps that we consider, described below, are
derived from kicked systems, so they can be written as

U=TpPV(©). (12)

The advantage of the previous formulation is that the nu-
merical implementation of the time evolution (and the cor-
responding diagonalization [69]) becomes very efficient by
using fast Fourier transformations. For both of the maps that
we consider, the kicking strength is the chaos parameter.

1. Standard map

The quantum (Chirikov) standard map (SM) [62] is defined
by the evolution operator

N . A
U[((SM) — e—z’zfﬁe—t%cos(an) (13)
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FIG. 4. (a) & (filled circles) and the B parameter (open cir-
cles) resulting from the eigenvalues and eigenvectors of the Stan-
dard map with D = 1000. The red solid line is r., (top) obtained
from the corresponding classical map, as described in Appendix B
with n, = 35000 and averaging the curves obtained for f,.x =
490, 491, ...,509. In the inset we show the values of p> (black)
obtained from the Berry-Robnik distribution and 1 obtained from the
ratios distribution. (b) Normalized &,. (filled circles) and (& ;0. )™
(open circles) for D = 600. The number of iterations is 6 x 10°.
The red solid line corresponds to 1/re = 1/(1 — r¢), normalized
as described in the text.

and corresponds to the classical map

Pn+1 = put % sin(27rx,,)

mod 1. 14
Xn+1 = x+ Pn+1 ( )

For small values of K the dynamics are regular. Below a
certain critical value K. the motion in momentum is lim-
ited by KAM curves. These are invariant curves with irra-
tional frequency ratio (or winding number) which represent
quasiperiodic motion, and they are the most robust orbits
under nonlinear perturbations [70]. At K. = 0.971635.. ., the
last KAM curve, with most irrational winding number, breaks
down [71]. Above K. there is unbounded diffusion in p. For
very large values of K, there might exist islands, but the
motion is essentially chaotic.

In Fig. 4 we show the numerical results obtained for
the standard map. In Fig. 4(a) the Brody parameters 8 and
¢ exhibit the same transition from localized (nonergodic)
behavior to delocalized (ergodic) behavior. The red curve is
a Metropolis sampling approximation r, of the area of the
chaotic region for the classical map, described in Appendix
B. The direct correlation between these quantities is evident.
In the inset of the top panel of Fig. 4(a) we present the
corresponding curves for the parameter p> obtained from the
Berry-Robnik distribution (black). In gray we show the values
of B shown in the main panel. The qualitative behavior is
evidently equivalent. Furthermore, we computed n (orange)
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FIG. 5. Same as Fig. 4 for the Harper map with D = 1000 (a, b)
and D = 200 (c). The number of iterations is 2 x 10*. The red solid
lines were obtained using n = 35000 and averaging the curves
obtained for f,,x = 90, 91, ..., 109.

obtained from the ratios as defined in Sec. IIl. It can also be
seen that the behavior is completely equivalent to that of S.
In Fig. 4(b) we show the corresponding &, and (& ,,.) "
We use the relative variance [dividing o,. by the time
average of C(t)] because this average changes with K and
because it reflects a relative deviation from the mean. We
can also see a transition from localized to delocalized but
not taking place at quite the same values arising from the
quantum chaos indicators. The remarkable observation is that
the OTOC indicators seem to reproduce the behavior of fr;é =
(Frea/ r;‘e‘g‘)‘l, the inverse normalized value of ryee = 1 — ren
(defined in Appendix B), which measures the area in the
phase space of the integrable region (¥™" corresponds to the

> reg
saturation value of ry, at large K).

2. Harper map

The quantum Harper map (HM), defined by the evolution
operator
UI((?%Z) — o cos2mp) =it cos(278) (15)
is an approximation of the motion of kicked charge in the pres-
ence of an external magnetic field [72]. The corresponding
classical map is

pn — Ky sin(2mrx,,)
Xp + Ko $in(27 pp11)

Pn+1 =
Xn+1 =

We will consider only the case K; = K; = K. For K < 0.11,
the classical dynamics is regular, while for K > 0.63 it is
fully chaotic for most values of K, although there are some
particular values where small islands appear [73].

In Fig. 5(b) we see that for the Harper map S does not
change much with K. This is due to the fact that the map

mod 1. (16)
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FIG. 6. (a) Blowup of a section of Fig. 5(c) for values of K
around 1.5. Bottom panels: The phase portraits for the classical
Harper map with K = 1.44 (b), 1.47 (c), 1.508 (d), 1.571 (e), and
1.696 (f). The lines indicate the position of the corresponding K
values on the axis in the top panel. Points inside regular islands are
drawn darker to enhance contrast.

has symmetries, and it can be solved using an irrational
h =2mh = 1/D (see Refs. [69,74]). For historical reasons we
consider only a rational 4, and therefore an approximately
constant f is obtained as expected. On the other hand a
transition can be observed for the &z [Fig. 5(a). As shown for
the standard map, the classical chaotic area r, closely follows
the behavior of &z (red curve).

In Fig. 5(c) we see that the same qualitative behavior can
be observed for &, and (,,,.)"!, obtained from the OTOC
data like the one presented in Fig. 2. Similar to what happens
with the standard map, a transition is visible, taking place at
a value somewhat different from the one suggested by &g.
However, as noted above, &, and &,,,. follow surprisingly
well the behavior of 7e, which implies that we can relate their
behavior to the size of the regular islands in the corresponding
classical phase space.

It is known that for the classical Harper map, upon in-
creasing K, there are values of for which there appear regular
islands and then disappear. Such an effect translates into dips
of rpeg. It is interesting to see, as is shown in detail in Fig. 6,
that the K dependences of €. and G, reproduce the shape
of the dip accurately. Thus, the proposed OTOC indicators
seem to be well suited to identify chaotic regions and describe
a mixed phase space regime.

D. Many-body systems: Spin chains

We consider three many-body spin-1/2 systems described
by a Hamiltonian that depends on a tunable parameter (e.g.,
interaction strength). By changing this parameter the system
is driven through a transition between integrable and chaotic
regimes. From a quantum chaos point of view, the transition
can be observed through the spectra of eigenvalues or in the
eigenstate distributions. The chosen systems have been exten-
sively used in studies of quantum thermodynamics [75-78]
and many-body localization [79-81].

In the following discussion 7 is set to 1, while L refers to
the number of spin-1/2 sites in the chain and

PN

St =

1

é" (17)

i

N—
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are the spin operators at site i =0,1,...,L — 1, with 6*
the corresponding Pauli matrix associated with the direction
= x,y, z. Boundary conditions for all the spin chain models
are set as open. Since the spin operators are both unitary and
Hermitian, the OTOC can be written for infinity temperature
as

Cunll,1) = H[o§ . 6T)
1 —Re{Tr[6) ()66} (1)6']}/D, (18)

where D is the dimension of the Hilbert space.

1. Perturbed XXZ model

The first model we consider is an anisotropic spin-1/2
chain with nearest-neighbor (NN) interactions and a perturba-
tion consisting in next-nearest-neighbor (NNN) interactions
(tuned by a strength parameter A). The Hamiltonian of the
chain is

H(\) = Hy + AH, (19)
with
L-2
Z i 1+1 z t+1 + I'l“StleZ+1)’ (20)
L_
H = (8i8i2 + SinV +u8iS8,,)- 2h
i=0

This system has been extensively studied from the quantum
chaos point of view in Ref. [82]. It presents a chaotic regime
when the NNN coupling strength A becomes comparable with
the NN coupling, turning the level-spacing distribution from
Poisson to WD. The latter transition occurs when all sym-
metries are removed. For this reason, in our calculations, the
parameter u is fixed at 0.5, in order to avoid the conservation
of total spin $2, which occurs at & = 1. The z component of
spin §% = Z,L:_ol Sf is conserved in our model. This symmetry
allows separation of the total spanned space, of dimension D,
into smaller subspaces Sy with a fixed number N of spins up
or down. The dimension of each subspace Sy is

Dy = dim(Sy) L Lt (22)
= dim = - .
N ME\W) T M=)
The system also presents a symmetry with respect to the
parity operator I1, defined through the permutation operators
B as

1 =130,L—1131,L—2"'P%_l,%ﬂ- (23)
The defined operator IT is described for a spin chain of odd
length L (the even L situation is analogous). The conservation
of IT divides the spanned space into even and odd subspaces
with dimensions D = DEY" 4+ DO where DEVn/0dd ~ p /2,

Similarly to the case presented in the previous section of
quantum maps, we now study how the effect of the inte-
grability to chaos transition, occurring in the eigenstates and
eigenvalues spectral fluctuations, translates into the long-time
properties of the OTOC.

In Fig. 7(a) we show such a transition through the quantum
chaos indicators 8 and £z as a function of the NNN cou-
pling strength A. In this calculations we analyzed a chain of

,
1 FFeesteleriese veetsessn
. .’.,,00'
14 1
& 0.5 Y
- 05
<
0k .
0 0 05 1 15

T

0 0.25 0.5 0.75 1 1.25 1.5
A

FIG. 7. Chaos transition for the perturbed XXZ spin chain. (a) &,
(filled circles), Brody parameter 8 (open circles) for the even parity
subspace in a spin chain of length L = 13 and N = 5 (DE"" = 651).
Inset (a): The values of 2 (black) and n (orange) for the previous
system conditions. (b) éomc (filled circles) and c‘ro’Ti)C (open circles)
for a spin chain of length L = 13 and N =5 (the entire Hilbert
space has D = 1287) and [ = 1. Inset (b): 6(;LC for a spin chain of
length L = 10 and N = 6 (the full Hilbert space has D = 210) for
| = 1 (triangles), 2 (diamonds), 3 (circles), and 4 (asterisks).

length L = 13 and N = 5, where the even parity subspace has
DE¥e" = 651 states. Although it is more pronounced for 8 than
for &z, we clearly see in both measures that a transition occurs
between A = 0.3 and A = 0.5. The inverse participation ratio
is computed with respect to the spin site basis and averaged
over 10% of the values in the center of the energy spectrum.
The inset of Fig. 7(a) shows that both parameters n and
p> exhibit similar behavior with respect to . In Fig. 7(b)
we present the measures . and &,,. characterizing the
long-time behavior of the OTOC C,,(/, t). In this case, the
separation of the spin operators sites is [ = 1, but similar
results were obtained for other separation values /. In the inset
of Fig. 7(b) we show & g as a function of the parameter A
forl =1, 2, 3, and 4, “for a small spin chain (L = 10 and
N = 6). We observe that the same qualitative behavior as in
B and &, i.e., a transition as a function of A, is observed for
50‘“;, showing that it is a good indicator of an integrable to
chaotic transition. For &, the transition can be seen in the
change of curvature that occurs at the same point that Umoc
reaches the saturation value. We remark that in the case of the
OTOC such a transition is already revealed for much smaller
chain lengths than the ones needed to observe it for 8 and &g.

We end the analysis of the perturbed XXZ spin chain
considering the short-time growth of the OTOC. In Fig. 8
we show such a regime for different spin separations / = 1
[Fig. 8(a)], 2 [Fig. 8(b)], 3 [Fig. 8(c)] and perturbation strength
A. We can clearly see that the behavior is characterized by
the power law (A11) that is obtained in Appendix A using
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FIG. 8. Short-time growth of C.(/,t) for the perturbed XXZ
model with L = 9, N =5, different spin separations [ = 1 (a), 2 (b),
3 (c) (solid lines), and different values of A = 0, 0.5, 1. Short-time
power-law growth predicted with the HBC formula of Eq. (A11) is
also shown (dashed lines).

the HBC formula. As is evident from Eq. (A11) and the data
shown in Fig. 8, the short-time power-law growth is strongly
dependent on the coupling strength A, except for / = 1, where
the initial growth is independent of A. We remark that this
short-time regime is not influenced by the integrable to chaotic
transitions shown in the top panel of Fig. 7.

2. Ising model with tilted magnetic field

The second model consists of a spin-1/2 chain with NN
interactions (Ising model) with a tilted magnetic field. The
Hamiltonian of the system is

L-2 L—1
H©O)=7) 88, +BY [sin(0)8F +cos(0)5]. (24)
i=0 i=0

Parameters are set at / = 2 and B = 2. When the angle 6 =
0, the magnetic field is longitudinal, and when 0 = 7 /2, it
becomes the transverse field model. In both cases the system
is integrable with a highly degenerate spectrum. The Jordan-
Wigner (JW) transformation [83] yields the solution of a
noninteracting fermionic system. At intermediate angles 0 <
0 < /2, the model undergoes a quantum chaos transition.
In this case, JW transformation maps the system to a model
of interacting fermions. The quantum chaos transition and
eigenvalues spectral properties have been studied in Ref. [84];
in our analysis a WD NN level-spacing distribution occurs
near 6 = 7 /4.

The parity symmetry described in the previous model is
also present in this system, and therefore, even and odd

1 -
(@) —Y
o
~ 0.5
S8
0 -y
l . ~.
(b)
&)
g
IS
o
. 0.5
)
S
Q
[
0 il T 1
0 0.25 0.5

O/

FIG. 9. Chaos transition for the Ising model with tilted magnetic
field. (a) &, (filled circles) and Brody parameter B (open circles) for
the even parity subspace for a spin chain length L = 12 (D¥*" =
2080). (b) &y (filled circles) and &, ! - (open circles) for a spin
chain of length L = 8 (D = 256). It is important to remark that the

plot begins at & = 0.037 /2.

subspaces should be analyzed separately for the eigenstate
and eigenvalue spectral properties. On the contrary, the
OTOC analysis will be carried on the entire Hilbert space of
dimension D = 2L, It is important to notice that at § = 0 we
have C,.(I,t) =0, and as 0 increases, the long-time values
of the OTOC keep increasing. Therefore, since our interest
stands in the OTOC oscillations with respect to its mean value,
both &, and & ! are analyzed for the scaled correlator
C..(1,1)/{C;(1)),, where (C.(l)), is the temporal average
after the OTOC reaches its mean saturation value (see Fig. 3).
It is important to remark that the smaller oscillations of the
OTOC present in this spin chain (the ones we are interested
in) were mounted over a smooth function over time for certain
values of 6, and therefore those functions were removed to
obtain clear results for the long-time indicators.

In Fig. 9(a) we analyze the quantum chaos transition in the
spectral properties and in the long-time regime of the OTOC.
In the top panel we show B and & as a function of the tilt
angle 6 for a spin chain of length L = 12. The calculations
were done with the even subspace which has DFV" = 2080
states. As we have previously noted, the system is integrable
for & = 0 and 7 /2, where B(0) takes negative values since the
NN distribution resembles more a § distribution than a Poisson
one and B(m/2) =~ 0. The WD distribution is reached at 6 =~
/4 where 8 = 1.

In Fig. 9(b) we show &, and 6(;éc for a L = 8 spin chain
length. The choice such that the lower panel uses a very small
chain is intentional to highlight an interesting property. Not
only do both results show nearly identical behavior concern-
ing the transition to chaos, but the choice of a very small
spanned Hilbert space dimension also highlights the fact that
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FIG. 10. Short-time growth of scaled C,(/, t) for an Ising chain
of length L = 8 subjected to a tilted magnetic field with different
angles 6 and various spin separations sites / = 1 (a), 2 (b), 3 (c¢) (solid
lines). The short-time power-law growth predicted by Eq. (A10) is
also plotted (dashed lines).

the OTOC does not require Hilbert spaces as large as those
required by the statistical studies of eigenstate and eigenvalue
properties. We checked that qualitatively equivalent results for
larger spin chains can be obtained (data not shown).

In Fig. 10 we show the short-time behavior of the OTOC
C. (1, 1) for separation sites [ = 1 [Fig. 10(a)], 2 [Fig 10(b)],
and 3 [Fig. 10(c)] and angles 6 = 1/4x, 3/8m and 7 /2 of
the magnetic field. The angle & = /2 has been thoroughly
studied in Ref. [85], and the short-time power-law formula
presented in that work gets barely modified by the presence of
angle 6. The relation obtained by the HBC formula Eq. (A10)
is also plotted and clearly describes the short-time regime.
As shown in Fig. 10, although angle dependence is present
in Eq. (A10), it does not affect the short-time power law.
Furthermore, like in the previous model, the transition to
chaos does not affect the short-time growth in any noticeable
way.

3. Heisenberg spin chain with random magnetic field

The third model that we analyze consists of a spin chain
with NN interactions [the Hamiltonian of Eq. (20) with p© =
1] coupled with an external random magnetic field in the z

direction [86]. The Hamiltonian of the system is
L-2 L—1
A=Y (585, + 88, +85,) + Yonsi @)

i=0 i=0

where h; are independent random variables at each site, uni-
formly distributed in the interval [—h, h]. This is a paradig-

14 (2)
¢
W |4
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FIG. 11. Chaos transition for the Heisenberg spin chain with
random magnetic field. (a) &, (filled circles) and Brody parameter
B (open circles) in a chain of length L = 13, N = 5 (D = 1287) and
averaged over 100 realizations. (b) &, (filled circles) and 60% -

(open circles) for a chain of length L =9 and N =5 (D = 126) and
averaged over 100 realizations. The plot begins at 7 = 0.05.

matic prototype model that has been used to study the many-
body localization (MBL) transition [87-90]. The transition
in the level-spacing statistics has been a subject of study for
quite some time [90-93]. For & = 0 and taking into account
symmetries, it can be shown that the system is solvable and the
nearest level-spacing distribution is Poissonian. As /4 increases
the disorder breaks the symmetries and the system starts to
become chaotic, reaching a Wigner-Dyson distribution at 7 &
0.5, corresponding to ergodicity. Finally if the disorder is too
strong, there is a MBL transition (for a review see Ref. [94]).
As in the perturbed XXZ chain, the z component of the total
spin is conserved, and therefore subspaces SN with a fixed
number N of spins up or down are used for the calculations. To
study the eigenstate IPR the diagonalized basis components
are compared with the spin site basis and averaged over 10%
of the values in the center of the energy spectrum, obtaining
€,. Because of the statistical nature of the random variables
ho, ..., hi_1, EE is also averaged over several realizations, but
no new notation is added in order to prevent confusion.
Figure 11(a) shows the results for 8 and &, for a spin
chain of length L = 13 with fixed number of spins N =5
(D = 1287), averaged over 100 realizations. Transition from a
Poisson NN level distribution to a WD one occurs at # ~ 0.5
according to 8. Similar results for £, were obtained for ran-
dom perturbations with a Gaussian distribution in Ref. [95].
In Fig. 11(b) we show that both OTOC oscillations indica-
tors &, and 5! , for a chain of length L =9 and N =5,
follow a very similar behavior than of those shown by the
quantum chaos indicators. The choice of a very small chain for
the OTOC properties arises from the requirement of averaging
many realizations, but it has been checked that a chain with the
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FIG. 12. Short-time growth of C,(/, t) for the Heisenberg spin
chain with random magnetic field and a chain of length L =9, N =
5 for different spin separations [ = 1, 2, 3 (solid lines). Short-time
power-law growth is predicted with the HBC formula (A7) (dashed
lines).

same parameters of those in the top panel of Fig. 11 presents
the same properties (data not shown). We remark that it is not
the scope of this work to try to identify the MBL transition
present for large values of # [94]. However, we note that the
decline of &, and 5! ~with increasing / points in the right
direction to identify the MBL behavior.

Finally, we show in Fig. 12 the short-time growth of the
OTOC C,, for this spin chain. We also plot the short-time
power-law relation that was obtained in Appendix A. We can
see that Eq. (A7) describes very well this time regime. The
random parameters Ay, . .., iy, which cause the system to
transition into chaotic regimes and then to the MBL, do not
play a role in the short-time growth power law.

V. CONCLUSIONS

The OTOC is a quantity that has recently drawn attention
since it has been suggested as a measure of quantum chaos,
but also because of possible implications in studies of high-
energy physics, many-body localization, quantum information
scrambling, and thermalization.

After the so-called scrambling time the OTOC establishes
around a constant mean value. However, there are fluctu-
ations that remain, and we had evidence that these fluctu-
ations are strongly correlated to the dynamical properties
of the system. We have proposed two quantities to assess
these long-time fluctuations, the spectral IPR and the time
variance, which we compared with well-established chaos
indicators like the Brody parameter and the localization of
the eigenstates. We computed these quantities numerically
for various one-body and many-body systems, which where
known to undergo a transition to chaos depending on one
parameter.

From our simulations we conclude that the fluctuations of
the OTOC can be used to characterize a transition to chaos in
quantum systems. For systems with a classical counterpart the

spectral IPR can be directly related to the area of the regular
islands in the phase space. For many-body spin systems the
same qualitative behavior has been observed even though
there is no classical counterpart. An important difference
between the quantum chaos and the OTOC indicators emerges
from the spin chain simulations. Unlike the latter, the former
require to be calculated in eigenspaces without any remaining
symmetry. Besides, we also show that all the considered spin
chains are slow scramblers due to the power-law growth of the
OTOC for short times that does not depend on the regular to
chaos transition.

Our results indicate that the main features of the dynamics
can be extracted from the long time of the OTOC. They
suggest that this regime is feature rich and deserves more
attention and study, in particular because the long-time regime
matters in problems of current interest like quantum thermal-
ization. They can also have implications in light of recent
experimental advances.
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APPENDIX A: SHORT-TIME GROWTH OF THE OTOC
FOR SPIN CHAIN MODELS

This Appendix is devoted to depicting the basic steps to
obtain the short-time behavior of the OTOC in the spin chain
models. The cornerstone of our calculations is the Hausdorff-
Baker-Campbell (HBC) formula [96]. The Heisenberg evo-
lution of an operator W (¢) can be expanded using the HBC
formula as

X i\t n times
Wi =Y" (Z') AW, . I8, WL (AD)
n=0 ’

IfW = 61’"“ (the u component of spin operator at site /), the
HBC formula captures the spread of the operator over the spin
sites and how it becomes more complex as time increases.
Furthermore, direct replacement of Eq. (Al) in Eq. (18)
highlights the fact that the short-time growth is characterized
by the smallest n on which

n times

(A.[A.....[A.64].67]] #0.
due to the time factor ¢" that weights the terms in the ex-
pansion. We remark that this mechanism points out that the
short-time growth is characterized by the general Hamiltonian
structure of the system and not by the regular to chaotic
regimes observed in the studied spin chains.

We consider first the Heisenberg spin chain with random
magnetic field. Using Eq. (A1), the Heisenberg evolution of

(A2)
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the spin operator 6 is obtained:

+\2
650 = o + e[, 55+ (AL [A,55] 4 (AY

It is straightforward to show that the first- and second-order
terms of Eq. (A3) result, respectively, in

(A4)

A oA 65—67  hg—h ,
[A.[A.55]]= 257 - 2o (5501 +6061)
— L (6i6i63+a06163 — 636165 — 636163)

From these expressions, we see that the [-th order HBC
term includes spin operators up to site 1. Then, replacing
Eq. (A3) in the OTOC expression of Eq. (18), we obtain

A A A ~2712
Cattty = HI[@5 + [ 551+ ). 571 (A0
from which is clear that the first nonzero term is of order
[. This term dominates in the short-time regime over the

following ones, due to the ¢/ weights present in the HBC
formula. Therefore, the short-time growth is given by

l21

C.(l,)y~ EW’

(AT)

for I > 1. The procedure for the other two spin chains is
similar. For the Ising model with tilted magnetic field the first
two relevant terms of the HBC expansion are, respectively,

. B
[H.65] = —iE sin(6)67), (A8)

[A.[A.[A.6]]]
JZ
= —z'1se3sin(9)(E + 1)65

sin®(0)

+ iJBz[ 6167 — sin(@)cos(e)?rg&f] (A9)

Then it is expected that
£2Q1+1)
(21 + D>

The presence of the NNN interaction in the perturbed XXZ
model plays a significant role in the short-time behavior of the
OTOC. Following the previous analysis, it is easy to see that
the short-time growth power law is characterized by

1
C.(l,1)~ E[B sin(9)]***D (A10)

12

= ifl=1vA=0,

N [ >1
ifr#£0, [>2

C.(l, )~

y?
K20-1);20-1)
[a-nm

[STESTE

(Al1)

We note that the result depends on whether the perturbation
(proportional to A) is present or not. In the latter case, the
short-time behavior of the Heisenberg spin chain with random
magnetic field is recovered.

0

0 10 | |
q q

FIG. 13. (a, c) classical phase portrait for the standard map
(a) with K = 3.0 and the Harper map (c¢) with K = 0.5. (b, d)
evolution in time for 30 000 randomly chosen initial conditions and
the color represents f,,,,x. Light colors stand for small evolution times,
where the point has returned to the vicinity of the initial position
before the f,,.x. The darkest color stands for the cases where the
point has not returned to the neighborhood of the initial condition
within a time #,,,x. The ratio (B1) is 7., = 0.882 for the standard map
(b) and r¢, = 0.866 for the Harper map (d), meaning that 86%—-88%
(approx.) of the area of the phase space is chaotic.

APPENDIX B: METROPOLIS SAMPLING OF THE
CHAOTIC AREA IN THE PHASE SPACE FOR CLASSICAL
MAPS

In this Appendix we establish a classical measure in order
to gauge the chaotic fraction of the phase-space of a map. We
use a Metropolis-like approach in order to measure the area
of the chaotic region in phase space. We randomly choose a
number ny of initial conditions {g;, p,-};’g‘l, large enough to
sufficiently sample all the unit square (typically of the order
2 x 10*). We evolve these points with the classical map up
to a chosen number of iterations, .. In cases in which the
evolution drives the point within a predefined distance § from
the initial conditions, the evolution stops and the final time
is recorded. If #,,x is not too large—this point is crucial—
most of the points in the chaotic region will arrive back at
the neighborhood of the initial point, and thus the final time
recorded will be t,,,x. We then define the ratio

Teh = —, (B1)
Mot

where n, _ is the number of initial conditions which have not
returned after #y,, iterations. The complement 1y = 1 — 7
gives an estimation of the area of points inside regular islands.
We illustrate in Fig. 13 the appropriateness of our classical
measure through color-coded examples for the standard and
the Harper maps. It can be seen that the darker color in the
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right columns for both cases approximates well the area of
the chaotic region that can be identified on the phase portraits
depicted in the left columns.

In the calculations presented in the main text rg, was
averaged over 20 contiguous #y,,x to smooth out the effect of
the choice of ,,,x and §.
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