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Non-Gaussian diffusion has been intensively studied in recent years, which reflects the dynamic heterogeneity
in the disordered media. The recent study on the non-Gaussian diffusion in a static disordered landscape suggests
novel phenomena due to the quenched disorder. In this paper, we further investigate the random walk on this
landscape under various effective temperatures μ, which continuously modulate the dynamic heterogeneity. We
show in the long-time limit, the trap dynamics on the landscape is equivalent to the quenched trap model in
which subdiffusion appears for μ < 1. The non-Gaussian distribution of displacement has been analytically
estimated for short t of which the stretched exponential tail is expected for μ �= 1. Due to the localization in the
ensemble of trajectory segments, an additional peak arises in P(x, t ) around x = 0 even for μ > 1. Evolving in
different timescales, the peak and the tail of P(x, t ) are well split for a wide range of t . This theoretical paper
reveals the connections among the subdiffusion, non-Gaussian diffusion, and the dynamic heterogeneity in the
static disordered medium. It also offers an insight on how the cell would benefit from the quasistatic disordered
structures.
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I. INTRODUCTION

Dynamic heterogeneity [1–3] has been recognized as the
key feature of glassy systems, which refers to the widely
spanned relaxation time of the disordered structures, the
highly intermittent particle dynamics, and the large trajectory-
to-trajectory fluctuations. The non-Gaussian diffusion, of
which the distribution of particle displacement is not Gaus-
sian, is observed in a wide range of disordered systems
with dynamic heterogeneity, including the crowding intracel-
lular environments [4–7], colloidal [8,9], and granular [10]
systems.

A simple interpretation reveals the connection between
the dynamic heterogeneity and the non-Gaussian diffusion by
modeling the heterogeneity with the random instantaneous
diffusivity D(t ) [8,11]. P(x, t ) is, hence, a convolution over
D(t ) by

P(x, t ) =
∫

dD(t )G(x, t |D(t ) )P(D(t ) ), (1)

where G(x, t |D(t ) ) is the Gaussian kernel for the short segment
with the given D(t ). Chubynsky and Slater [12] constructed
the dynamics by setting the diffusivity itself as an Ornstein-
Uhlenbeck process, which is, hence, temporally correlated.
The non-Gaussian behavior exists in the correlation timescale.
The recent studies on the diffusion with fluctuating diffusivity
[13–17] have largely improved our understanding on the non-
Gaussian diffusion in the annealed disordered environments
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where the relaxation time of the environments is assumed on
the same scale of the particle diffusion and no spatial structure
is considered.

The annealed assumption may fail, however, when the
disordered environments are greatly influenced by the large
structures in the media, such as the actin under the cell
membrane [18,19] or endoplasmic reticulum in the cytoplasm
[20]. In the case that the structures fluctuate quite slowly, the
disordered sample is quasistatic [6,7,20–23] over the whole
experiment. In such a case, the fluctuating diffusivity is corre-
lated in space but not in time. To investigate the non-Gaussian
diffusion in the static disordered systems, we have recently
constructed a spatially correlated random landscape by a trick
from extreme statistics [24,25]. Employing the trap dynamics
with effective temperature μ = 1, the local diffusivity on
the extreme landscape follows the exponential distribution
P(D(l )/D0 = D) = exp(−D). The exponential tail of P(x, t )
is, hence, expected for small t . The model study has revealed
a localization mechanism in the ensemble of trajectory seg-
ments, which is universal for the quenched disordered cases.
Similar phenomena have been already observed in experi-
ments.

In this paper, we further investigate the trap dynamics on
the “extreme landscape” of different heterogeneous levels,
which are modulated by the effective temperature μ. A coarse-
graining (CG) process is introduced to handle the spatial
correlation in the landscape via which the equivalence be-
tween the current model and the quenched trap model (QTM)
[26–29] are revealed in the long-time limit. The extreme
landscape is, hence, a generalization of the QTM in which
the finer structures appear as the spatially correlated local
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diffusivity. The non-Gaussian distribution of displacement
is, hence, expected on the correlated length scale. As the
same in the QTM, subdiffusion due to strong heterogeneity
also arises in the current model for μ < 1. In the quenched
case, a localization happens in the ensemble of the trajectory
segments. A peak in P(x, t ) around x = 0 arises accordingly,
which is significantly split from the stretched exponential tail.

The paper is organized as follows. In Sec. II, we introduce
the extreme landscape and show how the effective temperature
of the trap dynamics controls the heterogeneity. In Sec. III, we
introduce a coarse-graining process, which connects the cur-
rent model to the traditional QTM. In Sec. IV, we investigate
the structure of the non-Gaussian distribution of displacement.
Section V discusses the biological implication of the results
and their connections with other works. A short summary
follows in Sec. VI.

II. THE TRAP DYNAMICS ON THE EXTREME
LANDSCAPE

We consider the random walk on a static disordered land-
scape {Vi} in a two-dimensional cubic lattice, where i denotes
the lattice site. The landscape was proposed to record the
information of local minima of random auxiliary landscapes.
It can be called the extreme landscape. The generation of the
extreme landscape {Vi} typically follows two steps:

(1) Generate an auxiliary uncorrelated random landscape
{Ui} following the exponential distribution:

P(Ui = U ) = U −1
0 exp(U/U0), U < 0. (2)

(2) Assign Vi by the local minimum of {Ui} in the rc

neighborhood of site i, i.e.,

Vi = min{Uj |ri j < rc}. (3)

Noting that the auxiliary landscape {Ui} is uncorrelated,
P(Vi = V ) converges to the limit distribution of extreme
statistics for r2

c � 1, whose distribution is known as the
Gumbel distribution,

P(Vi = V ) = exp[V − V0 − exp(V − V0)]. (4)

The extreme landscape is essentially determined by spatial
distribution of the local minima of the auxiliary landscape.
Each minimum dominates a range of the neighbor traps,
which shape a basin of radius rc in the extreme landscape. The
extreme landscape is constituted by the overlapped extreme
basins (See Fig. 1 in Ref. [25]). It is, hence, locally correlated
up to 2rc.

In this paper, the trap dynamics is employed for the random
walk on the extreme landscape. The escaping rate from the
trap i is determined by the trap depth Vi by

wi = w0 exp(Vi/μ), (5)

where Vi < 0 for traps and the dynamical parameter w0 gives
the timescale. The effective temperature μ controls the rough-
ness of the landscape and, hence, the spatial heterogeneity
of the dynamics. The typical sojourn time in trap i can be
estimated by

τi = w−1
i = w−1

0 exp(−Vi/μ). (6)
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FIG. 1. The distribution of local diffusivity for various μ’s, given
by Eq. (8).

In trap dynamics, the particle at site i jumps to all the nearest-
neighbor sites j with even rate wi→ j = n−1

c wi, where nc =
4 is the coordination number in the square lattice. The local
diffusivity at site i can be, hence, defined as

D(l )
i ≡ a2

4τi
= w0a2

4
exp(Vi/μ). (7)

Noting that {Vi} follows the Gumbel distribution given by
Eq. (4), one can see {D(l )

i } follows the generalized Gamma
distribution with a stretched exponential tail,

P(D′) = μD′μ−1 exp(−D′μ), (8)

where D′ ≡ D(l )/D0 is scaled by D0 = w0a2 exp(V0/μ)/4.
Noting V0 < 0, one can see D0 vanishes in the low temperature
cases with μ � 1 where the walk in the media is frozen.
To exclude the freezing effects and to focus on the spatial
heterogeneity, we rescale the landscape in this paper by setting
D0 = 1. The mean value of D(l ) then moderately depends on
μ by 〈D(l )〉 = μ−1�(μ−1), where �(·) is the Gamma function.
For intuition, 0.88 < 〈D(l )〉 < 2 for any μ > 0.5. Figure 1
shows the distribution of the rescaled local diffusivity P(D(l ) )
for some typical temperatures. In the high temperature limit
μ → ∞, P(D(l )

i /D0 = D) converges to a peak around D = 1.
The dynamics, hence, degenerates to the normal Brownian
motion in the homogeneous media. For μ = 1, Eq. (8) turns
to P(D(l )

i /D0 = D) = exp(−D), which has been previously
studied [25] as a special case of non-Gaussian diffusion with
the exponential tail.

III. THE COARSE-GRAINING PROCESS AND
THE LONG-TIME BEHAVIOR

In this section, we introduce the CG process for the trap
model to handle the local correlation in the landscape. Con-
sidering a sample of finite size and periodic boundaries, the
random walk can scan all the traps of the sample in the
long-time limit. The diffusion process achieves a steady state
of which the mean squared displacement (MSD) 〈|�x(t )|2〉 =
〈|x(t ) − x(0)|2〉 can be written by

〈|�x(t )|2〉 = 4Ddist for t → ∞. (9)
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FIG. 2. The pair correlation function g(r) of the coarse-grained
landscapes at various CG levels s. The radius of the extreme basin
is set by rc = 16. The inset shows g(r) of the original extreme
landscape.

One can show in trap dynamics that the diffusion coefficient
Ddis depends on the mean sojourn time [26,27,30] by

Ddis = a2/4τ , (10)

where the mean sojourn time τ averages over the traps in the
sample by

τ = 1

N

N∑
i=1

τi. (11)

Sharing the spirit with Machta’s early work [31] on the QTM,
we regroup the summands in Eq. (11) by blocks of neighbors.
It leads the CG operation as follows:

(1) In a lattice of N sites, we replace each 2 × 2 block
by a single site on a lattice of N ′ = N/4 sites and the lattice
constant a′ = 2a.

(2) To keep the sum of all the τi’s invariant, the typical
sojourn time τ ′

q in a coarse-grained site q is set to the sum of
those in the original block,

τ ′
q =

∑
j ∈ block q

τ j, (12)

where τ j is the typical waiting time of the jth site in block q.
Repeating the operation for s times, we achieve a landscape

of CG level s, which is constituted by N (s) = N/4s traps. The
mean sojourn time of the coarse-grained landscape is given by

τ (s) = 1

N (s)

N (s)∑
q=1

τ (s)
q = 4sτ , (13)

where τ (s)
q denotes the typical sojourn time in the qth trap.

Noting that the lattice constant a(s) = 2sa, we see the diffu-
sion coefficient D(s)

dis = (a(s) )2
/(4τ (s) ) is invariant over coarse

graining. On the other hand, the spatial correlation quits the
coarse-grained landscape as shown by the pair correlation
function of the effective landscape {Ṽ (s)

q ≡ − ln τ (s)
q } in Fig. 2.

One can clearly read the decline of the correlation, which
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FIG. 3. (a) The probability density function of the sojourn time
in the traps of the coarse-grained landscape with the CG level s = 6
from simulations for various μ’s. (b) The size dependence of 〈Ddis〉
where the lattice size is rescaled by the correlation length rc. The
symbols denote the numerical results for various μ’s as the same
in (a).

vanishes when the grain size l = 2s is larger than the diameter
of the extreme basin 2rc.

Figure 3(a) shows the probability density function of the
typical sojourn time in traps {τ (s)

q } of the fully coarse-grained
landscapes. One can clearly read the power-law tails con-
tributed by the sojourn time in the deepest traps. Being more
precise, the depth of the original traps follows the Gumbel
distribution given by Eq. (4) of which the tail is merely
exponentially shaped. The exponential tail of P(Vi ) leads to
the power-law tail of sojourn time distribution. It recalls to
us the intensively studied QTM with no spatial correlation
in which the heavy-tailed sojourn time distribution leads to
subdiffusion.

Subdiffusion does arise in trap dynamics on the extreme
landscape when μ � 1. In the rest of the section, we char-
acterize the subdiffusive behavior by the size dependence of
diffusion coefficient Ddis of the extreme landscape in a brief
way. For more technical details, one can go to the classical
reviews [26,27] and the recent papers [29,30,32].

Subdiffusion refers to the sublinear time dependence of
MSD, where Ddis vanishes as the particle scans a broader
range of the sample. The QTM captures the feature of subd-
iffusion by the size dependence of Ddis, which is connected
to the mean sojourn time of the sample via Eq. (10). For
simplicity, we consider the fully coarse-grained landscape
with M = N (s) = N/4s traps, where {τ (s)

q } is independently
and identically distributed. In the case that the distribution
of τ (s)

q is with a power-law tail P(τ (s)
q = t ) ∼ ct−(μ+1), one

may note a random energy model- (REM-) like transition
[33,34] happens for μ < 1 where the summation of τ (s)

q in
Eq. (13) is dominated by the largest summand. Including more
terms in the summation, the typical value of the largest τ (s)

q

increases as τtyp ∼ M1/μ, which is faster than linear. The mean
sojourn time τ (s), hence, diverges for large M. The vanishing
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Ddis becomes the consequence. The generalized central limit
theorem suggests the rescaled summation of τ (s)

q follows the
one-sided Lévy stable distribution by

A

M1/μ

M∑
q=1

τ (s)
q ≡ τ̃ ∼ Lμ for μ < 1, (14)

where the normalization parameter A depends on μ and c.
Noting τ (s) = A−1M (1−μ)/μτ̃ and Ddis = (a(s) )2/(4τ (s) ), one
can estimate the mean diffusion coefficient averaged over
samples by

〈Ddis〉 = M1−(1/μ) (a(s) )2

4
A〈τ̃−1〉, (15)

and the sample-to-sample fluctuation by

〈|Ddis − 〈Ddis〉|2〉 = M2−(2/μ) (a(s) )4

16
A2[〈τ̃−2〉 − 〈τ̃−1〉2],

(16)
where the negative moments [35] of τ̃ depend only on μ. Not-
ing M = (L/2s)2, one can see 〈Ddis〉 ∝ L2(μ−1)/μ for μ < 1.
In the marginal μ = 1 case, the logarithmic size dependence
〈Ddis〉 ∝ 1/ ln L2 has been reported in the previous work [25].
For higher μ, the mean value of τ (s)

q exists. Self-averaging can
be achieved in large samples. 〈Ddis〉, hence, converges to a
finite value. In other words, the random walk in less heteroge-
neous landscapes with μ > 1 returns to the normal Brownian
motion in the long-time limit. Our simulation confirms the
above results on size dependences of Ddis for various μ’s as
shown in Fig. 3(b).

IV. NON-GAUSSIAN DIFFUSION WITH THE STRETCHED
EXPONENTIAL TAIL AND THE PEAK AROUND x = 0

In this section, we investigate the distribution of displace-
ment of random walk on the extreme landscape. In practice
of data analysis, the distribution of displacement P(x, t ) is
usually obtained by counting the head-to-tail displacement x
of trajectory segments of time duration t . In this paper, we
generate the trajectories by the kinetic Monte Carlo simula-
tion [36]. To simulate the fully equilibrium case, the initial
positions of the walk are randomly generated following the
Boltzmann distribution, i.e., Pi ∝ τi = a2/4D(l )

i . One can find
more simulation details in Appendix B.

The main results are shown in Figs. 4–6, where P(x, t )’s
are presented in the scaled style for various μ’s and t’s. The
distribution for small t can be estimated by the superstatistic
assumption where the instantaneous diffusivity D(t ) of the
short segments can be approximated by the local diffusivity
D(l ) of the extreme basin as long as the time is too short
for the particle to leave the original basin. Given the initial
site i of a short segment, one can expect the displacement of
the segment follows the Gaussian distribution governed by a
single diffusivity D(t ) = D(l )

i as

G(x, t |D(t ) ) = 1√
4πD(t )t

exp

(
− x2

4D(t )t

)
. (17)
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FIG. 4. P(x, t ) for μ = 0.8 in the scaled fashion. The symbols
are obtained from simulations, and the black dashed lines are given
according to Eq. (21). The inset shows the nonscaled distribution
where the radius of the extreme basin rc = 16 is marked by the
dashed lines for guidance.

Counting all the segments of various D(t )’s, P(x, t ) follows a
convolution:

P(x, t ) =
∫ ∞

0
dD(t )G(x, t |D(t ) )P(D(t )|Ddis), (18)

where P(D(t )|Ddis) is the distribution of the instantaneous
diffusivity, recording the local diffusivity of the extreme basin
visited by each short segment. Noting in the equilibrium
state the segments sample the landscape with the Boltzmann
weight, one can see

P(D(t ) = D|Ddis) =
∑

i

P
(
D(l )

i = D
∣∣Ddis

)
P
(
xi|D(l )

i , Ddis
)
,

(19)
where P(xi|D(l )

i , Ddis) is the Boltzmann weight of trap i in the
sample with N traps. Employing Eqs. (7), (10), and (11), it
can be explicitly written by

P
(
xi

∣∣D(l )
i , Ddis

) = τi∑N
j=1 τ j

= Ddis

ND(l )
i

. (20)
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FIG. 5. The same as Fig. 4 but for μ = 1.2.
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Noting Eq. (8), one can see Eq. (18) is, indeed, a convolu-
tion of the generalized Gamma distribution and the Gaussian
distribution. Sposini et al. [16] offer several approaches for
the estimation of the convolution. In Appendix A, a saddle
point approach is introduced, which gives the correct large-x
asymptotic behavior by

P(x̃, t ) ≈ 1√
4t

ADdisx̃
(μ−3)/(μ+1) exp[−Bx̃2μ/(1+μ)], (21)

where x̃ =
√

x2/4t and the prefactors A and B depend only
on μ. For the μ = 1 case, it returns to the simple expression
P(x, t |Ddis ) = Ddisx−1 exp(−x/

√
t ), which has been obtained

in Ref. [25]. For the μ �= 1 cases, the stretched or shrunk
exponential tail is suggested by Eq. (21). It is well confirmed
by the simulation with t = 2.5 as shown by the dashed lines
in the figures. The deviance arises for μ < 1 at the end of
the tail (see Fig. 4) in which frozen case most segments are
localized in the deepest traps and too few segments scan the
most mobile region. The statistics error becomes significant
for the rare “mobile” events, which are only 1/107 of all the
segments.

It is a bit surprising that the asymptotic expression
[Eq. (21)] works even to small x where a peak P(x) ∼
(x2/4t )(μ−3)/(2μ+2) is expected. The peak is mainly con-
tributed by the segments in the deepest traps of the sam-
ple, which are heavily weighted in the ensemble of seg-
ments. Noting the constraint P(xi|D(l )

i , Ddis ) < 1, one can
learn from Eq. (20) that the local diffusivity in a given
sample is bounded by D(l ) > Dc ≡ Ddis/N . The height of
the peak at x = 0 is, hence, also bounded, which can be
estimated as

P(x = 0, t |Ddis ) ≈ Ddis√
4πt

�

(
2μ − 3

2μ
, Dμ

c

)
. (22)

Here, �(α, z) = ∫ ∞
z dt tα−1 exp(−t ) is the incomplete

Gamma function. In the case with μ < 3/2, �[(2μ −
3)/2μ, Dμ

c ] ∼ Dμ−3/2
c for small Dc, which diverges when

Dc → 0. It is interesting to note that P(D(l ) = 0) = 0 for μ >

1 (see Fig. 1). The peak appearing in the 1 < μ < 3/2 cases is
purely from the localization in the ensemble of trajectory seg-

ments, which is a unique phenomenon in the static disordered
media.

The superstatistics assumption is not suitable for longer t
in which case the particle may visit multiple extreme basins.
Averaging over various D(l )’s of the basins, the tail of P(x, t )
for longer t gradually deviates from Eq. (21) as shown in
the figures. On the other hand, the peak contributed by the
particles localized in the deepest basins relaxes in different
timescales. The sharp peak persists for a very long time in
the subdiffusive μ = 0.8 case since a genuine glass transition
(REM-like transition) drives the deepest trap away from the
others. The waiting time in the deepest trap is magnitudes
larger than that in the others. In the diffusive 1 < μ < 3/2
cases, the peak due to the localization in the ensemble of
segments can still be identified from the tail even for very long
t , which is more clearly shown by the nonscaled distribution
given in the insets of the figures. The whole particle (segment)
populations are, hence, split into the “mobile” and “immobile”
states until the localized particle eventually escapes from the
extreme basin of the deepest traps. The size of the extreme
basin, hence, gives a length scale separating the peak and the
tail, which is marked in the insets of the figures.

V. DISCUSSION

A. Population splitting

The heterogeneity of the disordered media often introduces
different dynamical states in the diffusion process. In the
model of the aged continuous time random walk [37–41],
a portion of particles is localized, which contributes a peak
around x = 0 in P(x, t ) due to the heavy-tailed waiting time.
The phenomenon of “population splitting” is, hence, reported
where the displacements of the immobile and mobile particles
are well split. The recent simulation [7] and experiment [42]
report that the position-dependent heterogeneity can also split
the particles into subgroups of different dynamical features.
It could be understood by noting the particle (or segment)
reports only the local dynamical properties as long as the
single trajectory has not scanned the whole sample. The long-
displacement tails are, hence, piecewise fitted according to the
subgroups in such cases.

In this paper, P(x, t ) is naturally constituted by the non-
Gaussian tail and the peak around x = 0 out of a different
origin—the localization in the ensemble of segments. The
tail and the peak split for large t , which can be roughly
identified as the immobile and mobile states. In the typical
experimental operation time, most particles can only scan
the local environment. Strong fluctuations even survive from
averaging the segments along each trajectory, whereas self-
averaging is absent in trajectories. The self-averaging can be
quantified by the trajectory-to-trajectory fluctuation of time-
averaged mean square displacement (TAMSD) as a function
of observing time and the ergodicity breaking (EB) parameter
[7,43–46]. The EB parameter estimated from the simulation
data report significant nonequivalence between the statistics
of a single trajectory and that of the particle ensemble for both
the subdiffusive μ < 1 cases and the diffusive μ > 1 cases
even for the maximum simulation time. One can find more
details in Appendix C.
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B. The localization observed in (quasi)static disordered systems

We note the localization mechanism is universal for all the
static disordered systems but not limited to the extreme land-
scape. Some phenomena have been already observed in the
previous experiment and simulation works on cell membrane,
cytoplasm, and in the phonon transport in the disordered
oscillator chain.

Cell membrane. He et al. [43] tracked the protein em-
bedded in the membrane of a living cell, which is crowded
by transmembrane protein and other structures [19,47]. The
exponential tails of P(x, t ) and P(D(t ) ) were reported [5],
whereas the sharp peaks around P(x = 0, t ) and P(D(t ) = 0)
have also been noted. The peak could be a signal of the
localization in the membrane environment, which strongly
interacts with the underlying large structures, such as the actin
network and other cytoskeletal cortices, and could, hence, be
stable for a long time [19]. In the simulation work by Jeon
et al. [7], it was shown that, in lack of the underlying large
structures, the protein crowding can also freeze the diffusion
map in the timescale of lipid motion. The non-Gaussian diffu-
sion of lipids arises in the simulation due to the heterogeneity
introduced by the protein matrix which relaxes much slower
than the lipids diffuse. The non-Gaussian P(x, t ) significantly
splits into two pieces, which could be a consequence of the
localization in the quasistatic diffusion map.

Cytoplasm. The non-Gaussian diffusion was reported by
Munder et al. in cytoplasm [6]. The perfect exponential dis-
tribution was observed in the cell under a normal condition.
In the energy-depleted cells where the cellular ATP is largely
reduced, a stretched exponential tail and a sharp peak around
x = 0 appears in P(x, t ). It is known that the cell constantly
employs active motors to fluctuate the cytoskeleton [48]. The
energy depletion removes all the active cellular dynamics in
which case the cytoplasm is less fluid and more glasslike. The
sharp peak of P(x, t ) could be a clue of the frozen and static
disordered cytoplasm in the energy-depleted condition.

Phonon transport. The non-Gaussian energy diffusion has
been reported by Wang et al. in their study on the one-
dimensional disordered oscillator chain [23]. The sharp peak
again appears in the static disordered case as a consequence
of Anderson localization. In the aspect of phonon transport,
it can be also understood that the phonon is localized in the
static disordered chain.

C. The stretched exponential tail of P(x, t )

The tail of a non-Gaussian distribution of displacement
is not necessary being in the exact exponential form. The
stretched exponential tail is a more common case. A class of
non-Gaussian diffusion with a stretched exponential tail has
been investigated by Sposini et al. [16] via two annealed mod-
els where the instantaneous diffusivity follows the generalized
Gamma distribution. We show in this paper the generalized
Gamma distribution [Eq. (8)] can be the direct consequence
of the trap dynamics on the extreme landscape. The stretched
exponential tail of P(x, t ), hence, appears in this case of static
disorder.

One would be more careful to estimate the shape of the
non-Gaussian tail in the case of limited statistics, which
is a common case in experiments. In the presence of the

localization in static disorder, the tail and the peak would
strongly interfere around the center of P(x, t ). The exponent
can only be correctly estimated in the genuine tail region for
large x where the statistics is usually poor. One can also read
in Figs. 4–6 the scaled distribution collapse very well for all
the t’s until the genuine tail region with t1/2P(x, t ) ∼ 10−5.
We suggest, in the static disordered case, to observe the
distribution in the nonscaled way as the insets of the figures.
The relaxation of the non-Gaussian tail is expected for x > rc.
In more physical words, the self-averaging happens only when
the particle leaves the original local structure.

D. The effective temperature μ and the connection to QTM

In this theoretical paper, the heterogeneity of the static
diffusion map {D(l )

i } is modulated by the effective temperature
μ, which can be hardly measured in experiments. It is more
practical to reconstruct the diffusion map from the trajecto-
ries and then to characterize the dynamic heterogeneity by
P(D(l )

i ) as shown in Fig. 1. In experiments, there is not a
general way to modify the heterogeneity level via a certain
parameter, such as μ, whereas keeping the local structure.
We propose here two specific experiments. In the colloidal
system, one can prepare the static disordered potential by
the optical tweezers to control the motion of the colloidal
particles. The heterogeneity of the potential can be, hence,
adjusted by the setup of the tweezers. In the experiments on
the living cells, one can modulate the crowding level of the
cytoplasm via osmotic pressure. The freezing transition from
normal diffusion to subdiffusion could be expected under
proper experiment setups.

Finally, we clarify the connection between the extreme
landscape and the celebrated QTM. Focusing on the long-time
limit, a coarse-graining process is introduced to eliminate the
local correlation in the landscape. Since the tail of Gumbel
distribution can be well approximated by an exponential one,
the CG process eventually leads us to the QTM with heavy-
tailed waiting time. The QTM with uncorrelated traps has
been intensively studied since the early 1980s [26,31,49,50].
This successful model helps us understand subdiffusion in
static disordered media [27–29,51,52]. The trap dynamics on
the extreme landscape is indeed an extension of the QTM
of which the local structures introduce the non-Gaussian
diffusion.

VI. SUMMARY

To summarize, we have investigated the trap dynamics
on the extreme landscape of which the heterogeneity can be
continuously modulated by the effective temperature μ. We
show in the long-time limit, the model is equivalent to the
celebrated quenched trap model with no spatial correlation.
Subdiffusion in the extreme landscape is, hence, expected and
confirmed in the low temperature region with μ < 1. Our
analytical study reveals the connection between the stretched
exponential tail of P(x, t ) and the dynamic heterogeneity. We
note a localization mechanism in the ensemble of segments
due to which the immobile particles are well split from
the mobile ones. It introduces population splitting even in
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the diffusive 1 < μ < 3/2 cases, whereas the subdiffusion is
absent.

The molecules in the immobile state are believed to play a
key role in the biological processes requiring a long reaction
time. A recent biology study suggests that the actin structures
under the cell membrane help the formation of signaling hot
spots on the membrane where the signaling protein tends to
stay and work [19]. In this paper, we show in the disordered
media fixed by the large structures, the immobile state spon-
taneously appears due to the localization in the ensemble of
segments, which is merely a consequence of the equilibrium
Boltzmann distribution in the static landscape. It provides a
hint that how the cell benefits from the (quasi)static structure
of the membrane.
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APPENDIX A: NON-GAUSSIAN TAIL OF P(x, t )
FOR SMALL t

In this Appendix, we estimate the convolution of Eq. (18),

P(x, t ) =
∫ ∞

0
dD(t )G(x, t |D(t ) )P(D(t )|Ddis), (A1)

where P(D(t )|Ddis) is determined by the distribution of local
diffusivity

P(D(l )
i = D|Ddis) and the Boltzmann weight P(xi|D(l )

i ,

Ddis) via Eq. (19).
We note, in any sample, the diffusion coefficient Ddis

is determined by the configuration of {D(l )
i }. Known Ddis’s

of the sample, D(l ) is, hence, bounded by D(l )
i > Dc ≡

Ddis/N , which can be read from the natural constraint
P(xi|D(l )

i , Ddis ) < 1. The analysis in the previous work (see
Appendix B of Ref. [25]) suggests the conditional proba-

bility P(D(l )
i = D|Ddis) can be approximated by P(D(l )

i = D)
for D > Dc, which is provided by Eq. (8). Combining also
Eqs. (19) and (20), we can obtain the distribution of instanta-
neous diffusivity reported by the short segments,

P
(
D(t )

i = D
∣∣Ddis

) ≈
{

0, D < Dc

DdisμDμ−2 exp(−Dμ), D � Dc.

(A2)
The explicit expression of Eq. (18) is, hence, written as

P(x, t |Ddis ) = Ddis√
4πt

∫ ∞

Dc

dD μDμ−5/2 exp

(
−Dμ − x2

4Dt

)
.

(A3)
One may note the segments with small D hardly contribute to
the non-Gaussian tail for x2 � 4Dct . In such a case, the lower
bound of the integral can be released to Dc = 0. Sposini et al.
[16] have estimated the integral via the Fox H function and

other approaches. We provide a saddle point approach below,
which also gives the correct large-x behavior.

Let x̃ =
√

x2/4t, D̃ = D/x̃2, and f (D̃) = x̃2μD̃μ + 1/D̃.
The concerned convolution can be written by

P(x̃, t |Ddis ) = Ddis√
4πt

x̃2μ−3
∫ ∞

0
dD̃ μD̃μ−(5/2) exp[− f (D̃)].

(A4)
For x̃2 � 1, the saddle point approximation suggests

P(x̃, t ) ≈ Ddis√
4πt

x̃2μ−3μDμ−(5/2)
s

√
π

f ′′(Ds)
exp[− f (Ds)],

(A5)
where the saddle point Ds = (μ)−1/(1+μ)x̃−2μ/(1+μ) gives the
minimum value of f (D) by

f (Ds) = (1 + μ)μ−μ/(1+μ)x̃2μ/(1+μ), (A6)

and

f ′′(Ds) = (1 + μ)μ2/(1+μ)x̃6μ/(1+μ). (A7)

One can, hence, get

P(x̃, t ) ≈ 1√
4t

ADdisx̃
(μ−3)/(μ+1) exp[−Bx̃2μ/(1+μ)], (A8)

here A = (1 + μ)−(1/2)μ2/(1+μ) and B = (1 + μ)μ−[μ/(1+μ)].

APPENDIX B: THE SIMULATION DETAILS

The disordered sample is first generated via the two-step
procedure given in Sec. II. The size of the samples {Vi} is
chosen as Lx = Ly = 1024, whereas the radius of the extreme
basin is set as rc = 16.

Some 104 trajectories are generated on the sample. The
initial site of each trajectory is randomly chosen following
the Boltzmann distribution by Pi = τi/

∑
i τi to simulate the

full equilibrium case. Assuming the particle arrives at site i
after k − 1 jumps with the total waiting time t = ∑k−1

s=1 ts, the
following jump on the lattice (i, t ) → ( j, t + tk ) is generated
by two steps following Gillespie’s approach [36]:

(1) The waiting time tk in site i is generated following the
exponential distribution:

P(tk ) = τ−1
i exp(−tk/τi ). (B1)

(2) The destination of the jump, site j, is chosen from the
nearest neighbors of site i by an even rate.

The simulation is terminated when the total waiting time
t = ∑

ti reaches an upper boundary tmax = 5 × 104, which
can be understood as the finite observation time in experi-
ments. The periodic boundary condition is also applied in the
long-time simulation.

Some 12 000 trajectories are generated for each sample.
The simulated trajectories record the waiting time and the
direction of each jump, whereas the trajectories obtained in
experiments record the particle position with fixed time inter-
val �t . The simulated trajectories are transformed to the ex-
periments’ style with �t = 2.5 as the time resolution, which
is discretized into tmax/�t = 20 000 frames. It is a reasonable
number for a 10-min imaging experiment recording 30 frames
per second, whereas the experiment can hardly track 12 000
particles at the same time.

042136-7



LIANG LUO AND MING YI PHYSICAL REVIEW E 100, 042136 (2019)

APPENDIX C: THE FLUCTUATION
AMONG TRAJECTORIES

In this Appendix, we present the fluctuation among the
TAMSD via the EB parameter.

TAMSD is defined along a single trajectory as

δ2(�, T ) = 1

T − �

∫ T −�

0
dt ′|x(t ′ + �) − x(t ′)|2, (C1)

where � is the lag time and T is the observation time along
the trajectory. The trajectory-to-trajectory fluctuation can be
measured by the EB parameter as

EB(�, T ) = 〈[δ2(�, T )]2〉 − 〈δ2(�, T )〉2

〈δ2(�, T )〉2
. (C2)

EB = 0 in the full ergodic case, whereas EB = 0 in the
fully nonergodic case. Figure 7 shows the EB parameter for
� = 50 and various μ’s, which decay much slower than the
normal Brownian case EB ∼ �/T . Significant trajectory-to-
trajectory fluctuations persist through the simulation since

10
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10
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10
3

10
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10
5

T

0.2

0.4

0.8
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E
B

μ=1.2
μ=0.8

FIG. 7. The EB parameter as a function of observation time T for
� = 50 in the subdiffusive μ = 0.8 case and in the diffusive μ = 1.2
case.

only few trajectories have spanned the whole sample in the
maximum observation time tmax.

[1] L. Berthier, Physics 4, 42 (2011).
[2] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
[3] T. R. Kirkpatrick and D. Thirumalai, Rev. Mod. Phys. 87, 183

(2015).
[4] B. R. Parry et al., Cell 156, 183 (2014).
[5] W. He, H. Song, Y. Su, L. Geng, B. J. Ackerson, H. B. Peng,

and P. Tong, Nat. Commun. 7, 11701 (2016).
[6] M. C. Munder et al., eLife 5, e09347 (2016).
[7] J.-H. Jeon, M. Javanainen, H. Martinez-Seara, R. Metzler, and

I. Vattulainen, Phys. Rev. X 6, 021006 (2016).
[8] S. C. Bae, B. Wang, J. Guan, and S. Granick, Proc. Natl. Acad.

Sci. USA 106, 15160 (2009).
[9] T. Sentjabrskaja et al., Nat. Commun. 7, 11133 (2016).

[10] B. Kou et al., Nature (London) 551, 360 (2017).
[11] B. Wang, J. Kuo, S. C. Bae, and S. Granick, Nature Mater. 11,

481 (2012).
[12] M. V. Chubynsky and G. W. Slater, Phys. Rev. Lett. 113,

098302 (2014).
[13] T. Akimoto and E. Yamamoto, Phys. Rev. E 93, 062109 (2016).
[14] A. G. Cherstvy and R. Metzler, Phys. Chem. Chem. Phys. 18,

23840 (2016).
[15] E. Aurell and S. Bo, Phys. Rev. E 96, 032140 (2017).
[16] V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, and R. Metzler,

New J. Phys. 20, 043044 (2018).
[17] J. Slezak, R. Metzler, and M. Magdziarz, New J. Phys. 20,

023026 (2018).
[18] N. L. Andrews et al., Nature Cell Biol. 10, 955 (2008).
[19] T. Sungkaworn et al., Nature (London) 550, 543 (2017).
[20] H. Li, S.-X. Dou, Y.-R. Liu, W. Li, P. Xie, W.-C. Wang, and

P.-Y. Wang, J. Am. Chem. Soc. 137, 436 (2015).
[21] S. K. Ghosh, A. G. Cherstvy, and R. Metzler, Phys. Chem.

Chem. Phys. 17, 1847 (2015).

[22] B.-S. Lu, F. Ye, X. Xing, and P. M. Goldbart, Phys. Rev. Lett.
108, 257803 (2012).

[23] J. Wang, Y. Zhang, and H. Zhao, Phys. Rev. E 93, 032144
(2016).

[24] L. Luo and M. Yi, Sci. China: Phys., Mech. Astron. 59, 120521
(2016).

[25] L. Luo and M. Yi, Phys. Rev. E 97, 042122 (2018).
[26] J. W. Haus and K. W. Kehr, Phys. Rep. 150, 263 (1987).
[27] J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[28] S. Burov and E. Barkai, Phys. Rev. Lett. 106, 140602 (2011).
[29] L. Luo and L.-H. Tang, Chin. Phys. B 23, 070514 (2014).
[30] T. Akimoto, E. Barkai, and K. Saito, Phys. Rev. Lett. 117,

180602 (2016).
[31] J. Machta, J. Stat. Phys 30, 305 (1983).
[32] L. Luo and L.-H. Tang, Phys. Rev. E 92, 042137 (2015).
[33] B. Derrida, Phys. Rev. B 24, 2613 (1981).
[34] J.-P. Bouchaud and M. Mézard, J. Phys. A 30, 7997 (1997).
[35] A. V. Chechkin, M. Hofmann, and I. M. Sokolov, Phys. Rev. E

80, 031112 (2009).
[36] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
[37] E. Barkai, Phys. Rev. Lett. 90, 104101 (2003).
[38] E. Barkai and Y.-C. Cheng, J. Chem. Phys. 118, 6167 (2003).
[39] J. H. P. Schulz, E. Barkai, and R. Metzler, Phys. Rev. Lett. 110,

020602 (2013).
[40] J. H. P. Schulz, E. Barkai, and R. Metzler, Phys. Rev. X 4,

011028 (2014).
[41] M. S. Song, H. C. Moon, J.-H. Jeon, and H. Y. Park, Nat.

Commun. 9, 344 (2018).
[42] A. G. Cherstvy, S. Thapa, C. E. Wagner, and R. Metzler, Soft

Matter 15, 2526 (2019).
[43] Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev. Lett. 101,

058101 (2008).

042136-8

https://doi.org/10.1103/Physics.4.42
https://doi.org/10.1103/Physics.4.42
https://doi.org/10.1103/Physics.4.42
https://doi.org/10.1103/Physics.4.42
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.87.183
https://doi.org/10.1103/RevModPhys.87.183
https://doi.org/10.1103/RevModPhys.87.183
https://doi.org/10.1103/RevModPhys.87.183
https://doi.org/10.1016/j.cell.2013.11.028
https://doi.org/10.1016/j.cell.2013.11.028
https://doi.org/10.1016/j.cell.2013.11.028
https://doi.org/10.1016/j.cell.2013.11.028
https://doi.org/10.1038/ncomms11701
https://doi.org/10.1038/ncomms11701
https://doi.org/10.1038/ncomms11701
https://doi.org/10.1038/ncomms11701
https://doi.org/10.7554/eLife.09347
https://doi.org/10.7554/eLife.09347
https://doi.org/10.7554/eLife.09347
https://doi.org/10.7554/eLife.09347
https://doi.org/10.1103/PhysRevX.6.021006
https://doi.org/10.1103/PhysRevX.6.021006
https://doi.org/10.1103/PhysRevX.6.021006
https://doi.org/10.1103/PhysRevX.6.021006
https://doi.org/10.1073/pnas.0903554106
https://doi.org/10.1073/pnas.0903554106
https://doi.org/10.1073/pnas.0903554106
https://doi.org/10.1073/pnas.0903554106
https://doi.org/10.1038/ncomms11133
https://doi.org/10.1038/ncomms11133
https://doi.org/10.1038/ncomms11133
https://doi.org/10.1038/ncomms11133
https://doi.org/10.1038/nature24062
https://doi.org/10.1038/nature24062
https://doi.org/10.1038/nature24062
https://doi.org/10.1038/nature24062
https://doi.org/10.1038/nmat3308
https://doi.org/10.1038/nmat3308
https://doi.org/10.1038/nmat3308
https://doi.org/10.1038/nmat3308
https://doi.org/10.1103/PhysRevLett.113.098302
https://doi.org/10.1103/PhysRevLett.113.098302
https://doi.org/10.1103/PhysRevLett.113.098302
https://doi.org/10.1103/PhysRevLett.113.098302
https://doi.org/10.1103/PhysRevE.93.062109
https://doi.org/10.1103/PhysRevE.93.062109
https://doi.org/10.1103/PhysRevE.93.062109
https://doi.org/10.1103/PhysRevE.93.062109
https://doi.org/10.1039/C6CP03101C
https://doi.org/10.1039/C6CP03101C
https://doi.org/10.1039/C6CP03101C
https://doi.org/10.1039/C6CP03101C
https://doi.org/10.1103/PhysRevE.96.032140
https://doi.org/10.1103/PhysRevE.96.032140
https://doi.org/10.1103/PhysRevE.96.032140
https://doi.org/10.1103/PhysRevE.96.032140
https://doi.org/10.1088/1367-2630/aab696
https://doi.org/10.1088/1367-2630/aab696
https://doi.org/10.1088/1367-2630/aab696
https://doi.org/10.1088/1367-2630/aab696
https://doi.org/10.1088/1367-2630/aaa3d4
https://doi.org/10.1088/1367-2630/aaa3d4
https://doi.org/10.1088/1367-2630/aaa3d4
https://doi.org/10.1088/1367-2630/aaa3d4
https://doi.org/10.1038/ncb1755
https://doi.org/10.1038/ncb1755
https://doi.org/10.1038/ncb1755
https://doi.org/10.1038/ncb1755
https://doi.org/10.1038/nature24264
https://doi.org/10.1038/nature24264
https://doi.org/10.1038/nature24264
https://doi.org/10.1038/nature24264
https://doi.org/10.1021/ja511273c
https://doi.org/10.1021/ja511273c
https://doi.org/10.1021/ja511273c
https://doi.org/10.1021/ja511273c
https://doi.org/10.1039/C4CP03599B
https://doi.org/10.1039/C4CP03599B
https://doi.org/10.1039/C4CP03599B
https://doi.org/10.1039/C4CP03599B
https://doi.org/10.1103/PhysRevLett.108.257803
https://doi.org/10.1103/PhysRevLett.108.257803
https://doi.org/10.1103/PhysRevLett.108.257803
https://doi.org/10.1103/PhysRevLett.108.257803
https://doi.org/10.1103/PhysRevE.93.032144
https://doi.org/10.1103/PhysRevE.93.032144
https://doi.org/10.1103/PhysRevE.93.032144
https://doi.org/10.1103/PhysRevE.93.032144
https://doi.org/10.1007/s11433-016-0336-6
https://doi.org/10.1007/s11433-016-0336-6
https://doi.org/10.1007/s11433-016-0336-6
https://doi.org/10.1007/s11433-016-0336-6
https://doi.org/10.1103/PhysRevE.97.042122
https://doi.org/10.1103/PhysRevE.97.042122
https://doi.org/10.1103/PhysRevE.97.042122
https://doi.org/10.1103/PhysRevE.97.042122
https://doi.org/10.1016/0370-1573(87)90005-6
https://doi.org/10.1016/0370-1573(87)90005-6
https://doi.org/10.1016/0370-1573(87)90005-6
https://doi.org/10.1016/0370-1573(87)90005-6
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1103/PhysRevLett.106.140602
https://doi.org/10.1103/PhysRevLett.106.140602
https://doi.org/10.1103/PhysRevLett.106.140602
https://doi.org/10.1103/PhysRevLett.106.140602
https://doi.org/10.1088/1674-1056/23/7/070514
https://doi.org/10.1088/1674-1056/23/7/070514
https://doi.org/10.1088/1674-1056/23/7/070514
https://doi.org/10.1088/1674-1056/23/7/070514
https://doi.org/10.1103/PhysRevLett.117.180602
https://doi.org/10.1103/PhysRevLett.117.180602
https://doi.org/10.1103/PhysRevLett.117.180602
https://doi.org/10.1103/PhysRevLett.117.180602
https://doi.org/10.1007/BF01012305
https://doi.org/10.1007/BF01012305
https://doi.org/10.1007/BF01012305
https://doi.org/10.1007/BF01012305
https://doi.org/10.1103/PhysRevE.92.042137
https://doi.org/10.1103/PhysRevE.92.042137
https://doi.org/10.1103/PhysRevE.92.042137
https://doi.org/10.1103/PhysRevE.92.042137
https://doi.org/10.1103/PhysRevB.24.2613
https://doi.org/10.1103/PhysRevB.24.2613
https://doi.org/10.1103/PhysRevB.24.2613
https://doi.org/10.1103/PhysRevB.24.2613
https://doi.org/10.1088/0305-4470/30/23/004
https://doi.org/10.1088/0305-4470/30/23/004
https://doi.org/10.1088/0305-4470/30/23/004
https://doi.org/10.1088/0305-4470/30/23/004
https://doi.org/10.1103/PhysRevE.80.031112
https://doi.org/10.1103/PhysRevE.80.031112
https://doi.org/10.1103/PhysRevE.80.031112
https://doi.org/10.1103/PhysRevE.80.031112
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1103/PhysRevLett.90.104101
https://doi.org/10.1103/PhysRevLett.90.104101
https://doi.org/10.1103/PhysRevLett.90.104101
https://doi.org/10.1103/PhysRevLett.90.104101
https://doi.org/10.1063/1.1559676
https://doi.org/10.1063/1.1559676
https://doi.org/10.1063/1.1559676
https://doi.org/10.1063/1.1559676
https://doi.org/10.1103/PhysRevLett.110.020602
https://doi.org/10.1103/PhysRevLett.110.020602
https://doi.org/10.1103/PhysRevLett.110.020602
https://doi.org/10.1103/PhysRevLett.110.020602
https://doi.org/10.1103/PhysRevX.4.011028
https://doi.org/10.1103/PhysRevX.4.011028
https://doi.org/10.1103/PhysRevX.4.011028
https://doi.org/10.1103/PhysRevX.4.011028
https://doi.org/10.1038/s41467-017-02700-z
https://doi.org/10.1038/s41467-017-02700-z
https://doi.org/10.1038/s41467-017-02700-z
https://doi.org/10.1038/s41467-017-02700-z
https://doi.org/10.1039/C8SM02096E
https://doi.org/10.1039/C8SM02096E
https://doi.org/10.1039/C8SM02096E
https://doi.org/10.1039/C8SM02096E
https://doi.org/10.1103/PhysRevLett.101.058101
https://doi.org/10.1103/PhysRevLett.101.058101
https://doi.org/10.1103/PhysRevLett.101.058101
https://doi.org/10.1103/PhysRevLett.101.058101


QUENCHED TRAP MODEL ON THE EXTREME LANDSCAPE: … PHYSICAL REVIEW E 100, 042136 (2019)

[44] A. G. Cherstvy and R. Metzler, Phys. Chem. Chem. Phys. 15,
20220 (2013).

[45] R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E.
Barkari, Phys. Chem. Chem. Phys. 16, 24128
(2014).

[46] J.-H. Jeon, A. V. Chechkin, and R. Metzler, Phys. Chem. Chem.
Phys. 16, 15811 (2014).

[47] D. M. Engelman, Nature (London) 438, 578 (2005).
[48] M. Guo et al., Cell 158, 822 (2014).
[49] J. Machta, Phys. Rev. B 24, 5260 (1981).
[50] J. Machta, J. Phys. A 18, L531 (1985).
[51] C. Monthus, Phys. Rev. E 67, 046109 (2003).
[52] E. M. Bertin and J. P. Bouchaud, Phys. Rev. E 67, 026128

(2003).

042136-9

https://doi.org/10.1039/c3cp53056f
https://doi.org/10.1039/c3cp53056f
https://doi.org/10.1039/c3cp53056f
https://doi.org/10.1039/c3cp53056f
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP02019G
https://doi.org/10.1039/C4CP02019G
https://doi.org/10.1039/C4CP02019G
https://doi.org/10.1039/C4CP02019G
https://doi.org/10.1038/nature04394
https://doi.org/10.1038/nature04394
https://doi.org/10.1038/nature04394
https://doi.org/10.1038/nature04394
https://doi.org/10.1016/j.cell.2014.06.051
https://doi.org/10.1016/j.cell.2014.06.051
https://doi.org/10.1016/j.cell.2014.06.051
https://doi.org/10.1016/j.cell.2014.06.051
https://doi.org/10.1103/PhysRevB.24.5260
https://doi.org/10.1103/PhysRevB.24.5260
https://doi.org/10.1103/PhysRevB.24.5260
https://doi.org/10.1103/PhysRevB.24.5260
https://doi.org/10.1088/0305-4470/18/9/008
https://doi.org/10.1088/0305-4470/18/9/008
https://doi.org/10.1088/0305-4470/18/9/008
https://doi.org/10.1088/0305-4470/18/9/008
https://doi.org/10.1103/PhysRevE.67.046109
https://doi.org/10.1103/PhysRevE.67.046109
https://doi.org/10.1103/PhysRevE.67.046109
https://doi.org/10.1103/PhysRevE.67.046109
https://doi.org/10.1103/PhysRevE.67.026128
https://doi.org/10.1103/PhysRevE.67.026128
https://doi.org/10.1103/PhysRevE.67.026128
https://doi.org/10.1103/PhysRevE.67.026128

