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We investigate the phase diagram and critical behavior of three-dimensional multicomponent Abelian-Higgs
models, in which an N-component complex field za

x of unit length and charge is coupled to compact quantum
electrodynamics in the usual Wilson lattice formulation. We determine the phase diagram and study the
nature of the transition line for N = 2 and N = 4. Two phases are identified, specified by the behavior of
the gauge-invariant local composite operator Qab

x = z̄a
xzb

x − δab/N , which plays the role of order parameter.
In one phase, we have 〈Qab

x 〉 = 0, while in the other Qab
x condenses. Gauge correlations are never critical:

gauge excitations are massive for any finite coupling. The two phases are separated by a transition line. Our
numerical data are consistent with the simple scenario in which the nature of the transition is independent of
the gauge coupling. Therefore, for any finite positive value of the gauge coupling, we predict a continuous
transition in the Heisenberg universality class for N = 2 and a first-order transition for N = 4. However, notable
crossover phenomena emerge for large gauge couplings, when gauge fluctuations are suppressed. Such crossover
phenomena are related to the unstable O(2N ) fixed point, describing the behavior of the model in the infinite
gauge-coupling limit.

DOI: 10.1103/PhysRevE.100.042134

I. INTRODUCTION

Models of complex scalar matter fields coupled to gauge
fields have been much studied in condensed matter physics,
since they are believed to describe several interesting systems,
such as superconductors and superfluids, quantum Hall states,
quantum SU(N ) antiferromagnets, unconventional quantum
phase transitions, etc.; see, e.g., Refs. [1–6] and refer-
ences therein. Scalar electrodynamics, or Abelian-Higgs (AH)
model, is a paradigmatic model, in which an N-component
complex scalar field � is minimally coupled to the electro-
magnetic field Aμ. The corresponding continuum Lagrangian
reads

L = |Dμ�|2 + r |�|2 + 1

6
u (|�|2)2 + 1

4g2
F 2

μν, (1)

where Fμν ≡ ∂μAν − ∂νAμ, and Dμ ≡ ∂μ + iAμ. The
renormalization-group (RG) analysis of the continuum
AH model [7,8] should provide information on the nature
of the finite-temperature phase transitions occurring in
d-dimensional systems characterized by a global SU(N )
symmetry and a local U(1) gauge symmetry.

In this paper we consider the multicomponent AH model,
in which the scalar field � has N � 2 components. Such a
model has a local U(1) gauge invariance and a global SU(N )
invariance. We assume that the field belongs to the fundamen-
tal representation of the U(1) group, i.e., it has charge 1. The
one-component AH model has been extensively discussed in
the literature [9–13]. In three dimensions, these systems may
undergo continuous transitions in the XY universality class.

Lattice formulations of the three-dimensional AH model
are obtained by associating complex N-component unit vec-
tors zx with the sites x of a cubic lattice, and U(1) variables
λx,μ with each link connecting the site x with the site x + μ̂

(where μ̂ = 1̂, 2̂, . . . are unit vectors along the lattice direc-
tions). The partition function of the system reads

Z =
∑

{z},{λ}
e−H , (2)

where the Hamiltonian is [14]

H = −βN
∑
x,μ

(z̄x · λx,μ zx+μ̂ + c.c.)

−βg

∑
x,μ>ν

(λx,μ λx+μ̂,ν λ̄x+ν̂,μ λ̄x,ν + c.c.); (3)

the first sum runs over all lattice links, while the second one
runs over all plaquettes.

For βg = 0 we recover a particular lattice formulation of
the CPN−1 model, which is quadratic with respect to the
spin variables and contains explicit gauge link variables. The
CPN−1 model has been extensively studied. In spite of several
field-theoretical and numerical studies for N = 2, 3, 4 and
N → ∞, there are still some controversies on the nature of its
transition [6,8,15–19]. For βg → ∞ the gauge link variables
are all equal to 1 modulo gauge transformations and the AH
model becomes equivalent to the standard O(n) vector model
with n = 2N , whose critical behavior is well understood [20].
We also mention that some numerical results for the AH lattice
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model (3) have been reported in Refs. [6,21,22], but a definite
picture has not been achieved yet [23].

It is important to stress that we consider the lattice
compact version of electrodynamics (the so-called Wilson
lattice formulation of gauge theories). In the absence of
matter fields, its behavior [24] is controlled by topological
excitations, the monopoles, which are instead suppressed
in noncompact formulations. Therefore, the critical proper-
ties of the AH lattice model that we consider might dif-
fer from those of the model in which gauge fields are
noncompact.

In this paper we investigate the phase diagram and the
nature of the phase transitions of the three-dimensional AH
model (3). We consider systems with N = 2 and N = 4, and
investigate the nature of the transition line by varying β at
fixed gauge coupling βg, for some values of βg. In both
cases the phase diagram of the AH lattice model (3) turns
out to present two phases: for small β there is a disordered
confined phase, while for large values of β there is an ordered
phase in which correlations of the gauge-invariant Hermitian
operator Qab

x = z̄a
xzb

x − δab/N show long-range order. In both
phases, and also along the transition line, the correlations of
gauge variables do not show a critical behavior. The gauge
coupling βg does not play any significant role: the features
of two phases are the same for any finite βg. The two phases
are separated by a single transition line, which connects the
CPN−1 transition point (βg = 0) to the O(2N ) transition point
(βg = ∞) in the space of the two parameters β and βg. For
βg = 0 the transition is continuous for N = 2 (belonging to
the Heisenberg universality class) and of first order for N = 4.
We conjecture that the nature of the transitions along the
line separating the ordered and disordered phases does not
change with βg. Therefore, the transition is always continuous
(discontinuous) for N = 2 (N = 4). We also observe signif-
icant deviations for βg large (βg � 1), i.e., when gauge fluc-
tuations are suppressed. They are interpreted as a crossover
phenomenon due to the presence of an O(2N ) vector transition
in the limit βg → ∞.

The paper is organized as follows. In Sec. II we review
the field-theoretical results for the AH model. In Sec. II A we
review the ε-expansion predictions obtained in the continuum
AH model, and in Sec. II B we present instead the results
of the Landau-Ginzburg-Wilson (LGW) approach based on
a gauge-invariant order parameter. The two approaches are
critically compared in Sec. II C. The numerical results are
presented in Sec. III. The definitions of the quantities we
consider are given in Sec. III A, while Secs. III B and III C
present our results for N = 2 and 4, respectively, focusing on
the behavior of the gauge-invariant order parameter. Results
for vector and gauge observables are presented in Sec. III D.
In Sec. IV we summarize and present our conclusions. In
Appendix A we present some results for tensor correla-
tions in n-vector models. In Appendix B we discuss the
limit βg → ∞.

II. FIELD THEORETICAL APPROACHES

In this section we outline some apparently alternative field-
theoretical approaches which can be employed to infer the
nature of the phase transitions in systems characterized by a

U(N ) global symmetry and a local U(1) gauge symmetry, such
as the AH lattice model.

A. Renormalization-group flow in the AH model
close to four dimensions

We now summarize the main features of the RG flow in
the continuum AH model (1), which has been analyzed close
to four dimensions in the ε ≡ 4 − d expansion framework
[7,25,26], using the functional RG approach [27], and in the
large-N limit [8].

Close to four dimensions, the RG flow in the space of
the renormalized couplings u and f ≡ g2 [we rescale them as
u → u/(24π2) and f → f /(24π2) to simplify the equations]
can be computed in perturbation theory. At one loop, the β

functions read [7]

βu ≡ μ
∂u

∂μ
= −εu + (N + 4)u2 − 18u f + 54 f 2,

β f ≡ μ
∂ f

∂μ
= −ε f + N f 2. (4)

One can easily verify that a stable fixed point exists only for
N > Nc(ε), with

Nc(ε) = N4 + O(ε), N4 = 90 + 24
√

15 ≈ 183. (5)

The corresponding zero of the β functions is

f ∗ = ε

N
, (6)

u∗ = N + 18 + √
N2 − 180N − 540

2N (N + 4)
ε ≈ ε

N
. (7)

The presence of a stable fixed point indicates that these sys-
tems may undergo a continuous transition if N is large enough
[N > Nc(1) in three dimensions], in agreement with the direct
large-N analysis [8]. The qualitative picture obtained in the
one-loop calculation is not changed by higher-order calcula-
tions. The perturbative expansion has been recently extended
to four loops [25], obtaining Nc(ε) to O(ε3),

Nc(ε) = N4[1 − 1.752 ε + 0.789 ε2 + 0.362 ε3 + O(ε4)]. (8)

The large coefficients make a reliable three-dimensional
(ε = 1) estimate quite problematic. Nevertheless, by means
of a resummation of the expansion, Ref. [25] obtained the
estimate Nc = 12.2(3.9) in three dimensions, which confirms
the absence of a stable fixed point for small values of N .

In the limit βg → ∞, the lattice AH model (3) is equivalent
to the symmetric O(2N ) vector theory. Therefore, for large βg

one expects significant crossover effects, which increase as βg

increases, due to the nearby O(2N ) critical behavior. In the
continuum AH model, the crossover is controlled by the RG
flow in the vicinity of the O(2N ) fixed point

u∗
O(2N ) = 1

N + 4
ε, f = 0. (9)

This fixed point exists for any N and is always unstable.
The analysis of the stability matrix 	i j = ∂βi/∂g j shows
that it has a positive eigenvalue λu = ω, where ω > 0 is the
exponent controlling the leading scaling corrections in O(2N )
vector models [20], and a negative eigenvalue, which gives the
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dimension of the operator that controls the crossover behavior,

λ f = ∂β f

∂ f

∣∣∣∣
f =0,u=u∗

. (10)

Since the β function β f (u, f ) associated with f has the
general form

β f = −ε f + f 2F (u, f ), (11)

where F (u, f ) has a regular perturbative expansion (see, e.g.,
the four-loop expansion reported in Ref. [25]), we obtain

λ f = −ε (12)

to all orders in perturbation theory. Therefore, the crossover
exponent y f = −λ f is 1 in three dimensions. Note that these
crossover features related to the unstable O(2N ) fixed point
are independent of the existence of the stable fixed point,
which is only relevant to predict the eventual asymptotic
behavior.

B. Gauge-invariant Landau-Ginzburg-Wilson framework

An alternative field-theoretical approach is the LGW
framework [15,20,28–31], in which one assumes that the
relevant critical modes are associated with the gauge-invariant
local composite site variable

Qab
x = z̄a

xzb
x − 1

N
δab, (13)

which is a Hermitian and traceless N × N matrix. As dis-
cussed in Refs. [15,19,32], this is a highly nontrivial assump-
tion, as it postulates that gauge fields do not play a relevant
role in the effective theory. The order-parameter field in the
corresponding LGW theory is therefore a traceless Hermitian
matrix field �ab(x), which can be formally defined as the
average of Qab

x over a large but finite lattice domain. The
LGW field theory is obtained by considering the most general
fourth-order polynomial in � consistent with the U(N ) global
symmetry:

HLGW = Tr(∂μ�)2 + r Tr �2

+w tr �3 + u (Tr �2)2 + v Tr �4. (14)

Also in this framework continuous transitions may only arise
if the RG flow in the LGW theory has a stable fixed point.

For N = 2, the cubic term in Eq. (14) vanishes and the
two quartic terms are equivalent. Therefore, one recovers the
O(3)-symmetric vector LGW theory, leading to the prediction
that the phase transition may be continuous and, in this case,
that it belongs to the Heisenberg universality class. For N � 3,
the cubic term is generally expected to be present. Its pres-
ence is usually taken as an indication that phase transitions
occurring in this class of systems are generally of first order.
Indeed, a straightforward mean-field analysis shows that the
transition is of first order in four dimensions where mean field
applies. If statistical fluctuations are small—this is the basic
assumption—the transition should be of first order also in
three dimensions. In this scenario, continuous transitions may
still occur, but they require a fine tuning of the microscopic
parameters leading to the effective cancellation of the cubic
term. These arguments were originally [15,18] applied to

predict the behavior of CPN−1 models. However, as they are
only based on symmetry considerations, they can be extended
to AH lattice models, as well.

C. Comparison of the alternative field-theoretical approaches

The two field-theoretical approaches outlined above give
inconsistent predictions both for small and large values of N .
The contradiction is quite striking for the two-component N =
2 case. For this value of N , the continuum AH model predicts
the absence of continuous transitions, due to the absence
of a stable fixed point. On the other hand, a stable fixed
point—it is the usual Heisenberg O(3) fixed point—exists in
the effective LGW theory based on a gauge-invariant order
parameter, leaving open the possibility of observing continu-
ous transitions (first-order transitions are never excluded as
the statistical model may be outside the attraction domain
of the fixed point). The numerical results for the CP1 lattice
models [15,16], as well as the AH lattice results we shall
present below, confirm the existence of continuous transitions
in models with N = 2: the LGW theory provides the correct
description of the large-scale behavior of these systems. There
are at least two possible explanations for the failure of the
continuum AH model. A first possibility is that it does not
encode the relevant degrees of freedom at the transition. A
second possibility is that the problem is not in the continuum
AH model, but rather in the perturbative treatment around
four dimensions. The three-dimensional fixed point may not
be analytically related to a four-dimensional fixed point, and
therefore it escapes any perturbative analysis in powers of ε.

We also recall that the perturbative AH approach of
Sec. II A also fails for N = 1. Although no stable fixed point
is identified in the ε expansion (see Sec. II A), these models
may undergo continuous transitions in the XY universality
class [9–11]. It is worth mentioning that there are also other
systems in which the ε expansion fails to provide the correct
physical picture in three dimensions. We mention the φ4 theo-
ries describing frustrated spin models with noncollinear order
[33,34] and the 3He superfluid transition from the normal to
the planar phase [35].

For large values of N , the continuum AH theory and
the effective LGW approach give again contradictory re-
sults. Indeed, the former approach indicates that continuous
transitions are possible, a prediction which is supported by
the large-N analysis of lattice models; see, e.g., Ref. [15].
If one trusts the argument based on the relevance of the
cubic term, the LGW approach predicts instead a first-order
transition, unless a fine tuning of the microscopic parameters
is performed. Again, there are two possible explanations for
the different conclusions obtained in the LGW approach. A
first possibility is that the critical modes at the transition
are not exclusively associated with the gauge-invariant order
parameter Q defined in Eq. (13). Other features, for instance
the gauge degrees of freedom, may become relevant, requiring
an effective description different from that of the LGW theory
(14). If this interpretation is correct, the continuum AH model
would be the correct theory as it includes the gauge fields
explicitly. A second possibility is that the presence of a cubic
term in the LGW Hamiltonian does not necessarily imply the
absence of continuous transitions in three dimensions, as it is
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usually assumed. It might be that statistical fluctuations soften
the transition as one moves from four to three dimensions; see,
e.g., Refs. [16,17] for a discussion of this issue.

While the two field-theoretical approaches give different
predictions for N = 1, 2 and N large (more precisely, for
N > Nc; see Sec. II A), for 3 � N < Nc they both predict
that all models undergo a first-order transition. For N = 3
simulation results do not presently confirm it. Indeed, while
numerical results for the lattice model with Hamiltonian (3)
and βg = 0 show a robust indication that the transition is of
first order [15], the results for the loop model considered in
Refs. [16,17] apparently favor a continuous transition. The
available numerical results for lattice CP3 models, i.e., for
N = 4, are generally consistent with first-order transitions
[6,15,17]. We also mention that Ref. [6] claims that the AH
lattice model (3) undergoes a continuous transition for βg = 1
and N = 4, a result which is at odds with the above arguments.
However, as we shall show, the numerical results that we
present later do not confirm their conclusions, but are instead
consistent with a relatively weak first-order transition.

III. NUMERICAL RESULTS

A. Numerical simulations and observables

In this section we present a finite-size scaling (FSS) analy-
sis of numerical results of Monte Carlo (MC) simulations for
N = 2 and N = 4. For this purpose we consider cubic lattices
of linear size L with periodic boundary conditions. We study
the behavior of the system as a function of β at fixed βg.

The linearity of Hamiltonian (3) with respect to each lattice
variable allows us to employ an overrelaxed algorithm for
the updating of the lattice configurations. It consists in a
stochastic mixing of microcanonical and standard Metropolis
updates of the lattice variables [36–38]. To update each lattice
variable, we randomly choose either a standard Metropolis
update, which ensures ergodicity, or a microcanonical move,
which is more efficient than the Metropolis one but does not
change the energy. On average, we perform three or four
microcanonical updates for every Metropolis proposal. In the
Metropolis update, changes are tuned so that the acceptance
is 1/3.

We compute the energy density and the specific heat,
defined as

E = 1

NV
〈H〉, C = 1

N2V
(〈H2〉 − 〈H〉2), (15)

where V = L3. We consider correlations of the Hermitean
gauge invariant operator (13). Its two-point correlation func-
tion is defined as

G(x − y) = 〈Tr QxQy〉, (16)

where the translation invariance of the system has been taken
into account. The susceptibility and the correlation length are
defined as χ = ∑

x G(x) and

ξ 2 ≡ 1

4 sin2(π/L)

G̃(0) − G̃(pm)

G̃(pm)
, (17)

where G̃(p) = ∑
x eip·xG(x) is the Fourier transform of

G(x), and pm = (2π/L, 0, 0) is the minimum nonzero lattice

momentum. We also consider the Binder parameter

U =
〈
μ2

2

〉
〈μ2〉2

, μ2 =
∑
x,y

Tr QxQy. (18)

We consider correlations of the fundamental variable zx. To
obtain a gauge-invariant quantity, we consider correlations
with λ strings, i.e., averages like

Re

〈
z̄x · zy

∏
�∈C

λ�

〉
, (19)

where the product extends over the link variables that belong
to a lattice path C connecting points x and y. To define
quantities that have the correct FSS, the path C must be chosen
appropriately, as discussed in Ref. [39]. Here, to simplify the
calculations, we only consider correlations between points
that belong to lattice straight lines. We define

GV (d, L) = 1

V

∑
x

Re

〈
z̄x · zx+dμ̂

d−1∏
n=0

λx+nμ̂,μ

〉
, (20)

where all coordinates should be taken modulo L because of
the periodic boundary conditions. Note that in the definition of
GV we average over all lattice sites x exploiting the translation
invariance of systems with periodic boundary conditions, and
select a generic lattice direction μ̂ (in our MC simulations we
also average over the three equivalent directions). Note also
that GV (0, L) = 1 and that GV (L, L) is the average value P(L)
of the Polyakov loop,

P(L) = 1

V

∑
x

Re

〈
L−1∏
n=0

λx+nμ̂,μ

〉
. (21)

Finally, we consider the so-called Wilson loop defined as

W (m, L) = Re

〈∏
�∈C

λ�

〉
, (22)

where the path C is a square of linear size m.
In the following we present a FSS analysis of the above

observables, for N = 2 and N = 4 and some values of βg > 0.
In Fig. 1 we anticipate the resulting phase diagrams. For both
N = 2 and 4, βc decreases as βg increases and, eventually, it
converges to the value appropriate for the n-vector model with
n = 4 and 8, βc = 0.233965(2) [40,41] and βc = 0.24084(1)
[18].

As we shall discuss, our numerical data are consistent
with a simple scenario in which the nature of the transitions
along the line separating the ordered and disordered phases
is unchanged for any finite βg � 0. Therefore, for N = 2 the
phase transitions are continuous and belong to the Heisenberg
universality class as it occurs in the CP1 model. The O(4)
critical behavior occurs only for βg strictly equal to ∞.
For N = 4 instead, transitions are of first order, except for
βg = ∞, where the system develops an O(8) vector critical
behavior.

B. Continuous transitions for N = 2

As already mentioned, lattice versions of the three-
dimensional CP1 model undergo continuous transitions
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β N=2
N=4

ordered phase:   Q > 0

disordered phase:   Q = 0

FIG. 1. The phase diagram of the AH lattice model in the space
of parameters β and βg, for N = 2 and N = 4. The points are the MC
estimates of the critical points; the dotted lines that connect them are
meant only to guide the eye. The horizontal lines indicate the limiting
values of βc for βg → ∞ for N = 2 (βc ≈ 0.23396, dashed) and
N = 4 (βc ≈ 0.24084, dot-dashed): they correspond to the critical
βc for the standard three-dimensional O(4) and O(8) vector models,
respectively. For βg = 0, we have [15] βc = 0.7102(1) (N = 2) and
βc = 0.5636(1) (N = 4).

belonging to the Heisenberg universality class, i.e., to that of
the standard N = 3 vector model. This has been also shown
[15] for model (3) with βg = 0 [βc = 0.7102(1) in this case].
On the other hand, for βg = ∞ the model is equivalent to the
standard O(4) vector model that has a continuous transition for
[40,41] βc = 0.233965(2). As already inferred from the RG
flow of the AH continuum theory, the βg = ∞ O(4) critical
behavior is expected to be unstable against perturbations asso-
ciated with nonzero values of β−1

g . Therefore, the most natural
hypothesis is that the all transitions for finite βg � 0 belong
to the Heisenberg universality class. However, a substantial
crossover from the O(4) to the O(3) behavior is expected to
characterize the transition for relatively large values of βg,
βg � 1 say.

To provide evidence of this scenario, we perform MC
simulations for βg = 0.5 and 1. As in our previous work [15],
we study the FSS behavior of the Binder parameter U and of
Rξ = ξ/L. At continuous transitions the FSS limit is obtained
by taking β → βc and L → ∞ keeping

X ≡ (β − βc)L1/ν (23)

fixed. Any RG invariant quantity R, such as Rξ ≡ ξ/L and U ,
is expected to asymptotically behave as

R(β, L) = fR(X ) + O(L−ω ), (24)

where ω > 0 is the leading scaling correction exponent [20],
and fR(X ) is universal apart from a normalization of its
argument. The function fR(X ) only depends on the shape of
the lattice and on the boundary conditions. In the case of the
Heisenberg universality we have [20,42–44] ν = 0.7117(5)
and ω = 0.78(1). As Rξ is monotonically increasing as a
function of X , Eq. (24) implies that

U = F (Rξ ) + O(L−ω ), (25)

0.260 0.265 0.270 0.275 0.280 0.285
β

0.0

0.2

0.4

0.6

0.8

Rξ

L=12
L=16
L=20
L=24
L=32
L=40
L=48
L=64

N = 2       β
g
 = 1

0.408 0.410 0.412 0.414 0.416 0.418
β

0.2

0.4

0.6

0.8

Rξ

L=12
L=16
L=20
L=24
L=32
L=40

N = 2        β
g
 = 0.5

FIG. 2. Rξ versus β in the N = 2 AH lattice model, for βg = 0.5
(bottom) and βg = 1 (top). In both cases the data for different values
of L show a crossing point, whose position provides an estimate of
the critical point: βc = 0.4145(5) and βc = 0.276(1) for βg = 0.5
and βg = 1, respectively.

where F (x) is a universal scaling function. As in our previous
work [15], we will use Eq. (25) to perform a direct check
of universality, because no model-dependent normalizations
enter: If two models belong to the same universality class,
the data for both of them should collapse onto the same
curve as L increases. The only difficulty in the approach is that
one should be careful in identifying corresponding operators
in the two models.

To identify the correct operators, one may reason as fol-
lows. In the AH lattice model the basic quantity that we
consider is the local operator (13). To identify the correspond-
ing operator in the Heisenberg model, we use the explicit
relation between the CP1 and the O(3) vector model. Under
the mapping, the parameter U and ξ correspond to the usual
O(3) vector Binder parameter and correlation length (i.e.,
computed from correlations of the fundamental spin variable
sx). The mapping of the large-βg limit of the AH lattice model
into the O(4) vector model is instead more complex and is
discussed in detail in Appendix B. The correspondence is
not trivial and U is identified with a combination of suitably
defined O(4) tensor Binder parameters.

In Fig. 2 we plot Rξ versus β, for several values of L. The
data for different values of the size L show crossing points,
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which provide estimates of the critical point: βc = 0.4145(5)
and βc = 0.276(1) for βg = 0.5 and βg = 1, respectively.
Data are consistent with a continuous transition.

We now argue that the transitions are consistent with the
expected asymptotic Heisenberg behavior. The best evidence
is provided by the plots of U versus Rξ ; see Fig. 3. In all
panels we report the data and the corresponding O(3) curve.
If our simple scenario is correct, the data for all values of βg

must approach the O(3) curve with increasing L. For βg = 0
we observe very good agreement, as already discussed in
Ref. [15]. For βg = 0.5 convergence is slower, indicating that
scaling corrections increase with increasing βg. For Rξ � 0.25
we observe a good collapse of the data, while in the opposite
case, we observe a clear upward trend, consistent with an
asymptotic O(3) behavior. For βg = 1, for small values of
L we observe significant differences between data and O(3)
curve. These discrepancies decrease as L increases and can
therefore be interpreted as scaling corrections. For Rξ � 0.25,
the results for L = 64 fall on top of the O(3) scaling curve,
as predicted. For larger values of Rξ , crossover effects are
stronger, but the trend of the data is the expected one.

To be more quantitative, let us note that, for large values of
L, the Binder parameter U should behave as [20]

U (β, βg, L) = F (Rξ ) + a(βg) G(Rξ ) L−ω + · · · , (26)

where F (Rξ ) is the O(3) scaling function, G(Rξ ) is a uni-
versal function, and a(βg) is a constant that encodes the βg-
dependent size of the leading scaling corrections decaying as
L−ω. We have verified that our data for βg = 0.5 and 1 are
consistent with Eq. (26), if we take ω = 0.78 (the leading
correction-to-scaling exponent in Heisenberg systems [20,42–
44]) and a(1)/a(0.5) ≈ 5. This can be checked from Fig. 4,
where we report

�(β, βg, L) = 1

a(βg)
Lω[U (β, βg, L) − F (Rξ )], (27)

where F (Rξ ) has been determined in the O(3) vector model,
ω = 0.78, a(1) = 5, and a(0.5) = 1. All data reported in the
figure are consistent with a single scaling curve that would be
identified with the function G(Rξ ) in Eq. (26). The existence
of similar crossover effects for βg = 0.5 and 1 is another
demonstration of universality.

It is interesting to note that the behavior of the data for
small L at βg = 1 can be interpreted as due to the presence of
O(4) fixed point that controls the critical behavior for βg →
∞. In the lower panel of Fig. 3, we also plot the O(4) scaling
curve. The data for βg = 1 apparently follow the O(4) curve
for small lattice sizes and then move toward the O(3) curve
with increasing L. In particular, note the nonmotonic behavior
of the data for small lattice sizes and Rξ ≈ 0.1, similar to
the one that characterizes the O(4) curve. Such a behavior
disappears with increasing L (see the inset in the lower panel
of Fig. 3).

On the basis of the above numerical results we argue
that the finite-temperature transition is continuous for any
finite βg � 0 and belongs to the Heisenberg universality class.
However, for relatively large values of βg, say βg � 1, notable
crossover effects emerge. They are apparently related to the
presence of the O(4) fixed point, which is the relevant one for
βg → ∞. For large values of βg, such effects may hide the
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FIG. 3. The Binder parameter U versus Rξ in the N = 2 AH lat-
tice model, for βg = 0 (top, data from Ref. [15]), βg = 0.5 (middle),
and βg = 1 (bottom). In all panels the dashed line is the Heisenberg
curve, as obtained from MC simulations of the O(3) vector model.
The dot-dashed line in the lower panel is the limiting curve for
βg → ∞ (see Appendix B). The inset enlarges the region Rξ <

0.25, showing that the nonmotonic behavior that characterizes the
small-size data [similar to the one of the O(4) curve] for Rξ ≈ 0.1
disappears with increasing L. The horizontal dashed line shows the
asymptotic value U (Rξ → 0) = 5/3.

asymptotic Heisenberg behavior. For intermediate sizes, data
are expected to show an effective O(4) critical behavior, con-
verging to the Heisenberg behavior only for very large lattices.
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FIG. 4. The quantity �(β, βg, L) defined in Eq. (27) versus Rξ .
We report data for βg = 1 and 0.5 and several values of L.

C. First-order transitions for N = 4

We now discuss the behavior of the N = 4 AH lattice
model, providing evidence that the transitions along the line
separating the two phases are of first order for any finite βg.
Only when βg is strictly infinity is the transition continuous: it
belongs to the O(8) vector universality class.

As shown in Ref. [15], the transition is of first order for
βg = 0. To show that the nature of the transition is unchanged
for βg > 0, we first consider the specific heat and the Binder
parameter U . Both of them are expected to increase as the
volume at a first-order transition. Indeed, according to the
standard phenomenological theory [45], for a lattice of size L
there exists a value βmax,C (L) of β where C takes its maximum
value Cmax(L), which asymptotically increases as

Cmax(L) = V
[

1
4�2

h + O(1/V )
]
, (28)

βmax,C (L) − βc ≈ c V −1 ; (29)

here V = Ld and �h is the latent heat [defined as �h =
E (β → β+

c ) − E (β → β−
c )]. Analogously, the behavior of

the Binder parameter U (β, L) is expected to show a max-
imum Umax(L) at fixed L (for sufficiently large L) at β =
βmax,U (L) < βc with [15,33,46]

Umax ∼ aV + O(1), (30)

βmax,U (L) − βc ≈ bV −1. (31)

The previous relations are valid in the asymptotic limit and,
for weak transitions, require data on large lattices. As we
discussed in Ref. [15], one can identify first-order transitions
on significantly smaller lattices from the analysis of the be-
havior of the Binder parameter U . In the presence of a first-
order transition, one observes large violations of the scaling
relation (25) for values of L that are significantly smaller than
those at which relations (28) and (31) hold. We will follow
this approach here, considering again two values of βg, 0.5
and 1.

In Fig. 5 we report numerical estimates of U at βg =
0 (taken from Ref. [15]), βg = 0.5, and βg = 1. Clearly,
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FIG. 5. Plot of the Binder parameter U versus β, for βg = 0 (top,
from Ref. [15]), βg = 1/2 (middle), and βg = 1 (bottom), for N = 4.
The vertical lines correspond to the estimates of the transition points.
The horizontal dashed lines show the values U (β → 0) = 17/15 and
U (β → ∞) = 1.

the maximum Umax increases with increasing L, as ex-
pected for a first-order transition. However, with increasing
βg, the rate of increase becomes smaller, indicating that
the transition becomes weaker. The specific heat behaves
analogously.

To obtain a better evidence that the finite-size behavior is
not compatible with a continuous transition, we plot U versus
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FIG. 6. The Binder parameter U versus Rξ versus β, for βg = 0
(top, from Ref. [15]), βg = 1/2 (middle), and βg = 1 (bottom) for
N = 4. The dashed line in the lower panel is the O(8) limiting
scaling curve; see Appendix B. The horizontal dashed lines show
the asymptotic values U (Rξ → 0) = 17/15 and U (Rξ → ∞) = 1.

Rξ ; see Fig. 6. Data do not show any scaling behavior, as
expected at a first-order transition.

Note that for βg = 1 the small size data show an apparent
scaling behavior for small values of Rξ and small L, which
may lead to erroneous conclusions when limiting the FSS
analysis to small lattices (as in Ref. [6]). To clarify the origin
of the transient effects, and understand whether they can be
interpreted as due to the O(8) fixed point that controls the
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L=48
L=64
L=96
O(8)
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FIG. 7. The Binder parameter U versus Rξ for βg = 4 and N = 4.
The dashed line is the O(8) limiting scaling curve; see Appendix B.
The horizontal dashed line indicates the asymptotic value U (Rξ →
0) = 17/15.

behavior for βg = ∞, we have performed MC simulations for
βg = 4. This value is so large that, for our range of values of
L, we do not expect to observe effects related to the first-order
nature of the transition and therefore all data should be in
the crossover region. The analysis of U as a function of β

allows us to estimate βc = 0.2484(2), which is close to the
O(8) value, βc ≈ 0.2408. At the transition, gauge fields are
significantly ordered and indeed, the average value of the
product of the gauge fields along an elementary plaquette (a
Wilson loop of size 1) is 0.95780(5) (for comparison, such
a product is equal to 0.8235(5) at the transition for βg = 1).
In Fig. 7 we report U versus Rξ and compare it with the
O(8) curve. The numerical data with 16 � L � 48 apparently
fall onto a single scaling curve, while the data corresponding
to L = 64 and 96 begin to show the drift that characterizes
the results at βg � 1 and which is related to the asymptotic
first-order nature of the transition. The apparent scaling curve
for small values of L is different from the O(8) one, indicating
that for βg = 4 we are observing a sizable contribution due
the relevant operator that destabilizes the O(8) fixed point for
finite βg. We can also infer from the substantial stability of the
results for L � 48 that it has a very small (positive) scaling
dimensions y. Indeed, close to the O(8) fixed point, we expect

U (β, βg) = F (Rξ , b(βg, β )Ly), (32)

where b(βg, β ) is a nonuniversal amplitude, which vanishes
for βg → ∞. For each βg the crossover region is the one
in which b(βg, βc)Ly � 1. If this condition holds, U can be
written as

U (β, βg) = F (Rξ , 0) + b(βg, β )LyG(Rξ ), (33)

where the first term is the O(8) scaling function. This equation
would imply that the deviations from the O(8) behavior scale,
at least for βg very large, as Ly. Our results therefore imply
that y should be small enough, so that Ly does not change
significantly as L varies from 16 to 48.

In conclusion, the numerical results favor a phase diagram
based on a first-order transition line for βg > 0, starting from
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the first-order transition of the CP3 models, corresponding to
βg = 0. With increasing βg the first-order transition becomes
weaker. We observe substantial crossover phenomena for
βg � 1. They may be explained in terms of the O(8) fixed
point controlling the behavior for βg → ∞, perturbed by a
relevant operator with a relatively small scaling dimension.

D. Vector and gauge observables

In the previous sections we discussed the behavior of quan-
tities defined in terms of the gauge-invariant order parameter
Qab

x . Here we discuss instead the vector correlation function
(20) and the gauge observables (21) and (22). We focus on
N = 4.

Let us first discuss their behavior in the two different
phases. In the high-temperature phase β < βc, we find that
the correlation function can be approximated as (x > 0)

GV (x, L) = Ae−x/ξz , (34)

as soon as x is 2 or 3. Moreover, for small β, ξz is very
little dependent on βg. For instance, for β = 0.1, the strong-
coupling behavior GV (x, L) ∼ (Nβ )x holds quite precisely for
all values of βg. Wilson loops behave in a very similar fashion.
We find W (m, L) ≈ B exp(−4m/ξw ) with ξw ≈ ξz as long as
m � 2. Clearly, in the high-temperature phase a single gauge
mode controls the behavior of all observables that involve
gauge degrees of freedom.

The behavior in the low-temperature phase is analogous.
The correlation function GV (x, L) behaves as in Eq. (34); see
the upper panel of Fig. 8 for results at β = 0.8. Moreover,
Polyakov and Wilson loops satisfy

P(L) = Ae−L/ξz , W (m) = Be−4m/ξz , (35)

with the same correlation length and A, B ≈ 1. Figure 8 also
shows that GV (x, L) has a very precise exponential decay even
when ξz � L. Clearly, it couples to a single isolated mode
and hence there are no corrections to the leading exponential
behavior. In this phase the correlation length increases with βg

(see the lower panel of Fig. 8): in agreement with perturbation
theory, it scales linearly with βg in the limit βg → ∞. Note
the ξz is also expected to diverge in the limit β → ∞ at fixed
βg. Indeed, for β → ∞, the relevant configurations are those
that minimize the Hamiltonian term that depends on the fields
z. If we perform a local minimization on each link, we find the
constraint

zx+μ̂ = λ̄x,μzx. (36)

This constraint can be satisfied simultaneously on the four
links belonging to a plaquette only if the product of the gauge
fields along the plaquette is 1. Analogously, the constraint is
satisfied on the links that belong to a loop that wraps around
the lattice only if the Polyakov operator is 1. It follows that
gauge configurations are trivial—λx,μ is 1 on all links modulo
gauge transformations—and ξz is infinite in this limit.

These results for the gauge observables indicate that gauge
and vector observables are noncritical in both phases and that
their behavior is analogous for small and large values of β.
Only the limit βg → ∞ distinguishes the two sectors. If βc,∞
is the transition point for βg → ∞ [therefore in the O(2N )
theory], for βg → ∞, the correlation length ξz is finite for
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FIG. 8. Top: Vector correlation function GV (x, L) versus x for
β = 0.8 and several values fo βg. Bottom: Vector correlation length
ξz as a function of βg for β = 0.8. The line shows that ξz scales as βg

for large βg (the parameters have been determined by performing a
linear fit of the data with βg � 1.6). For x = L, GV (L, L) corresponds
to the average of the Polyakov loop.

β < βc,∞ and infinite in the opposite case. This guarantees
that vector correlations are critical in the O(2N ) theory with a
finite low-temperature magnetization. But this occurs only for
βg strictly equal to infinity. For finite βg, only Q correlations
display criticality.

Finally, let us discuss the behavior of vector and gauge
quantities along the transition line. For N = 4, as we are deal-
ing with first-order transitions, we expect GV (x, L) to depend
on the phase one considers. In the CP3 model (βg = 0) the
transition is strong and therefore the high-temperature (HT)
and low-temperature (LT) correlation functions can be easily
computed by fixing β in the coexistence region and starting
the simulation from a random or an ordered configuration.
We find that in both cases the correlation function decays
very rapidly and estimate ξz ≈ 1.9 and ξz ≈ 1.7 in the LT
and HT phase, respectively. Clearly, vector modes are not
critical. Similar results hold for the CP1 and CP2 models. In
the first case, we obtain ξz ≈ 2.2. For N = 3 the transition is
so weak that we cannot identify the two phases and we are
only able to compute an effective correlation function, which
is a linear combination of those appropriate for the two phases.
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FIG. 9. The vector correlation function GV (x, L) in the critical
region for βg = 0.5 (top), 1 (middle), and 4 (bottom). For βg = 0.5
we report the estimate for β = 0.365 (high-temperature phase) and
for β = 0.370 (low-temperature phase). For βg = 1 and 4, we report
an effective estimate of the correlation function in the coexistence
region (see text for a discussion), computed at β = 0.279 for βg = 1,
and at β = 0.248 for βg = 4.

This quantity still allows us to compute the largest of the two
correlation lengths, i.e., ξz in the LT phase, obtaining ξz ≈ 2.2.
Results for finite βg are reported in Fig. 9. The first distinctive
feature is that, for the cases we consider, the correlation

function does not behave as a single exponential, although
an exponential behavior sets in when x 
 ξz. Clearly, at the
critical point several modes are playing an important role
and an exponential behavior is only observed when ξz is
significantly less than L. Second, the correlation length ξz

increases with increasing βg along the transition line. For
βg = 0.5 we obtain ξz ≈ 3.8, 3.6, 3.1 for L = 32, 48, and
64 in the LT phase (runs at β = 0.370 with ordered start).
In the HT phase (runs at β = 0.365 starting from a random
configuration) we obtain ξz ≈ 2.2 with a small L dependence.
Although ξz is small, it is larger than the value it takes in the
CP3 model, i.e. the AH model with βg = 0. For βg = 1, we
are not able to distinguish the two phases and, therefore, we
only compute the LT estimate of ξz. Results for L = 32, 48, 64
essentially agree and give ξz ≈ 6.9. This estimate is confirmed
by the analysis of the Polyakov loop. A fit to Eq. (35) gives
ξz = 6.9(1), in very good agreement with the results obtained
from GV (x). For βg = 4, even for L = 96 we are not yet in the
regime in which one can reliably identify a range of distances
in which the correlation function decays exponentially. If we
fit the correlation function to Eq. (34) in the range L/3 �
2L/3, we obtain ξz = 17.1(1) and 17.6(1) for L = 64 and
96, respectively. The analysis of the Polyakov loop gives
a somewhat larger value ξz = 20.9(3). Whatever the exact
asymptotic result is, data confirm that, for βg = 4, we are deep
in the crossover region, where vector and gauge excitations
compete with gauge-invariant excitations associated with Qx

(for comparison note that ξ = 20.3(3) for L = 96). These re-
sults provide us a physical explanation of the crossover effects
we observe. The asymptotic first-order behavior is observed
only when the correlation length ξ (L) at the transition point
is significantly larger than ξz. When ξ (L) ∼ ξz we observe
an apparent scaling behavior in which both the (gauge-field
independent) degrees of freedom associated with Q and the
(gauge-field dependent) ones, that are encoded in the gauge
observables and in the vector correlations, are both relevant.

IV. CONCLUSIONS

We have studied the phase diagram and critical behavior of
muticomponent AH lattice models, in which an N-component
complex field zx is coupled to quantum electrodynamics. We
consider the compact Wilson formulation of Abelian lattice
gauge theories in which the fundamental gauge fields are
complex numbers of unit modulus; see Eq. (3). For the scalar
fields, we consider the unit-length limit and fix |zx|2 = 1.
Finally, we fix q = 1 for the charge of the matter fields.
We focus on systems with a small number of components,
considering N = 2 and N = 4.

We investigate the phase diagram of the model as a
function of the couplings β and βg. The phase diagram is
characterized by two phases: a low-temperature phase (large
β ) in which the order parameter Qab condenses, and a high-
temperature disordered phase (small β ). The gauge coupling
does not play any particular role in the two phases: gauge
observables and vector observables do not show long-range
correlations for any finite β and βg. The two phases are sepa-
rated by a transition line that connects the CPN−1 transition
point (βg = 0) with the O(2N ) transition point (βg = ∞).
Concerning the nature of the transition line, our numerical
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data are consistent with a simple scenario, in which the nature
of the transition line is independent of βg. Therefore, we
predict Heisenberg critical behavior along the whole line for
N = 2, and first-order transitions for N = 4. Note that, for
βg → ∞ the model becomes equivalent to the O(2N ) vector
model, and therefore one expects strong crossover effects con-
trolled by the O(2N ) fixed point. These crossover effects are
related to the presence of a second length scale ξz associated
with the vector correlations, which is finite for any βg and
diverges in the limit βg → ∞ in the whole low-temperature
phase.

The scenario supported by our numerical data is fully con-
sistent with the LGW approach that assumes a gauge-invariant
order parameter. On the other hand, at least for N = 2, it
disagrees with the ε-expansion predictions obtained using the
standard continuum AH model: for N = 2 this approach does
not predict a continuous transition. Numerical results allow
us to understand why the LGW approach is more appropriate
than the continuum AH model for these values of N . At the
transition (for both N = 2 and N = 4) only correlations of
the gauge-invariant operator Qab display long-range order.
Gauge modes represent a background that gives only rise to
crossover effects and indeed, the asymptotic behavior sets in
only when the correlation length of the gauge fluctuations
is negligible compared to that of the Q correlations. It is
important to note that a LGW approach based on a gauge-
invariant order parameter has also been applied to the study
of phase transitions in the presence of non-Abelian gauge
symmetries, and, in particular, to the study of the finite-
temperature transition of hadronic matter as described by
the theory of strong interactions, quantum chromodynamics
[47–49]. Our results for the AH lattice model lend support
to the correctness of the approach and of the predictions
obtained.

We expect that AH lattice models with higher (but not too
large) values of N have a phase diagram similar to the one
obtained for N = 4, with a first-order transition line separating
the ordered and disordered phases. The phase diagram may
change for large values of N . In this regime, the system
may undergo continuous transitions controlled by the stable
fixed point of the continuum AH model. This issue requires
additional investigations.

It is important to stress that we have considered here a
compact version of electrodynamics. Other models of in-
terest in condensed-matter physics consider complex fields
(spinons) coupled to noncompact electrodynamics [5,50,51].
Such a model may have a different critical behavior due the
suppression of monopoles [52–55]. Numerical studies have
identified the transition, but at present there is no consensus on
its order. The same is true for loop models which supposedly
belong to the same universality class (if it exists); see, e.g.,
Refs. [4,16,17,56,57]. Clearly, additional work is needed to
settle the question.

APPENDIX A: TENSOR SCALING FUNCTIONS
IN THE n-VECTOR MODEL

In this Appendix we compute the scaling functions of
tensor observables in the three-dimensional n-vector model,
as they are relevant for the discussion of the large-βg limit

of CPN−1 models. We consider a cubic lattice and define an
n-dimensional real spin vector sα

x on each lattice site. The
Hamiltonian is

H = −βn
∑
〈xy〉

sx · sy, (A1)

where the sum extends over all lattice nearest-neighbor pairs
〈xy〉. We define the tensor (matrix) field

T αβ
x = sα

x sβ
x − 1

n
δαβ, (A2)

the vector and tensor correlation functions

GV (x) = 〈s0 · sx〉,
GT (x) =

∑
αβ

〈
T αβ

0 T αβ
x

〉 = 〈Tr (T0Tx)〉, (A3)

where “Tr” is the trace over the O(n) indices, and the corre-
sponding correlation lengths ξV and ξT , defined as in Eq. (17).
We also consider renormalization-group invariant ratios (col-
lectively named Binder parameters) defined in terms of

�αβ =
∑

x

T αβ
x . (A4)

We define

U3T = 〈Tr �3〉
〈Tr �2〉3/2

, (A5)

U4T,a = 〈[Tr �2]2〉
〈Tr �2〉2

, U4T,b = 〈Tr �4〉
〈Tr �2〉2

. (A6)

These quantities are not independent for n = 2 and 3. The
relation U4T,b = U4T,a/2 holds for n = 2, 3, while U3 = 0 for
n = 2.

We can easily predict the value the Binder parameters
take in the high-temperature phase. The cubic parameter U3T

vanishes, while

U4T,a = n2 + n + 2

(n + 2)(n − 1)
, U4T,b = 2n2 + 3n − 6

n(n + 2)(n − 1)
. (A7)

In the low-temperature phase we obtain instead

U3T = n − 2√
n(n − 1)

, (A8)

U4T,a = 1, U4T,b = n2 − 3n + 3

n(n − 1)
. (A9)

We have computed the scaling functions for the Binder
parameters and ξT /L for n = 3, 4, 5, 8 on cubic lattices of
size L, with L in the interval 16 � L � 32. We use periodic
boundary conditions. In Figs. 10 and 11 we report the scaling
functions as a function of X defined in Eq. (23) . We have used
the following values for βc = nβc and ν: βc = 0.69302(3)
[40,58] and ν = 0.7112(5) [43] for n = 3; βc = 0.93586(1)
[40,41] and ν = 0.749(2) [59] for n = 4; βc = 1.18138(3)
and ν = 0.779(3) [60] for n = 5; βc = 1.92677(2) and ν =
0.85(2) [18] for n = 8. Note that, on the scale of the figure,
differences on the value of ν of 1% cannot be distinguished.

In spite of the fact that lattices are relatively small,
we observe a very good scaling. We have also determined
the value of the different quantities at the critical point;
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FIG. 10. Plot of ξV /ξT as a function of X = (β − βc )L1/ν for n =
3, 4, 5, and 8.

see Table I. The results have been obtained by extrapolating
the finite-L data assuming that scaling corrections behave
as L−ω. The quoted error includes the statistical error, the
interpolation error of the data, the error on βc and ν, and
the extrapolation error. The latter has been conservatively

TABLE I. Estimates of several renormalization-group invariant
quantities at the critical point X = 0.

n = 3 n = 4 n = 5 n = 8

U ∗
4T,a 1.458(12) 1.287(7) 1.218(2) 1.117(2)

U ∗
4T,b 0.729(6) 0.684(2) 0.677(3) 0.681(2)

U ∗
3T 0.334(10) 0.462(7) 0.529(3) 0.636(2)

(ξT /L)∗ 0.213(5) 0.221(4) 0.222(1) 0.236(1)
(ξV /ξT )∗ 2.68(3) 2.50(2) 2.41(1) 2.21(1)

estimated as the difference between the extrapolated value and
the value that the observable takes on the largest lattice.

In Fig. 12 we report the same invariant ratios as a function
of ξT /L. Some numerical values (extrapolations and errors
have been computed as before) are reported in Table II.

APPENDIX B: FINITE-SIZE SCALING BEHAVIOR
FOR βg → ∞

In this Appendix we discuss the limit βg → ∞ of the
model. In this limit, the gauge part of the Hamiltonian be-
comes trivial and we obtain

λx,μ λx+μ̂,ν λ̄x+ν̂,μ λ̄x,ν = 1 (B1)
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and 8.
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FIG. 12. Plot of ξV /ξT (top left), U3T (top right), U4T,a (bottom left), and U4T,b (top right) as a function of ξT /L for n = 3, 4, 5, and 8.

on every lattice plaquette. We consider a finite lattice with
periodic boundary conditions and further assume that the
Polyakov loops order in the same limit. If this occurs (we
discuss this issue in Sec. III D), we can set λx,μ = 1 on each
lattice link. Therefore, for βg → ∞, the Hamiltonian becomes
simply

H = −βN
∑
x,μ

(z̄x · zx+μ̂ + c.c.). (B2)

We now define a 2N-dimensional unit real vector sx by setting

za
x = sa

x + isa+N
x , (B3)

a = 1, . . . , N . In terms of this new field the Hamiltonian be-
comes that of the n vector model [see Eq. (A1)], with n = 2N .
We have therefore an enlargement of the global symmetry: the
model is now invariant under O(2N ) transformations.

Since the model becomes O(2N ) invariant, it is useful
to rewrite CPN−1 observables in terms of explicitly O(2N )
invariant quantities that can be determined directly in the
O(2N ) theory. The basic CPN−1 variable Qab

x can be rewritten
in terms of the tensor operator T αβ

x of the O(2N ) theory. The
relation is not trivial,

Qab
x = T ab

x + T a+N,b+N
x + iT a,b+N

x − iT a+N,b
x , (B4)

which implies that Q-correlations are not trivially related to T
correlations in the vector model. Using relation (B4), we can
express the CPN−1 correlation function G(x) in terms of the
O(2N ) tensor correlation function GT (x). Using the O(2N )
invariance of the model we obtain

G(x) = 2(N − 1)

2N − 1
GT (x), (B5)

which implies that the CPN−1 correlation length can be iden-
tified with the tensor correlation length ξT defined in the
2N-vector model.

Analogous relations hold for the Binder parameter. As in
the O(n) case, we consider two additional Binder parameters

U3 =
〈
Tr �3

CP

〉〈
Tr �2

CP

〉3/2 , Ub =
〈
Tr �4

CP

〉〈
Tr �2

CP

〉2 . (B6)

where

�ab
CP =

∑
x

Qab
x . (B7)

For N = 2, we have U3CP = 0 and U = 2Ub.
In the high-temperature phase we have U3 = 0,

U = N2 + 1

N2 − 1
, Ub = 2N2 − 3

N (N2 − 1)
. (B8)
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TABLE II. We report some numerical values of the scaling functions F (x) that give the values of the Binder parameters and of ξV /ξT as
a function of x = ξT /L; see Eq. (25). Results in the scaling limit for n = 3, 4, 5, 8. If the function has a maximum, in the second and third
column we report the position xmax of the maximum and Max = F (xmax). In the last five columns we report F (x) for x = 0.1, 0.2, 0.3, 0.4, 0.5.

n xmax Max x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5

U3T

3 0.162(4) 0.325(8) 0.372(2) 0.390(2) 0.398(1)
4 0.212(1) 0.422(8) 0.517(2) 0.548(2) 0.561(1)
5 0.246(7) 0.502(7) 0.597(3) 0.634(2) 0.654(1)
8 0.268(1) 0.576(3) 0.703(2) 0.753(1) 0.775(1)

U4T,a

3 0.132(2) 1.60(3) 1.57(3) 1.49(2) 1.261(2) 1.146(5) 1.080(1)
4 0.141(2) 1.39(2) 1.336(5) 1.317(2) 1.178(4) 1.099(2) 1.054(1)
5 0.155(1) 1.29(1) 1.250(7) 1.256(2) 1.144(4) 1.075(2) 1.041(1)
8 0.154(1) 1.17(1) 1.1269(3) 1.142(2) 1.089(3) 1.044(1) 1.0239(4)

U4T,b

3 0.132(2) 0.80(2) 0.78(2) 0.745(1) 0.631(1) 0.573(2) 0.540(1)
4 0.205(1) 0.692(6) 0.626(3) 0.685(3) 0.649(2) 0.622(2) 0.604(1)
5 0.25(4) 0.68(1) 0.549(7) 0.679(9) 0.678(4) 0.665(2) 0.658(1)
8 0.407(1) 0.644(3) 0.721(2) 0.746(1) 0.7562(2)

ξV /ξT

3 3.37(5) 2.71(2) 2.46(1)) 2.296(8) 2.171(8)
4 3.23(5) 2.62(3) 2.30(1) 2.125(4) 2.008(7)
5 3.18(2) 2.49(2) 2.20(1) 2.029(3) 1.918(6)
8 3.01(2) 2.34(1) 2.05(1) 1.893(3) 1.788(4)

In the low-temperature phase we have U = 1,

U3 = N − 2√
N (N − 1)

, (B9)

Ub = N2 − 3N + 3

N (N − 1)
. (B10)

To compute the scaling functions associated with these quan-
tities in the O(2N ) theory, we use the mapping (B3). It is easy
to verify that

�ab
CP = �ab + �a+N,b+N + i�a,b+N − i�a+N,b. (B11)

Squaring the previous relation and taking the trace, we obtain

Tr �2
CP = Tr �2 +

N∑
a,b=1

(�ab�a+N,b+N − �a,b+N�a+N,b).

(B12)

In this relation, the trace in the l.h.s. is performed in the CPN−1

theory (indices go from 1 to N ), while the trace in the r.h.s. is
performed in the O(2N ) theory (indices go from 1 to 2N ). The
presence of the additional terms in Eq. (B12) explains why the
relation between the CPN−1 Binder parameters and the tensor
Binder parameters in the O(2N ) theory is not trivial.

Using the O(2N ) invariance of the model we obtain the
relations〈

Tr �2
CP

〉 = 2(N − 1)

2N − 1
〈Tr �2〉,〈

Tr �3
CP

〉 = 2(N − 2)

2N − 1
〈Tr �3〉,

〈[
Tr �2

CP

]2〉 = 4N

(2N − 3)(4N2 − 1)

× [(2N2 − 5N + 4)〈[Tr �2]2〉 − 2〈Tr �4〉],〈
Tr �4

CP

〉 = 2

(2N − 3)(4N2 − 1)

× [(4N2 − 3N − 6)〈[Tr �2]2〉
+2(2N3 − 9N2 + 6N + 6)〈Tr �4〉]. (B13)

We obtain therefore the relations, which are exact for the
O(2N ) theory, between CPN−1 and tensor O(2N ) Binder
parameters defined in Appendix A:

U3 = N − 2

N − 1

√
2N − 1

2(N − 1)
U3T ,

U = N (2N − 1)

(N − 1)2(2N + 1)(2N − 3)

× [(2N2 − 5N + 4)U4T,a − 2U4T,b],

Ub = 2N − 1

2(N − 1)2(2N + 1)(2N − 3)

× [(4N2 − 3N − 6)U4T,a

+ 2(2N3 − 9N2 + 6N + 6)U4T,b]. (B14)

For N = 2 and N = 4, the two cases of relevance in this work,
we obtain

U = 12
5 (U4T,a − U4T,b),

U = 448
405U4T,a − 56

405U4T,b, (B15)
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FIG. 13. Scaling functions of the CPN−1 Binder parameters in the O(2N ) model, computed using O(2N ) tensor data and Eq. (B14). For
N = 2 we have Ub = U/2. For ξT /L → 0, we have U ≈ 1.667, Ub ≈ 0.833 for N = 2, and U ≈ 1.133, Ub ≈ 0.483 for N = 4. In the limit
ξT /L → ∞, U = 1 for any N and and Ub = 0.5, 0.583 for N = 2, 4, respectively.

respectively. To obtain the scaling functions associated with
the CPN−1 Binder parameters in the large-βg limit, we have
therefore performed simulations in the n-vector model with

n = 2N , we have computed the tensor Binder parameters
U4T,a and U4T,b, and we have applied Eq. (B15). Results are
reported in Fig. 13.
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