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In this paper we develop a kernel density estimation (KDE) approach to modeling and forecasting recurrent
trajectories on a suitable manifold. For the purposes of this paper, a trajectory is a sequence of coordinates in
a phase space defined by an underlying hidden dynamical system. Our work is inspired by earlier work on the
use of KDE to detect shipping anomalies using high-density, high-quality automated information system data
as well as our own earlier work in trajectory modeling. We focus specifically on the sparse, noisy trajectory
reconstruction problem in which the data are (i) sparsely sampled and (ii) subject to an imperfect observer that
introduces noise. Under certain regularity assumptions, we show that the constructed estimator minimizes a
specific energy function defined over the trajectory as the number of samples obtained grows.
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I. INTRODUCTION

In this paper we propose an algorithm for modeling and
forecasting a sparse, noisy, recurrent trajectory that lies en-
tirely on a smooth Riemannian manifold embedded in an
arbitrary dimensional Euclidean space. By sparse, we mean
the signal may be subject to long gaps in observation; by noisy
we mean the signal is sampled by an (unknown) imperfect
observer. We will define recurrent precisely in the context of
the underlying mathematical model; however, in general we
mean the trajectory visits a neighborhood (or collection of
neighborhoods) infinitely often. Examples of these trajecto-
ries include vehicle (ship, plane, and car) tracks, migration
data (e.g., in birds, whales, and sharks), and some economics
data subject to seasonality (e.g., detrended annual sales).

Our approach uses a combination of kernel density esti-
mation (KDE) and energy minimizing inference for sparse
trajectory reconstruction prior to model learning. Our goal
in using a KDE is to construct distribution estimators rather
than pointwise estimators with confidence intervals. That is,
rather than using a traditional pointwise time-series forecast-
ing method, our objective is to generate a sequence of proba-
bility distributions that can be used to generate an optimized
pointwise estimator on demand. The methods proposed in
this paper will generalize to smooth Riemannian manifolds
in arbitrary dimensions; however, we will focus specifically
on examples from compact subsets of R2 and the 2-sphere S2

as a representation of the Earth.

A. Related work

Our work extends and is related to the basic statistical
problem of time-series modeling. Linear and nonlinear time-
series modeling is a well-established field of statistics [1]
and statistical process control [2]. Basic linear regression [3]
and nonlinear regression [4] attempt to model observations
{xti}N

i=1 as functions of a variable t ∈ R. In one dimension,

autoregressive integrated moving average models (ARIMA)
extend these notions by allowing the model xt to vary as a
function of past values and past shocks [1]. Seasonal ARIMA
models extend this notion by adding seasonal periodicity [5].
Fractional ARIMA [6] models add short and long-range de-
pendence, not expressible with classical ARIMA techniques.
In particular, these nonlinear models are better able to ex-
press persistence and antipersistence. Finally (generalized)
autoregressive heteroskedastic models (ARCH-GARCH) add
heteroskedastic behavior to the error components of the time
series, allowing globally stationary and locally nonstationary
error terms to be analyzed [7]. Many of these techniques
can be extended to vector-valued functions (of the type we
consider). In particular, vector autoregressive models (VAR
and VARIMA) [8] can be used to model time series of vector-
valued functions. The most general models are the stochastic
differential and difference equations that use Weiner and
Lévy processes to model stochasticity [9] (chap. 1). Kernel-
based approaches for forecasting stochastic dynamical sys-
tems modeled by (hidden) stochastic differential equations are
considered extensively by Giannakis et al. [10,11]. In partic-
ular, in Refs. [10,11] the authors use a diffusion forecasting
approach. The shift map of the stochastic process is expressed
in a smooth basis of eigenfunctions. This is used to estimate
the semigroup solution of the unknown stochastic differential
equation without specific parameter estimation.

Grid-based methods that approximate the trajectory can be
employed when the space of the time series is continuous but
can be partitioned into a collection of discrete grid points
and the trajectory modeled as a time series of these grid
points. The work in Refs. [12–14] describes methods of using
hidden Markov models (and in the case of Ref. [12], dynamic
programming) to identify optimal estimators for the behavior
of trajectories passing through the discretized state space.
Reference [15] uses a multiresolution grid model and a con-
tinuous time model to construct a hybrid track estimator that
attempts to retain the simplicity of a grid-based model without
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sacrificing the accuracy of a continuous model. We note that
many (but not all) of the approaches discussed are designed to
generate pointwise forecasts with confidence regions, while
our objective in using a KDE-based approach is to generate
a sequence of probability distributions, which can be used to
generate a pointwise forecast.

Forecasting dynamical systems, especially nonlinear dy-
namical systems, is a well-known problem in physics
with applications to noise reduction and experimental data
smoothing. Molecular trajectory modeling is considered in
Refs. [16,17] using a variational approach with user supplied
basis functions. This approach is in contrast to the the standard
Markov process approaches, which are more reminiscent of
grid-based methods, already discussed. References [18–20]
consider noise reduction in dynamical systems with Ref. [20]
providing a fitting approach that is qualitatively similar to the
work presented in this paper. Anomaly detection is considered
in Ref. [21] with stated goals similar to those in Ref. [22]
but applied to one-dimensional chaotic signals. Forecasting
and nonlinear modeling is considered in Refs. [10,11,23–26].
In addition to this work, Ref. [27] applies stochastic hidden
Markov models to fuzzy time-series forecasting. Fuzzy time-
series forecasting is also considered in Ref. [28]. Reference
[29] considers the problem of nonuniform state space re-
construction of chaotic time series. Chaotic time-series fore-
casting is also considered in Ref. [30], which uses an ant
colony optimization algorithm to optimally embed a time
series in an appropriate space. Joint continuous and discrete
forecasting is considered in Ref. [31], while outlier detection
of time series is considered in Ref. [32]. More recent work has
applied multilayer perceptron neural networks to time-series
forecasting [33,34].

Using a KDE for the purpose of modeling and forecasting
recurrent trajectories has been studied by other authors in
more restricted contexts. Pallotta, Vespe, and Bryan [22] use a
kernel density estimation technique to model shipping routes
using automatic identification system (AIS) data. They use the
resulting distributions to identify anomalous behavior in ship
routes. As they note, AIS data are exceptionally dense and can
be used in real time to track ships.

Additionally, it is well known that a kernel density estimate
can be used as a convolutional filter on noisy data. This was
done in Ref. [35] in order to visualize streaming data from
an aircraft. This is a trajectory in R3, although Ref. [35] only
considers the projection onto R2. In both Refs. [22,35], the
data are highly dense with minimal noise. This is not realistic
in antagonistic situations or in cases where the trajectory
cannot be observed with high fidelity. This occurs naturally
when biologists observe animals in their natural habitat (e.g.,
see Ref. [36]). This paper considers situations in which the
sampled trajectory is neither dense nor exhibits high signal-
to-noise ratio. We contrast this to the work in [10,11], where
the data are assumed to be more dense.

B. Paper organization

The remainder of this paper is organized as follows: In
Sec. II we introduce notation and the underlying mathematical
model to be used throughout the rest of the paper. In Sec. III
we discuss our proposed modeling and forecasting algorithms.

Theoretical results on the algorithms are provided in Sec. IV.
We present empirical results using synthetic and real-world
data sets in Sec. V. Finally conclusions and future directions
are presented in Sec. VI.

II. NOTATION AND PRELIMINARIES

A. Notation and assumptions

Let R denote the real numbers, and R+ = {x ∈ R : x � 0}.
Let 〈M,R+, ϕ〉 be a (hidden) dynamical system describing the
motion over time (R+) of an (autonomous) particle on a d-
dimensional, smooth Riemannian manifold M. The manifold
M may be embedded in Euclidean space of dimension m �
2d , and such an embedding is guaranteed to exist by Whit-
ney’s strong embedding theorem. Throughout this paper, bold
symbols will indicate positions on the manifold in an appro-
priate coordinate system; e.g., x ∈ Rd and x = 〈x1, . . . , xd〉.
We will often (without explicitly stating) identify the set of
points in M with their image in Rd under an appropriate chart.

If M is known, then our approach may be taken using M
itself, e.g., using the KDE theory developed in Ref. [37]. In
the case M is unknown, but the image of the embedding M ↪→
Rm is known, our approach may be used taking Rm to be the
manifold of interest (even though the data may be drawn from
a different underlying manifold). Determining M given data
in Rm is the fundamental problem in topological data analysis
[38,39] and will not be explored further here.

Since our manifold is Riemannian, it may be endowed
with an appropriate metric. For example, when M ≡ Rd ,
the standard Euclidean metric is used; when M ≡ S2 (the
2-sphere), the Haversine metric is applicable. We denote
distance between two points x, y in M as d (x, y). Again by our
assumption of a Riemannian manifold, we have the existence
of an inner product (positive-definite metric tensor), denoted
〈x, y〉. This should not be confused with a two-dimensional
vector as the entries are vectors in bold rather than coordinates
in standard typeface. We will use the inner product to quantify
the degree to which (e.g., velocity) vectors located at x, y have
similar heading. In Euclidean space, we would choose the

usual dot product. Throughout the paper, we use
�= to denote

equality by definition rather than derivation.
The dynamical system we study is hybrid in the following

sense: Fix a finite set O ⊆ M. At any time t , either:
(1) There are positions x0, x f ∈ O and the function ϕ

defines a subtrajectory xt = ϕx0 (t − t0) in M so that

ϕx0 (t − t0)
�= arg min

ϕ

∫ t f

t0

L (ϕ, ϕ̇, t ) dt,

s.t .gt (ϕ, ϕ̇) � 0,

ϕx0 (t0) = x0,

ϕx0 (t f − t0) = x f .

(1)

where L : (ϕ, ϕ̇, t ) �→ r ∈ R is a hidden energy function
(Lagrangian) and gt : (ϕ, ϕ̇) �→ b ∈ Rm are hidden (possibly
time parameterized) constraints.

(2) We have ϕ(t ) = x0 ∈ O . At some time t + τ , a new
x f ∈ O is chosen (possibly at random).
We assume the dynamical system is recurrent in the sense that
the choice of O is governed by an ergodic or periodic (hidden)
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Markov chain with no transient states. Therefore, if ϕ(t ) = x0,
there is some T < ∞ so that ϕ(t + T ) = x0.

In the problem we discuss, all relevant information about
the dynamics, including O , the Lagrangian L and some
(perhaps all) of the constraints gt are hidden. The assumption
that ϕ(t ) is constructed from piecewise optimal paths is used
to justify our method of inferring missing information in
sparsely sampled data. For simplicity, in the remainder of this
paper, we will assume that gt (ϕ, ϕ̇) are time invariant and
denote the constraint functions by g. In the sequel, we assume
data are sampled discretely via a sampling function η : M →
Rd (or η : M → Rm as appropriate) and with unbiased noise
to produce a sparse noisy signal:

xi = η(ϕ(ti)) + εti , (2)

here the εti are unbiased noise vectors of appropriate dimen-
sion. In the sequel, we will elide the observation function η for
the sake of clarity and identify ϕ(ti ) with η ◦ ϕ(ti ). Whether
we are using ϕ to mean a trajectory on M or its image in Rd

or Rm will be clear from context.
We note, our approach is a parameter-free approximation

method and our focus is not on estimating the distribution
that describes εti , unlike, e.g., in the traditional Kalman filter
estimation (see Ref. [40]).

In addition to the recurrence assumption, we assume that
ϕ(t ) is piecewise smooth, and in particular at t0 an instanta-
neous velocity can be constructed using initial conditions. In
practice velocity is numerically approximated by a difference
quotient. Finally, since we assume that ϕx0 (t − t0) obeys a set
of externally imposed constraints defined by g(ϕ, ϕ̇) in Eq.
(1), we assume there is a feasible region � ⊆ M defined by
g(ϕ, ϕ̇) and for all t , ϕ(t ) ∈ �. In particular, M may be convex
as a set in Rm, but � may not be, making the problem more
challenging.

B. Techniques

We provide a brief overview of KDE in Euclidean space,
which are a foundational element of our proposed algorithm.
The interested reader may consult [41] for a more detailed
overview of Euclidean KDE methods or Ref. [37] for KDE
methods on a Riemannian manifold.

The KDE is a nonparametric estimate of the probability
distribution of a set of data {xi}N

i=1. Formally, the univariate
KDE f̂ is given by

f̂ (x) = 1

Nh

N∑
i=1

K

(
x − xi

h

)
,

with the requirement that the kernel K be a valid probability
density function (PDF). Intuitively, one may think of a KDE
as a mean of many probability distribution functions with a
normalizing constant, 1

h . The parameter h > 0 is referred to
as the bandwidth and there are many well-established rules of
thumb for choosing h given arbitrary data (see, e.g., Ref. [42]).
The bandwidth controls the variance of the kernel and acts as
a smoothing control on the resulting KDE.

The KDE can be generalized to arbitrary-dimensional Eu-
clidean space. Let {xi}N

i=1 be N data points in Rm. Define

xi = 〈xi1 , . . . , xim〉. The KDE generalizes to:

f̂ (x) = 1

Nh1h2 · · · hm

N∑
i=1

⎡
⎣ m∏

j=1

K

(
x j − xi j

h j

)⎤
⎦,

where K is a PDF defined on Rd and h j is the bandwidth
parameter for the coordinate x j . We will write the bandwidth
vector h = 〈h1, h2, . . . , hd〉 ∈ (R+)d . The product defined in-
side the sum is called the product kernel.

1. Choice of kernel

One consideration which must be taken into account when
using KDE methods is the choice of kernel. While the only
restriction on K is that it is a valid PDF, there are a few
canonical choices of kernel. The first, often used in image
processing applications as the kernel of a convolutional filter
on images, is the Gaussian or normal PDF. Moreover, the
Gaussian kernel is used in both Refs. [22,35].

Another canonical choice is the Epanechnikov kernel. De-
fined as

K (x) =
{ 3

4 (1 − x2) x ∈ [−1, 1]

0 otherwise
,

the Epanechnikov kernel is a compactly supported parabola.
In Ref. [43], Epanechnikov shows that the kernel minimizes
relative global error in the following sense: Let f be the
true distribution and assume that f is analytic. Suppose f
is approximated by f̂ using Epanechnikov kernel. Then f̂
minimizes the functional:∫∫

R2
E[ f̂ (x) − f (x)]2 dx, (3)

where E is the classical expectation operator. The preceding
result is derived using the calculus of variations with con-
straints and is independent both of distribution (subject to
the requirement of analyticity) and constraints on the kernel
function.

Equation (3) defines the mean integrated square er-
ror (MISE). Therefore, the Epanechnikov kernel minimizes
MISE. Scott [41] notes “...the MISE error criterion has two
different, though equivalent, interpretations: it is a measure
of both the average global error and the accumulated point-
wise error.” The fact that the Epanechnikov kernel is a MISE
minimizer makes it the natural choice of non-Gaussian kernel.

Moreover, the fact that the Epanechnikov kernel has com-
pact support also implies that the inferred distribution has
compact support (as the union of finitely many compact sets),
which is sometimes desirable. In the context of our work
we may implicitly constrain the velocity of the forecast by
requiring the KDE have a compact support. The Gaussian
kernel does not respect such a constraint, as it gives nonzero
probability to the whole ambient space, rather than restricting
the nonzero probability to a region that satisfies velocity
constraints. As we also show in Sec. IV, a kernel with bounded
support can also provide meaningful results regarding feasible
regions.
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2. KDE in the plane

In R2, which is a sufficient for approximation of the Earth’s
surface over small regions, we may choose the Epanechnikov
product kernel, given by the expression:

f̂ (x, y) = 9

16Nh1h2

N∑
i=1

[
1 − (x − xi )2

h2
1

][
1 − (y − yi )2

h2
2

]
.

This is our choice of kernel for the experimental results of
Sec. V B.

3. KDE on the sphere

In Sec. V, we apply the proposed algorithm to cruise ships
traveling on the surface of the Earth. While for this paper
we consider a small enough region to approximate by the
Earth as a plane, on larger scales this may lead to significant
distortion. In such a case one might wish to approximate
the Earth as a 2-sphere S2. In this case, one could use use
the Kent distribution, the analog to the Gaussian distribution
on a sphere, as the choice of kernel. Let λ be the longitude
in degrees, and φ the the latitude in degrees. The general
formulation of the Kent distribution in spherical coordinates
is

f (λ, φ) = c(κ, β )−1 exp(κ cos λ + β sin2 λ cos 2φ).

Here κ is a parameter representing the concentration of
the distribution, β is an analog of covariance, which Kent
describes as the “ovalness,” and c(κ, β ) is a normalizing
constant given by

c(κ, β ) =
∫ π

0

∫ 2π

0
exp(κ cos x + β sin2 x cos 2y) sin xdydx.

We make the simplifying assumption that the covariance of
x, y is 0, which is equivalent to setting β = 0. Then we
have c(κ, 0) = 4πκ−1 sinh κ , simplifying the double integral
above. A full description of the Kent distribution can be found
in Ref. [44]. It is also possible to find a KDE on other compact
Riemannian manifolds without boundary (see Refs. [37,45]).
We do not further discuss this case, as Euclidean space is
sufficient for our (and most other) applications.

C. Deriving a point estimator and uncertainty
regions with a KDE

Given a PDF (potentially a KDE) f on M, there are several
ways to find a point estimator. The most obvious method is
to compute the argument of expectation, e ∈ M, such that
f (e) = E[ f ]. However, if f is multimodal on M and there are
constraints on the dynamics [see Eq. (1)], then it is possible
e �∈ �, where � ⊆ M is the feasible subset of M. In this case
it is more useful to to compute:

x̃ = arg max
x∈�

f (x), (4)

as the point estimator. Depending on the numerical complex-
ity, one can also define the conditional distribution fx|� and
compute e, x̃ accordingly. We note that Eq. (4) may be a
nonconvex optimization problem. In this case, it might be

simpler to compute the unconstrained optimization:

ỹ = arg max
y∈M

f (y) (5)

and either (i) accept that ỹ �∈ � or (ii) project ỹ onto the
boundary of �. We discuss the limits of this approach in
Sec. IV.

To find uncertainty regions, we compute the highest-
density region, following the Monte Carlo technique estab-
lished in Ref. [46]. Intuitively, the highest-density region
(HDR) of a distribution function f : M → R+ is the subset
of M corresponding to the preimage of a horizontal “slice”
of R+ where the slice includes the maximum of the PDF and
continues extending down until the probability measure of the
preimage of the slice meets a predetermined threshold.

More formally, given a PDF f with support X ⊆ M define:

R(c) = {x ∈ X : f (x) � c}. (6)

The 100% × (1 − α) highest density region is the set R(cα ),
where:

cα = arg max
c

∫
· · ·

∫
R(c)

f (x) dx � (1 − α). (7)

It is clear from this definition that ỹ ∈ R(cα ) for any 0 � α <

1. If we compute the HDR of the conditional distribution fx|�,
then the probability measure of M\� is zero, and so x̃ ∈
R(cα ). This is also the case if the unconditional probability
given to M\� is sufficiently small.

Hyndman [46] proposes a Monte Carlo algorithm that
samples the computed PDF (in our case the KDE) and uses
the α quantile as an estimator for cα . We use this algorithm in
the sequel.

Last, since we consider a sequence of KDE’s that advance
in time, there is an implicit inclusion of the velocity of the
object. Thus, we do not need to actually approximate or
compute ϕ̇x0 (t − t0) explicitly while generating a forecast.
This stands in direct contrast to alternate approaches (e.g.,
Refs. [10,11,16,17]), which view forecasting as finding and
solving a system of stochastic differential equations describ-
ing the motion of a particle.

III. ALGORITHM DESCRIPTION

In this section we motivate Algorithm 1, which forecasts
a finite sequence of triples F = {(pi, f̂i, Ri )}N+q

i=N+1, with q ∈
N, where pi estimates the value ϕx0 (ti − t0) and f̂i : M → R
is a distribution used to construct the HDR Ri that acts as
an uncertainty region for pi. The algorithm takes as input
the observation set P = {xi}N

i=1, a time-indexed sequence of
observed positions. Recall from Eq. (2), xi is observed with
noise. Note that we do not require ti − ti−1 = ti+1 − ti for the
points in P.

The algorithm is broken into four stages:
(1) Identify a collection of points

H = {
xi j ∈ P : j ∈ J

}
similar (defined by the metric and/or inner product on M) to
the last known state of the particle. The set J is an index set of
consecutive integers which respect the time series P, that is,
i j < i j+1 for all j.
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Algorithm 1. Forecasting Algorithm

Input: P = {xi}N
i=1, ε > 0, ϑ ∈ [0, 1], �t , T , L̂ , g, α ∈ [0, 1]

Output: F = {(pi, f̂i, Ri )}N+q
i=N+1

Initialize: H ← ∅, P ← ∅, P ← ∅, q̄ ← �T/�t�
1: for xi ∈ P do
2: � Stage 1: Collect start points.
3: if d (xi, xN ) < ε and d (xi−1, xN ) � ε and δ(vi, vN ) <

ϑ and tN − ti > T than
4: H ← H ∪ {xi} {Retain index i in H.}
5: end if
6: end for
7: for xi ∈ H do
8: � Stage 2: Build sample paths.
9: P ← P ∪ {P(xi, T )}
10: end for
11: for Q ∈ P do
12: � Stage 3: Densify all paths using Eq. (8).
13: Q ← Densify(Q)
14: P ← P ∪ {Q}
15: end for
16: � Note : P = {Q1, . . . , Q|H |}. Also, f or each j ∈

{1, . . . , |H |}, Q j = {x( j)
i }i j+q

i=i j
.

17: for i ∈ {N + 1, . . . , N + q̄} do
18: � Stage 4 : Compute f̂i and pi.
19: Xi ← ∅
20: for j ∈ {1, . . . , |H |} do
21: Xi ← Xi ∪ {x( j)

i j+i−N }
22: end for
23: Compute f̂i using Xi and a kernel density estimate
24: Compute pi using Eq. (5)
25: Compute Ri using Eq. (6)
26: end for

(2) Extract subtrajectories of P corresponding to each
identified point in H that (i) begin at the identified point and
(ii) span an input forecast time. This set of subtrajectories is
denoted P .

(3) Densify the observed subtrajectories in P to obtain P
using a line integral minimization on an estimator L̂ of L .
Each densified trajectory in P is composed of points on M
that are equally spaced in time.

(4) Let:

P = {{
x( j)

i

}i j+q

i=i j
: j ∈ {1, . . . , |H |}}

be the densified trajectories. For each i � N (time index) use
the set:

Xi = {
x( j)

i j+(i−N ) : j ∈ {1, . . . , |H |}, i j + i � N
}

to construct a KDE f̂i. Use the KDE to construct pi and an
associated HDR representing an uncertainty region.

1. Metrics and tolerances

In Sec. II, we have already defined the distance d (x, y) and
inner product 〈x, y〉 on the manifold M. Given two velocity

vectors vi and v j , let the angle metric be

δ(vi, v j )
�= 1 − 〈vi, v j〉

‖vi‖‖v j‖ .

This is just the standard cosine distance when M ≡ Rd . In the
absence of velocity data, we can use a finite difference method
so that, e.g., in Rd , the velocity vector of the last observed
point in P is

vN ≈ xN − xN−1

tN − tN−1
.

More generally, if we are working in M, then we may use
the language of velocity vectors on smooth manifolds (see,
e.g., Ref. [47] or Chapter 3 of Ref. [48]) to approximate vN .
It is in these details that we wish for M to be smooth. The
details of this computation obfuscate the presentation of the
proposed algorithm, thus we omit them and refer the readers
to the provided references.

As input to Algorithm 1, we take two parameters ε > 0,
which is a a tolerance on d (·, ·) and ϑ , which is a tolerance
on δ(·, ·). These function as hyperparameters in our proposed
algorithm.

2. Forecast duration

Define P(xi, T ) to be the forward time restriction of P
beginning with xi ∈ P and including all points xk so that
tk − ti � T . That is,

P(xi, T ) = {xk ∈ P : k � i ∧ tk − ti � T }.
In Algorithm 1, T is the duration of the forecast and is an input
parameter.

3. Sampling period

For sparse track reconstruction and forecast generation,
we require a sampling frequency. The sampling frequency

is a value �t so that if Q = {x( j)
i }i j+q

i=i j
∈ P is a densified

trajectory corresponding to some subtrajectory Q ∈ P , then
for all i ∈ {i j, . . . , i j + q}: ti+1 − ti = �t , where x( j)

i ∈ Q.
This sampling period gives resolution to intermediate points
of prediction but does not affect predictions made at any given
point. It is now straightforward to see that q = �T/�t�.

4. Track densification

Suppose xi ∈ H and P(xi, T ) must be densified; i.e., there
is some pair x j, x j+1 ∈ P(xi, T ) so that t j+1 − t j > �t . (Note:
If P(xi, T ) is too dense, then it is trivial to downsample it to
make it sparser.) If approximations L̂ and ĝ are available,
then it is trivial to solve (numerically):

min
ϕ

∫ t j+1

t j

L̂ (ϕ, ϕ̇, t ) dt,

s.t . ĝ(ϕ, ϕ̇) � 0,

ϕ(t j ) = x j, ϕ(t j+1) = x j+1.

(8)

The resulting solution can be used to provide an estimated
track of arbitrary density. If L̂ is not already available, then it
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is straightforward to define a Gaussian well function:

L̂G(x)
�=

N∑
j=1

⎧⎨
⎩1 − 1√

2πσ 2
i

exp

[
−d (x, xi )2

2σ 2
i

]⎫⎬
⎭ (9)

or a least-squares function:

L̂LS(x)
�=

N∑
j=1

1

σi
d (x, xi )

2 (10)

and solve the constrained line integral minimization problem:

min
ϕ

∫
ϕ

L̂∗(x) dx,

s.t . ĝ(ϕ, ϕ̇) � 0,

ϕ(t j ) = x j, ϕ(t j+1) = x j+1.

(11)

Here ∗ indicates the choice of Lagrangian. Using Eq. (9) in
Eq. (8) causes inferred trajectories to follow historical trends,
since the center of the Gaussian well yields the minimal
energy, while using Eq. (10) causes the path to minimize
the square error. One benefit to Eq. (10) is it has simpler
theoretical properties as we show in the sequel. On the other
hand, when using Eq. (9), if σi is an increasing function of ti,
then this is a continuous variant of pheromone routing [49,50].

Constraint inference is more difficult. In practical situ-
ations (e.g., ship tracks) there are obvious constraints in
play, like land avoidance (see Sec. V for examples). For the
remainder of this paper, we assume that the constraint function
g (or at least ĝ, and hence the feasible region �) is known
and consider constraint estimation as future work. Algorithm
1 shows the pseudocode for the proposed algorithm.

IV. THEORETICAL RESULTS

If the Lagrangian L is stationary, then we can show that
the optimal solution to the problem given in Eq. (11) is
asymptotically ϕ(t ) when t ∈ [t0, t f ] and ϕ(t ) ≡ ϕx0 (t − t0) as
the sampling rate increases. Assume ϕx0 (t f − t0) = x f ∈ O .
Further assume we have n ∈ N observations of the continu-
ous path connecting x0 with x f denoted as {x(i)(t )}n

i=1 with
ti representing the time at which position is observed. We
are considering the asymptotic case when the sampling rate
is infinite [i.e., x(i) can be thought of as a function from
[t0, t f ] → M], so:

x(i)(t ) = ϕx0 (t − t0) + ε
(i)
t = ϕ(ti ) + ε

(i)
t . (12)

Assuming we use L̂LS as our estimation for L then we
solve:

min
γ

∫ t f

t0

n∑
i=1

d[γ (t ), x(t )]2‖γ ′(t )‖ dt,

subject to g. Here ‖γ ′(t )‖ accounts for the length of γ on M
so that geodesic trajectories are preferred. At any time instant
t , the value γ (t ) minimizing d (γ (t ), x(i)(t ))2 is

γ ∗(t ) = 1

n

n∑
i=1

x(i)(t ) = ϕ(t ) + 1

n

n∑
i=1

ε
(i)
t

from Eq. (12). (To see this, note the integrand is simply
the energy function for a mechanical equilibrium point.) We
assumed ε

(i)
t was unbiased. Therefore, as n → ∞,

1

n

n∑
i=1

ε
(i)
t → 0

and γ ∗(t ) → ϕ(t ). We ignored constraints g(γ , γ̇ ) � 0 only
because we can see that ϕ must satisfy these constraints and,
therefore, asymptotically so will γ . A similar argument can
be made for LG, but it is not as clean, due to the additional
exponential function in the Gaussian.

Using the above results, we see that the proposed technique
for filling in missing information in our discretely sampled
noisy signal is (in some sense) an optimal one, assuming
a stationary Lagrangian. In the case of nonstationarity, the
problem is more difficult, and hence the use of heteroskedastic
variances σi [see Eq. (9)] related to the time of the observation.

The inferred point predictor given in Eq. (5) is simple to
implement but does not take constraints into consideration.
Supposing we know the true feasible region �, we quantify
how far outside � a point predictor pi could be. This can be
used to determine whether it is appropriate to go through the
effort of computing Eq. (4) or to simply use Eq. (5).

As before, let � ⊆ M be the feasible region for the tra-
jectory ϕx0 (t − t0). Without loss of generality, assume � is a
proper subset of M, so that the feasible region is nontrivial. Let
Y = M \ � �= ∅ be the infeasible or forbidden region. Denote
by · the topological closure of a set and denote by ∂ the
topological boundary of a set.

We show that feasible regions (and hence forbidden re-
gions) are (partially) inferred as a part of Algorithm 1. To do
this, we will use the Hausdorff distance, defined on the power
set 2M of M by ρ : (2M )2 → R+ by

ρ(S1, S2) = inf{d (x, y) : x ∈ S1, y ∈ S2}.
That is, ρ is the smallest distance between points in S1 and S2.
When we write ρ with a set and a single point x ∈ M, we will

abuse notation and understand ρ(S1, x)
�= ρ(S1, {x}) so that

the singleton {x} ∈ 2M .
Let Y be a fixed forbidden region with closure and bound-

ary denoted as above. Assume the prediction point pi is
computed with the unconstrained Eq. (5) and the Epanech-
nikov kernel K (x) with bandwidth vector h. Recall d is the
dimension of M, and let ‖ · ‖ be the Euclidean metric on Rd .
Then:

pi ∈ � ∪ {
m ∈ M : ρ(∂Y , m) � ‖h‖ + max

1�i�N

{∥∥εti

∥∥}}
.

(13)

In other words, the distance from any prediction point to the
boundary (of the closure) of the forbidden region is at most the
magnitude of the worst-case noise plus the magnitude of the
bandwidth ‖h‖. If pi ∈ �, then this is trivial, so we consider
the case when pi ∈ Y ⊆ M.

Let Kh(x) be the shifted Epanechnikov product kernel

Kh(〈x1, x2, . . . , xd〉) = K

(
x1 − x j

1

h1
,

x2 − x j
2

h2
, . . . ,

xd − x j
d

hd

)
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centered at x( j) = 〈x j
1, x j

2, . . . , x j
d〉. Then the support of Kh(x)

is the parallelepiped:

[
x j

1 − h1, x j
1 + h1

] × [
x j

2 − h2, x j
2 + h2

] × · · ·
× [

x j
d − hd , x j

d + hd
]
.

The support of f̂i (the ith estimated distribution) is the union
of the supports of the individual kernels centered at x( j)

i for
1 � j � |H |, hence there is some point x ∈ {x( j)

i }|H |
j=1 such that

d (x, pi ) � ||h||. For the right discrete time point t , x = ϕ(t ) +
εt is perturbed by at most max1�i�N {‖εti‖}, then

x ∈ �ε
�= � ∪ {

m ∈ M : ρ(∂Y , m) � max
1�i�N

{∥∥εti

∥∥}}
,

since ϕ(t ) ∈ �.
To maximize

sup
y∈(supp f̂i )∩Y

ρ(�ε, y),

that is, to have conditions which allow pi to be as far, away
from the boundary of (the closure) of Y , while not being in
�, we need x to minimize ρ(Y \�ε, x). The closest that x
could be to Y \�ε without being in it is if x ∈ (∂Y \�ε ) ∩
�ε , the boundary of Y \�ε . This, of course, assumes that
Y \�ε is open—if it were closed, then ρ(Y \�ε, x) is strictly
positive and our argument still holds. We now see that
ρ[(∂Y \�ε ), pi] � ‖h‖, which implies Eq. (13) via the triangle
inequality. Assuming that the noise is sufficiently small to
allow all observations to be in the feasible region �, then ‖h‖
alone serves as an upper bound on the distance inside Y at
which pi may appear.

It should be noted that the essence of this argument extends
to any Kernel whose support is bounded. We also note that if
the topological diameter of a forbidden region Y ′ is smaller
than ||h||, then this property does not prohibit pi from being
at any point of Y ′.

V. EXPERIMENTAL RESULTS

We discuss two sets of experiments to test Algorithm 1. In
the first experiment, we forecast two cruise ships over several
days (Carnival line’s Freedom and Dream ) to evaluate the
performance of Algorithm 1 in a real-world context. In the
second experiment, we evaluate the efficacy of Algorithm 1
with two synthetic data sets. Use of a synthetic data set allows
us to more closely control the underlying dynamical system
and provides a method for exploring potential limitations of
the proposed technique.

We use two error metrics to evaluate the algorithm: abso-
lute pointwise error (APE), and percentage in highest density
region (%HDR). Let xi be the true position of particle s at
time ti. We create a forecast F using Algorithm 1 (including
information prior to ti) and obtain prediction point pi for time

ti. The APE function is defined as the distance APE(ti )
�=

d (xi, pi ). As noted, we can construct HDR Ri at ti. Let:

χRi (x) =
{

1 x ∈ Ri

0 otherwise

be an indicator function, and then define

%HDR(F )
�= 1

q

N+q∑
i=N+1

χRi (pi ).

APE tells us how far off the pointwise forecast is while
%HDR tells if the true position is in the derived uncertainty
region. We compute mean and standard deviation of APE for
an entire forecast to give a global error metric for the forecast
as a whole.

A. Ship track forecasts

Cruise ships exhibit highly recurrent behavior as they travel
from port to port, according to a list of destinations which
appeal to tourists. Cruise ships also use AIS to give their
positions at a high sampling rate with low noise. This makes
them excellent subjects on which to test our algorithm, as
we can downsample a portion of a known track and generate
noise to create training data. After creating a forecast from this
sparse, noisy training data, we can then use the remainder of
the track as high-resolution ground truth for an error analysis
of the forecast.

In order to test our algorithm with this data, we used
(approximately) two years of positional data on the Carnival
line cruise ships Dream (from December 2011–July 2012)
and Freedom (from March 2012–June 2013). The data was
taken from Ref. [51] under fair use. These data were densely
sampled, giving a location for each ship on average about once
every 15 min. The first 80% of the historical trajectory of each
ship was used as the historical data for “training” the KDE
model and the last 20% was used as an unseen track on which
to test.

We downsampled the training data (the first 80% for each
ship) to give one position every day with exactly 24-h in-
tervals, while retaining the resolution of the unseen track.
Since there were usually not AIS positions at exactly 24 h of
time difference, we linearly interpolated between the nearest
known position before the 24-h mark and nearest known
position after the 24-h mark. The choice of linear interpolation
is “wrong” in the sense that we are working on an oblate
spheroid as the manifold but served the purpose of introducing
noise into the training data. The result was a sparse noisy
track; this was the desired condition for our historical data.

Define the diameter of a geographic data set to be the great-
est distance between any two points in the data set. To give
geographic context to our results, we note that the diameter of
Dream’s history is 1439.1 nautical miles (NM). Additionally,
over the course of the entire history, Dream traveled at least
144,234 NM. Similarly the diameter of Freedom’s history
is 1351.8 NM, and it traveled at least 115,773 NM over its
history.

We generated several forecasts with different parameters.
In particular, we considered forecast windows of 1 week with
15-min resolution, and with input search radii of 10, 20, and
40 NM. In each case we chose a bandwidth of 1.5 degrees
of latitude-longitude or 90 NM. The bandwidth was chosen
by trial-and-error to yield a smooth forecast. We consider the
problem of automated bandwidth selection as a problem for
future work.
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FIG. 1. Error plots of pointwise error at 15-min intervals for a
7-day forecast of Dream (a) and Freedom (b) with search radii of 10
NM and 40 NM, respectively.

After performing the energy minimization step of Algo-
rithm 1, we have densely sampled paths. Error metrics for
forecasting are are plotted in Fig. 1. The trajectories of cruise
ships change frequently (e.g., as a result of stop over at ports
of call). By way of comparison, we note that course change
dynamics would have to be known a priori when using, e.g.,
a Kalman filter.

Table I shows summary statistics for the cruise ship fore-
casting experiments. For Dream, as we increase the search
radius, we see an increase in the average error and standard
deviation of error and a decrease in percent in HDR. For
Freedom, the average error went down from 10 NM to 20
NM to 40 NM. The standard deviation also only marginally
increased and %HDR increased significantly.

It is curious that the examples exhibit different behavior
as the search radius grows. One possible explanation for this
phenomenon is that for Dream with radius 10 NM, the pre-
diction in the first several hours is less than 10 NM, while for
Freedom with radius 10 NM, there are predictions made in the
first hour with error greater than 10 NM. By declaring a search
radius we are saying two points are in the same location if they
are sufficiently close; i.e., we are creating an equivalence class
on the observed data. Thus, we cannot expect our error to be
smaller than our search radius. If the error is initially smaller
than the search radius, then expanding the search radius would
add extra data, which would contribute to a less accurate
prediction. On the other hand, if the error is greater than the
search radius, then increasing the radius does not add data that
is further away than the error, and so it might improve the
forecast.

At a higher level, this example provides relevant informa-
tion about the proposed method. First, there is not necessarily
a single best initial search radius—it is context dependent;
i.e., a parameter of the model that must be fit. Second, it
validates our choice of HDR as uncertainty region, because
our worst prediction (Freedom, 10 NM), was still within the
HDR 71.7% of the time. Moreover, Table I shows that greater
error and standard deviation of error corresponds to a lower
%HDR. It is true that the HDR depends on the bandwidth
parameter, but with a properly chosen bandwidth, we have a
reasonable uncertainty region.

Another positive aspect of our forecast is how it treats
land. For the most part, the forecast respects the fact that
it must remain in the water, and in the few cases were the
forecast does go over land, it is only over small islands or
tips of peninsulas, which may not be considered by the energy
minimization step [52]. This is important to note because
we did not give as an input the location of landmasses in
the statistical model. Not only does it respect navigational
constraints in this manner, but we also see two interesting
patterns in the Freedom forecast. When the ship goes around
the Bahamas, the true track goes west of the islands, while the
forecast goes mostly east of the islands. In this sense, we have
a valid navigational pattern given by the forecast. A similar
occurrence happens as the ship proceeds southeasterly, north
of Puerto Rico. The forecast goes south in between Hispaniola
and Puerto Rico avoiding both landmasses, before proceeding
northwest at which point the error goes down to around
50 NM. While the forecast was wrong, it gave valid outputs
with all knowledge of land contained in the estimate L̂ and
upsampling step, and no knowledge of land in computing f̂i or
pi. This indicates if the data were not sparse (e.g., streaming

TABLE I. Table of results for cruise ship data.

Ship Search radius Average error (NM) Standard deviation of error (NM) % in HDR

Dream 10 35.9 43.9 90.9
Dream 20 65.6 125.5 89.7
Dream 40 74.8 128.5 88.7
Freedom 10 93.9 66.7 71.7
Freedom 20 90.5 68.3 76.3
Freedom 40 85.9 69.9 78.9
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FIG. 2. Autocorrelation function of error, with offset of 24 h.
Dashed line indicates critical value for statistical significance at
±0.140.

AIS positions), then the forecast would have avoided land
without explicitly computing an approximation L̂ .

Examining the plots in Fig. 1 more closely, we do not see
a general trend in error with respect to time. For Dream the
worst error occurs within the first 2 days of prediction and
is almost entirely temporal. For Freedom the worst error is
in the last 2 days and is almost entirely spatial. A traditional
forecaster such as a Kalman or particle filter would be ex-
pected to have increasing error over time. Finally, we note
that the error seems to be periodic. More specifically, it seems
to cycle roughly in relation to days. It is possible that this
is an artifact of our daily downsampling while preprocessing
the historical data. This claim is supported by computing
the autocorrelation function for the error time series, which
can be seen in Fig. 2. The plot shows statistically significant
autocorrelation around the 48-h period for both forecast, as
well as for Dream at around the 80- and 125-h marks.

To summarize: Algorithm 1 gives a very reasonable fore-
cast, with only minimal information about the manifold of
interest. It respects navigational constraints and does not
appear to loose accuracy over time in any general way.

B. Synthetic data forecasts

In order to have more control over both the training and
testing data set (thereby guaranteeing the data meets our
assumptions), we created two synthetic histories of trajecto-
ries. They were trajectories on R2, and included loiter points
and followed the same underlying model, with a different
geometry.

1. Plane trajectories

The two synthetic histories of trajectories on R2 consisted
of 10 000 data points with Gaussian noise, shown in Figs. 3(a)
and 3(b). The generated tracks included six and five loiter
points, respectively, including a bifurcating trajectory where,
after reaching the top leftmost loiter point the particle uni-
formly chose to go toward the center of the system or proceed
due south. The purpose of the loiter points is to understand
how the algorithm treats speed implicitly, while the purpose
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FIG. 3. Synthetic trajectories moving between loiter points.

of the bifurcation is to see how the forecasting algorithm deals
with such phenomena.

The deterministic dynamical system which we used to
generate the trajectories has the particle proceed at a constant
velocity, in this case 1 spatial unit per time unit. It proceeds on
a line from the first loiter point in a list to the second and when
it comes within a specified distance of the second, it proceeds
to the third, and so on until it has reached the final point in the
list. We chose to use 0.1 units for the specified distance. On
reaching the final point, the particle proceeds again to the first
point in the list (i.e., it is recurrent). At some of the points we
provided two options. The option actually taken was chosen
uniformly at random from the two. The choice was made each
time the particle left the previous loiter point, so we would
expect that when two options are given, a trajectory passes
through each point roughly half of the time.

For the first synthetic trajectory, the following points
served as loiter points:

(1, 1), (3, 1), (8, 1),
(8, 5), (5, 9), (1, 5).

The trajectory started at (1,1) and proceeded to (8,1). On
reaching (1,5), the choice was made (uniformly at random)
to proceed to either (1,1) or (3,1).
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TABLE II. APE results for forecasts of first and second trajectories.

Prediction error In 70% Prediction error In 95%
Time 1st test HDR? 2nd test HDR?

0.5 0.162085 Yes 0.148339 Yes
1. 0.261795 Yes 0.323111 Yes
1.5 0.268559 Yes 0.194149 Yes
2. 0.280586 Yes 0.279196 Yes
2.5 0.162447 Yes 0.407433 Yes
3. 0.00604629 Yes 0.166779 Yes
3.5 0.223472 Yes 0.32591 Yes
4. 0.284221 Yes 0.26897 Yes
4.5 0.207216 Yes 0.396418 Yes
5. 0.146127 Yes 0.291473 Yes
5.5 0.379875 Yes 0.29377 Yes
6. 0.568606 Yes 0.670763 Yes
6.5 0.543305 Yes 0.529087 Yes
7. 0.492582 Yes 0.230524 Yes
7.5 0.584862 Yes 0.120457 Yes
8. 1.02672 Yes 0.240666 Yes
8.5 0.702077 Yes 0.407801 Yes
9. 0.32379 Yes 0.548738 Yes
9.5 0.48308 Yes 0.292232 Yes
10. 0.402685 Yes 0.374352 Yes
10.5 0.329985 Yes 0.325699 Yes

For the second synthetic trajectory, the following points
served as loiter points:

(6, 2), (8, 6), (0, 8),
(0, 0), (2, 4).

The trajectory started at (0,0) and proceeded to (6,2). On
reaching (0,8), the choice was made between (0,0) or (2,4)
[after which time the particle proceeded to (6,2)].

We recorded the position of the forecast at time intervals
of 0.05 units and added mean zero, normally distributed noise
with standard deviation 0.5 units. We then generate a mask
of 0’s and 1’s from a binomial distribution with parameter
0.1 in order to retain (on average) 10% of the data. After
downsampling the noisy data to roughly 10% of its origi-
nal density, we used Mathematica’s Interpolate function
in order to linearly interpolate the remaining points. The
Interpolate function returns a Mathematica interpolating
function. We then plugged in the original time points (from
t = 0 to t = 500, sampled at time steps of 0.05 units) to
this new interpolating function to return the upsampled points
from the downsampled 10% of original data. The interpolating
function allows us to upsample and thus have equally (tempo-
rally) spaced data while at the same time starting with sparse
data. The upsampled data was used to generate KDEs. Since
the trajectories were piecewise linear, this is consistent with
solving Eq. (11).

The data used to evaluate the performance of our algorithm
(i.e., the test trajectories) was generated from the same dy-
namical system but was neither downsampled to 10% of its
original density nor did it have noise added. This is because
we do not want the noise of the test path to be a confounding
factor when evaluating the pointwise error.
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FIG. 4. Synthetic trajectories and forecasts moving between loi-
ter points.

For both unique trajectories, we forecasted a length q = 20
trajectory {xi}N+q

i=N+1 for the dynamical system that generated
the first N = 10 000 data points, with xN+1 = (3.5, 7.5). In
reporting (see Table II) we consider each index to be a
half-unit of time, so that xN+1 corresponds to reporting time
t = 0.5 and xN+q corresponds to time t = 10.5. We note that
{xi}N+q

i=N+1 was not used to train the model (in the sense of
contributing to the data that was used to build a KDE). These
tracks are shown plotted with circles in Figs. 4(a) and 4(b),
where the points represent the actual {xi} and are connected
linearly in both space and time to give a position for any
t ∈ [tN+1, tN+q] ⊆ R+.

After generating training data and a ground-truth trajec-
tory for comparison to predictions, we compute a prediction
{pi}N+q

i=N+1. We plot the predictions as squares in Figs. 4(a)
and 4(b).

In Fig. 4(a), we see that the overall shape of the prediction
and ground truth are roughly similar, and they are extremely
similar in Fig. 4(b). In particular, the predicted path and
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TABLE III. Error between predicted point at time t and the
nearest true point ignoring time for the trial in Fig. 4(b).

Min. Distance 1st Test Less Min. Distance 2nd Test Less
Time 1st Test than ε = .25 2nd Test than ε = .25

0.5 0.162 Yes 0.148 Yes
1. 0.262 No 0.311 No
1.5 0.269 No 0.194 Yes
2. 0.281 No 0.158 Yes
2.5 0.162 Yes 0.234 Yes
3. 0.006 Yes 0.167 Yes
3.5 0.223 Yes 0.237 Yes
4. 0.284 No 0.234 Yes
4.5 0.207 Yes 0.24 Yes
5. 0.146 Yes 0.291 No
5.5 0.38 No 0.294 No
6. 0.569 No 0.18 Yes
6.5 0.543 No 0.301 No
7. 0.493 No 0.231 Yes
7.5 0.585 No 0.12 Yes
8. 0.832 No 0.105 Yes
8.5 0.592 No 0.177 Yes
9. 0.232 Yes 0.292 No
9.5 0.207 Yes 0.292 No
10. 0.039 Yes 0.186 Yes

ground truth are very close up through the predictions made
after the ground truth leaves the loiter regions at (1,5), and
(8,6), respectively.

In Table III we illustrate the distance between every pre-
dicted point pi and the closest point on the true trajec-
tory. This illustrates the impact of speed-estimation error
rather than spatial error; i.e., this distance ignores the time
at which a forecast expects the particle to be in a certain
location.

In Table III and Fig. 5, we see that mean distance between
a forecast point and any true point is less than ε for 40%
of the time in Test 1 and 70% of the time for Test 2. We
draw attention to these facts because by choosing ε, as we
noted, we are essentially constructing an equivalence relation
on the data. The larger error in Test 1 is most likely caused by
the branching nature of the behavior near the forecast region,
causing the center of mass in the KDE to move between
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FIG. 5. Box and whisker chart illustrating the properties of the
error distribution of data in Table III.

the two possible branches. This can be corrected by using a
multihypothesis branching forecast approach [53] that seeks
multiple local maxima in the KDE. We note that it is relatively
straightforward to construct such a multihypothesis pointwise
forecast that would provide branching paths following multi-
ple local maxima of the KDE and this is considered in future
work.

Using the membership in the HDR as a measure of perfor-
mance, we see that it is a good way to measure the temporal
accuracy of a forecast but not necessarily the spatial accuracy.
This fact is exemplified by trajectory two. We also note that
the HDR does not represent a “confidence region” in the
frequentist sense of the term but instead has a more Bayesian
flavor.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The previous literature on modeling and forecasting using
KDEs has focused on well sampled data. In this paper, we
develop Algorithm 1 to generate forecasts for the cases when
we have a sparse, noisy data drawn from a recurrent trajectory.
This approach offers an alternative to existing forecasting
methods in cases when data are sparse and noisy, since it
requires significantly fewer data. The energy minimization
technique we use allows us to “connect the dots” between
existing data points in an intelligent way, so that we can
sample data as finely as we wish.

Algorithm 1 has several useful features. Traditional fore-
casters use some approximation or knowledge of speed,
which is then projected forward in time. Our forecasting
algorithm treats speed implicitly as we develop time-indexed
probability distributions over a smooth Riemannian mani-
fold. This simplifies the computation and makes the algo-
rithm path independent. In practice, this allows us to pick
specific times ti at which to provide a forecast position pi

and uncertainty function fi rather than having the require-
ment of computing intermediate steps to predict the whole
path.

The algorithm also has nice theoretical properties. In par-
ticular, the optimal solution of a minimal energy trajectory
is the asymptotic limit of the prediction as the sampling
rate goes to infinity. Moreover, with a reasonable choice of
parameters, it respects the existence of forbidden regions,
albeit with a “fuzzy” boundary. With reasonable assumptions
on (or knowledge of) the noise, we can easily quantify the
fuzziness of the boundary.

When we assume but cannot guarantee that the governing
energy function is the same, (as in the cruise ship forecasts) we
still get reasonably good results. When we can guarantee that
the underlying energy function is the same (as in our synthetic
forecast) the algorithm performs quite well. It gives forecasts,
with error that is mostly temporal rather than spatial. When
the error is spatial, it is as a result of a valid path which was
not taken. In both the spatial and temporal error cases we still
have an uncertainty region for each point, given by the highest
density region of the KDE f̂ , and experimental evidence
supports our claim that this makes sense as an uncertainty
region.

While the algorithm performs well, there are certainly
improvements which can be made. In particular, we note
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that often times the error is temporal rather than spatial.
That is, the predicted point is not off because the predicted
trajectory has high error in space, but rather because the time
is off. A next step would be to consider how to improve this
weakness in the algorithm. Additionally, for our ship forecast,
we heuristically tuned the bandwidth to give a smooth path.
It would be desirable to find a nonheuristic way to find the
appropriate bandwidth, as the existing bandwidth selection
rules (particularly Scott’s and Silverman’s rules of thumb)
give a track with high error. Finally, improving our handling

of bifurcating tracks when constructing pi may also improve
the resulting forecasts.
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