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Jump processes with deterministic and stochastic controls
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We consider the dynamics of a one-dimensional system evolving according to a deterministic drift and
randomly forced by two types of jump processes, one representing an external, uncontrolled forcing and the
other one a control that instantaneously resets the system according to specified protocols (either deterministic
or stochastic). We develop a general theory, which includes a different formulation of the master equation using
antecedent and posterior jump states, and obtain an analytical solution for steady state. The relevance of the
theory is illustrated with reference to stochastic irrigation to assess crop-failure risk, a problem of interest for
environmental geophysics.
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I. INTRODUCTION

Control theory applied to complex systems such as net-
works and small out-of-equilibrium devices has received in-
creasing attention from the physics community [1–3]. Less
attention has been devoted to systems characterized by ran-
dom jumps, in spite of the fact that several physical systems
experience abrupt, unpredictable transitions that are aptly
described as random jumps (see, e.g., [4,5] and references
therein). In natural processes jumps are typically external,
uncontrolled events; in managed systems, however, jumps
also may represent an artificial control that returns the system
state to a desired range [e.g., 6]. Ideally, the control (and
representative jumps) should be deterministic, but often a
stochastic representation is more appropriate to account for
limited and imprecise controls.

Here, for a system with a deterministic drift and two
jump processes, representing a natural external process and
an artificial stochastic control, we pose a master equation
using the recently developed formalism for state-dependent
jump processes [5] along with a representation for the jump
currents for the control jump process. The latter is especially
convenient when the initial and final states of the jump are
known (i.e., the set levels for the control). We then solve the
master equation for the case of steady state. The resulting
class of solutions is specific to natural processes represented
by a nonhomogeneous Poisson jump process forced by inputs
with an exponential distribution but also is general to any
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control process description. It should be noted that, since the
formalism proposed in [5] obeys the usual rules of calculus
(see also [7]), the jump-transition prescription of this work
(and of Eq. (29) of [5]) should correspond to the Marcus jump
transition (e.g., [8–13]). Future work will investigate more
formally this correspondence. This paper also generalizes
previous work on stochastic resetting [14–16] by allowing the
resetting state (as well as the starting state) to be drawn from
assigned distributions.

In the second part of the paper, we use the developed
formalism to represent the soil moisture dynamics forced by
random jumps of rainfall and controlled by a state-dependent
stochastic irrigation input. We consider different deterministic
as well as stochastic scenarios of the irrigation control. The
theory can be easily extended to multiple stochastic controls
used for redundancy, the details of which will be presented
elsewhere. We also use the solution to derive the associated
plant water stress that determines crop failure, an important
problem in geophysics and environmental engineering [17].
As shown by the irrigation example, the two different but
interchangeable representations of the jump process and the
general class of solutions highlight a framework for managing
and assessing systems forced by multiple jump processes.
Such a paradigm also appears in nanoscale systems, in which
fluctuations are rarely small and often appear in the form
of sudden jumps [18,19]. Accordingly, several problems of
control at the nanoscale may be tackled with the methods
presented here.

II. THEORY

A. Master equation

We consider a system described by a scalar variable, χ ,
evolving in time both deterministically, as described by the
drift function m(χ, t ), and randomly, as described by two

2470-0045/2019/100(4)/042133(9) 042133-1 ©2019 American Physical Society

https://orcid.org/0000-0001-5361-1065
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.042133&domain=pdf&date_stamp=2019-10-25
https://doi.org/10.1103/PhysRevE.100.042133


BARTLETT, PORPORATO, AND RONDONI PHYSICAL REVIEW E 100, 042133 (2019)

jump processes. The first one represents an uncontrolled forc-
ing ϕ(χ, t ), and the second one a controlled forcing ϕ̌(χ, t ),
used to reset (via a jump) the variable from an antecedent state
χ− to a posterior state χ+ according to a specified protocol.
The corresponding Langevin-type equation is

dχ

dt
= m(χ, t ) + ϕ(χ, t ) + ϕ̌(χ, t ), (1)

and thus the term ϕ(χ, t ) is the formal time derivative of
a nonhomogeneous Poisson process with arrival rate λ(χ, t )
and state dependent marks b(χ, z) forced by the random vari-
able z. The corresponding master equation for the probability
density function (PDF) pχ (χ, t ) is

∂t pχ (χ, t ) = −∂χ [Jm(χ, t ) + Jϕ (χ, t ) + Jϕ̌ (χ, t )]. (2)

The drift current is

Jm(χ, t ) = m(χ, t )pχ (χ, t ), (3)

while the current for the uncontrolled jump process is conve-
niently represented using transition probabilities [5,20], i.e.,

∂χJϕ (χ, t ) = pχ (χ, t )
∫ ∞

−∞
W (u|χ, t )du

−
∫ ∞

−∞
WS (χ |u, t )pχ (u, t )du, (4)

where W (χ |u, t ) is the transition PDF of jumping away
from any prior (antecedent) state u and transitioning to the
(posterior) state χ , while W (u|χ, t ) is the transition PDF of
jumping from the antecedent state χ and transitioning to any
(posterior) state u. Moreover,

∫ ∞
−∞ W (u|χ, t )du = λ(χ, t ) is

the frequency of jumps, while the second transition PDF is
assumed here to be specific to the interpretation of

WS (χ |u, t ) = λ(u, t )pz[η(χ ) − η(u)]

|b(χ )| , (5)

where pz(z) is the distribution of forcing inputs z and η(χ ) =∫
1/b(χ )dχ . The function η(χ ) also represents a transfor-

mation that imposes the conventions of ordinary differential
calculus [5,7,11,20,21].

For the transition PDF of Eq. (5), the associated jump tran-
sition is defined by Eq. (29) of [5]. During this jump transition,
the state variable is not simply the midpoint between the states
immediately before and after the jump, as is the convention for
Stratonovich stochastic calculus [11,20,21]. For this reason,
the associated jump transition [of Eq. (29) of [5]] corre-
sponds to the Marcus jump transition (e.g., [8–13]). Never-
theless, the jump transition is consistent with the conventional
Stratonovich midpoint rule when the jump is evaluated as a
consecutive series of infinitesimal increments as presented by
Eq. (30) in [5]. Accordingly, as shown by the Appendix of [5],
in the limit of infinitely frequently and small jumps, the master
equation (2) considered with the transition PDF of Eq. (5)
converges to the Stratonovich version of the Fokker-Planck
equation.

For the control jump process ϕ̌(χ, t ), a description of the
current based on (4) and (5) is not convenient. In fact, it
would be preferable to have a description where the initial
and final set points of the control are directly specified through
their respective distributions. To the best of our knowledge, a

representation of this type, as presented in the next section,
has not yet been explicitly developed.

B. Characterization by antecedent and posterior PDFs

Our goal is to express the control jump current explicitly
in terms of the distributions of initial and final set points
p̌χ− (χ, t ) and p̌χ+ (χ, t ), respectively. To this purpose, we
start from

∂χJϕ̌ (χ, t ) = pχ (χ, t )
∫ ∞

−∞
W̌ (u|χ, t )du

−
∫ ∞

−∞
W̌S (χ |u, t )pχ (u, t )du, (6)

where W̌ (u|χ, t ) and W̌ (χ |u, t ) are the transition PDFs of the
control process. The first transition PDF, W̌ (u|χ, t ), repre-
sents the probability rate of jumping from the state χ to any
state u. It is therefore linked to the Poisson jump frequency, as
in (4), ∫ ∞

−∞
W̌ (u|χ, t )du = λ̌(χ, t ). (7)

Following [5,22,23], such a nonhomogeneous Poisson arrival
rate is linked to the antecedent PDF, p̌χ− (χ, t ), via the average
rate of jumping of the control process 〈λ̌(t )〉 as

p̌χ− (χ, t ) = λ̌(χ, t )pχ (χ, t )

〈λ̌(t )〉 . (8)

As for the second term on the right-hand side of (6), the
transition PDF can be expressed as the product of the jump
frequency and the PDF of the increment in χ ,

W̌S (χ |u, t ) = λ̌(u, t ) p̌�χ |u(χ |u, t ), (9)

where �χ is the jump increment and the posterior state
after the jump is χ+ = χ− + �χ (which may be written as
χ = u + �χ ). Thus, p̌�χ |u(χ |u, t ) may be interpreted as a
conditional PDF p̌χ |u(χ |u, t ). Accordingly, the posterior PDF
is defined as

p̌χ+ (χ, t ) =
∫ ∞

−∞
p̌�χ |u(χ |u, t ) p̌χ− (u, t )du. (10)

Combining (8), (9), and (10), one obtains∫ ∞

−∞
W̌S (χ |u, t )pχ (u, t )du = 〈λ̌(t )〉p̌χ+ (χ, t ). (11)

Substituting all the above relationships in (6) gives the
sought expression for the control jump current

∂χ J̌ϕ (χ, t ) = −〈λ̌(t )〉[ p̌χ+ (χ, t ) − p̌χ− (χ, t )], (12)

where the first term is related to the current from jumping from
any prior (antecedent) state u and arriving at the (posterior)
state χ , while the second component is related to the current
from jumping away from the prior state χ to any posterior
state u. Because the jump is directly prescribed by this formal-
ism, we do not need to explicitly define the underlying jump
process amplitude b(χ, z), thus avoiding interpretation issues
(e.g., the Itô-Stratonovich dilemma). In summary, the master
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equation (2) becomes

∂t pχ (χ, t )

= −∂χ [m(χ, t )pχ (χ, t )] − pχ (x, t )
∫ ∞

−∞
W (u|χ, t )du

+
∫ ∞

−∞
WS (χ |u, t )pχ (u, t )du

+ 〈λ̌(t )〉[ p̌χ+ (χ, t ) − p̌χ− (χ, t )]. (13)

C. General steady-state solution

For the master equation (13) in steady state and exponential
PDF of the forcing term pz(z) = γ e−γ z, a general solution can
be obtained as (see Appendix A for details)

pχ (χ ) = −e− ∫
( γ

b(χ ) + λ(χ )
m(χ ) )dχ

m(χ )

×
(

N ′ + 〈λ̌〉
∫

h(χ )e
∫

( γ

b(χ ) + λ(χ )
m(χ ) )dχdχ

)
, (14)

where N ′ is a normalization constant, b(χ ) = dχ/dy [see
Eq. (A1)] and

h(χ ) = γ

b(χ )
[P̌χ− (χ ) − P̌χ+ (χ )] + p̌χ− (χ ) − p̌χ+ (χ ). (15)

Note that P̌χ− (χ ) = ∫ χ

−∞ p̌χ− (u)du, and P̌χ+ (χ ) =∫ χ

−∞ p̌χ+ (u)du are the respective cumulative distribution
functions (CDFs) of the antecedent and posterior PDFs.

Introducing the potential

	(χ ) =
∫ (

γ

b(χ )
+ λ(χ )

m(χ )
+ ∂χm(χ )

m(χ )

)
dχ

=
∫ (

γ

b(χ )
+ λ(χ )

m(χ )

)
dχ + ln |m(χ )|, (16)

the solution may be written as

pχ (χ ) = −e−	(χ )

(
N ′ + 〈λ̌〉

∫
h(χ )

|m(χ )|e	(χ )dχ

)
. (17)

Note that 〈λ̌〉 = 0 in the absence of control processes, in
which case the solution of Eq. (17) reverts to the one found
in Ref. [5].

In lieu of setting a value for 〈λ̌〉, one may consider the
crossing frequency υ(ξ ) at the arbitrary level χ = ξ , as de-
fined by

υ(ξ ) = |m(ξ )|pχ (ξ ). (18)

For Eq. (18), note that the normalization constant of pχ (χ )
also is a function of the average frequency 〈λ̌〉, i.e.,

N ′ =
〈λ̌〉 ∫ χmax

χmin
e−	(χ )

∫ χ h(u)
|m(u)|e

	(u)du dχ − 1∫ χmax

χmin
e−	(χ )dχ

. (19)

Thus, for an assumed value of υ(ξ ), one may solve Eq. (18)
for the average frequency 〈λ̌〉.

III. APPLICATION: SOIL MOISTURE DYNAMICS
WITH IRRIGATION CONTROL

A. Soil moisture and plant water stress

We apply the previous theory to soil moisture dynamics, a
fundamental driver of the terrestrial hydrologic cycles with
feedbacks to climate and biogeochemistry (e.g., [17,24,25]
and references therein). The soil moisture χ , defined as the
relative degree of soil saturation, 0 < χ � 1, jumps because
of rainfall infiltration, modeled as a marked Poisson process
with constant frequency λ, and rainfall marks z exponentially
distributed with parameter γ = w0/α, where α is the mean
rainfall depth per event and w0 is the soil water storage
capacity. Following [22], the infiltration amount z b(χ ) is
governed by the function

b(χ ) = 1 − βχ, (20)

where βχ represents runoff to the stream with χ interpreted
in the sense of the jump transition mentioned with Eq. (5).

During interstorm periods, soil moisture decreases mostly
because of plant evapotranspiration (ET), modeled as

m(χ ) = E0
χ (1 + k)

χ + k
, (21)

where E0 is potential evapotranspiration and the parameter k
adjusts ET with declining soil moisture to account for differ-
ent plant water-use strategies (Fig. 1). Equation (21) accounts
for a variety of relationships between evapotranspiration and
the soil moisture status [24,26]. As k → 0, m(χ ) → E0; con-
versely, as k → ∞, m(χ ) becomes linear (see Fig. 1).

With these parametrizations, the potential function (16) is

	(χ ) = λ(k ln |χ | + χ )

E0(k + 1)
− γ ln |1 − βχ |

β
+ ln |m(χ )|.

(22)

As the soil moisture level declines, plants undergo water
stress [24], modeled to occur when ET is a fraction f of the
potential value E0, at which point soil moisture is

χ∗ = f k

1 + k − f
, (23)

which varies with the plant water-use strategy through k.
Below this level χ∗, water stress is assumed to increase as

ζ (χ ) =
(

χ∗ − χ

χ∗

)φ

, 0 � χ � χ∗ (24)

while it is zero for χ > χ∗. The parameter φ accounts for the
nonlinear relationship between the soil moisture deficit (from
χ∗) and water stress, and φ reflects plant water-use strategies
and sensitivity to drought (Fig. 1). It is also useful to define

〈ζ ′〉 = 1

Pχ (χ∗)

∫ 1

0
ζ

χ∗ζ
1−φ

φ

φ
pχ (χ∗ − χ∗ζ

1
φ )dζ , (25)

an average that only accounts for the continuous part of the
PDF pζ (ζ ) and thus reflects the average over the typical
duration of the stressed condition Tχ∗ = Pχ (χ∗ )

|m(χ∗ )|pχ (χ∗ ) . Finally,
an effective stress for a growing season of duration Ts may be
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(a) (b)

(c) (d)

FIG. 1. Examples of (a) the function for evapotranspiration m(χ ) of Eq. (21), (b) the function for water infiltration b(χ ) of Eq. (20), (c) the
function for active water stress ζ (χ ) of Eq. (24), and (d) the posterior PDF p̌χ+ (χ ) of Eq. (35) and antecedent PDF p̌χ− (χ ) of Eq. (36), for
which we have noted the χ values for γ̌ −1, μ, μ ± σ , and the value at which the antecedent PDF is truncated, χ̌−

max. Unless stated otherwise,
χ̌+

max = 1, χ̌min = 0.35, γ̌ = 100, σ = 0.01, μ = 0.4, k = 0.5, β = 0.25, and f = 0.9.

defined as [24]

θ =
{( 〈ζ ′〉Tχ∗

�Ts

)1/
√

nχ∗
, 〈ζ ′〉Tχ∗ < �Ts

1, otherwise
(26)

where nχ∗ = |m(χ∗)|pχ (χ∗)Ts is the average number of times
the plant enters a stressed condition, and � represents an
upper bound for stress prior to permanent plant damage [24].

B. Irrigation

Irrigation inputs are introduced to avoid or reduce plant
water stress [27]. These take place as a control in the form of
instantaneous jumps, a Poisson process with rate obtainable
from (8),

λ̌(χ ) = 〈λ̌〉 p̌χ− (χ )

pχ (χ )
, (27)

where p̌χ− (χ ) represents the distribution of the antecedent
before irrigation initiates (see Fig. 1). The applied irrigation
water ž represents a forcing input that increases soil moisture
by the infiltration amount given as

�χ = η−1[η(u) + ž] − u, (28)

where following the Eq. (5) jump interpretation of the am-
plitude function b(χ ), we assume that the infiltration amount
decreases as the irrigation input increases based on η(χ ) =∫

1/b(χ )dχ . Following Eq. (28), the irrigation inputs ž are
greater than �χ because of runoff losses implicit in the
function b(χ ) of Eq. (20). In turn, the applied irrigation water
of Eq. (28) is part of a joint PDF for the variables governing

the irrigation water amount, i.e.,

p̌ž(ž,�χ, u)

= δ(ž− [η(�χ + u)− η(u)])p̌�χ |u(�χ |u) p̌χ− (u), (29)

where the Dirac delta function δ(·) represents the PDF
p̌ž|�χu(ž|�χ, u), i.e., the probability density of applied irriga-
tion ž, conditional on the infiltrated irrigation water �χ , and
the antecedent moisture state u. The Dirac delta function must
be evaluated following the property discussed in Appendix A
of [22]. By integrating over the PDF of Eq. (29), we obtain the
average depth of irrigation events

〈ž〉 =
∫ �χmax

�χmin

∫ χ̌−
max

χ̌−
min

∫ ∞

0
ž p̌ž(ž,�χ, u)dž du d�χ. (30)

Based on Eq. (30), the average volume of irrigation water
required over a growing season of duration Ts is

V = w0 Ts〈ž〉〈λ̌〉, (31)

using Eq. (30). This volume depends on the soil moisture
dynamic described by the steady-state PDF pχ (χ ).

1. Deterministic control

In an ideal situation of perfectly deterministic control [27],
irrigation initiates exactly at the intervention level χ = χ̌min

and brings the soil moisture to the level χ = χ̌+
max [Fig. 2(a)],

that is

p̌χ− (χ ) = δ(χ − χ̌min), (32)

p̌χ+ (χ ) = δ(χ − χ̌+
max). (33)
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(a)

(b)

FIG. 2. Examples of (a) deterministic irrigation control and
(b) stochastic irrigation control soil moisture trajectories, simula-
tion distribution (histogram bars), and the steady-state PDF (black
lines). General parameter values are λ = 0.15 d−1, α = 10 mm,
wo = 450 mm, γ = wo/α, k = 0.5, E0 = −4 mm d−1, β = 0.25,
χ̌+

max = 1, and χ̌min = 0.35. The stochastic control is based on the
antecedent and posterior PDFs of Eqs. (35) and (36) for which
σ = 0.01, μ = 0.4, γ̌ = 100, and ln 2/γ̌ is the median value of the
antecedent PDF. In both cases, the crossing frequency is zero at χ̌min,
i.e., υ(χ̌min ) = 0, and 〈λ̌〉 may be calculated from Eq. (18), while the
steady state solution may be calculated from Eq. (17).

These and the respective CDFs (which are right continuous
Heaviside step function) define a specific form of the function
h(χ ) of Eq. (15) The steady-state PDF of soil moisture is
given by Eq. (17) with substitutions for the potential of
Eq. (22) and the control process average frequency 〈λ̌〉 and
set point function h(χ ) of Eq. (15). As a consequence of the
deterministic description of the irrigation control, the solution

PDF shows a sharp transition in the probability density at both
the initiation level χ̌min and the renewal level χ̌+

max [Fig. 2(a)].
Irrigation occurs as a nonhomogeneous marked Poisson

process with a state dependent frequency λ̌(χ ) defined by
Eq. (27) with substitutions for the steady-state solution and
antecedent PDF. In conjunction with λ̌(χ ), the infiltrated
irrigation water is distributed as

p̌�χ |u(�χ |u) = δ[�χ − (χ̌+
max − u)], (34)

where irrigation events always increase soil moisture by a de-
terministic amount of water (per unit area) equal to w0(χ̌+

max −
χ̌min). The average depth of applied irrigation water is 〈ž〉 =
η(χ̌+

max) − η(χ̌min), which follows from Eqs. (29) and (30),
both of which are specific to the interpretation of the jump
transition represented by the transition PDF of Eq. (5). The
overall volume of water for a growing season is given by
Eq. (31).

Unlike previous stochastic descriptions of irriga-
tion [27,28], here we account for runoff losses taking place
below saturation [through the function b(χ ) of Eq. (20)]. A
low value of β could represent an overall efficient manage-
ment of the agroecosystem that results in both less water
losses to runoff, a smaller volume of required irrigation water
[Fig. 3(a)], and less water stress. A larger β is responsible for
a sharp increase in plant water stress [Fig. 3(b)].

2. Stochastic control

To account of imperfect control, a stochastic irrigation
scheme is defined by p̌χ− (χ ) and p̌χ+ (χ ), so that the control
(on and off) set points are now random variables [Fig. 2(b)].
Here, we represent the antecedent set point with an exponen-
tial PDF and the posterior set point with a normal PDF, both
of which are truncated, i.e.,

p̌χ− (χ ) = γ̌ e−γ̌ (χ−χ̌min )

1 − e−γ̌ (χ̌−
max−χ̌min )

, χ̌min � χ � χ̌−
max (35)

p̌χ+ (χ ) = 2 e− (χ−μ)2

2σ2

√
2πσ erf

[
χ̌min−μ√

2σ
,

χ̌−
max+�χmax−μ√

2σ

]
,

χ̌min � χ � χ̌−
max + �χmax (36)

where erf[·] is the error function, and μ and σ , respectively,
control the location and width of the normal PDF, while the
exponential PDF scales with the parameter γ̌ [Fig. 1(d)]. The

(a) (b)

FIG. 3. For deterministic irrigation controls over a growing season Ts and increasing β, i.e., increasing runoff, (a) total volume of applied
irrigation water and (b) mean effective plant water stress. Parameter values are λ = 0.15 d−1, α = 10 mm, wo = 450 mm, γ = wo/α, k = 0.5,
E0 = −4 mm d−1, β = 0.25, χ̌+

max = 0.4, χ̌min = 0.35, � = 0.5, Ts = 120 d, φ=2, and f = 0.9.
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(b)(a)

(d)(c)

FIG. 4. In the case of stochastic control, Eqs. (35) and (36), examples of (a) the volume of irrigation water as a function of the process
noise γ̌ −2 where σ 2 = 0.75 γ̌ −2, (b) the volume of irrigation water in terms of the irrigation noise set points represented by χ̌min and μ,
(c) the effective water stress θ as a function of the process noise γ̌ −2 where σ 2 = 0.75 γ̌ −2, and (d) the effective stress as a function of
the irrigation noise set points represented by χ̌min and μ. Unless stated otherwise, χ̌min = 0.35, wo = 450 mm, k = 0.12, E0 = −4 mm/d,
β = 0.25, α = 10 mm, γ = wo/α, λ = 0.15 d−1, γ̌ = 100, μ = 0.4, σ = 0.015, χ+

max = 1, � = 0.5, Ts = 120 d, φ=2, and f = 0.9. In all
instances, the crossing frequency is zero at χ̌min, i.e., υ(χ̌min ) = 0, and 〈λ̌〉 may be calculated from Eq. (18).

upper bound of the antecedent PDF, χ̌−
max, is determined from

irrigation distribution of soil moisture transitions, for which
�χmax is the maximum possible transition. We calculate 〈λ̌〉
from Eq. (18) by considering the crossing rate υ(χmax) = 0,
which corresponds to the case of faultless irrigation for which
soil moisture never goes below χ̌min. Figure 2(b) shows the
soil moisture trajectories and associated steady-state PDF of
Eq. (17) in this case. The stochastic control diverges from
deterministic control according to the respective variances of
the PDFs of Eqs. (35) and (36), i.e., γ̌ −2 and σ 2, respectively.
As these variances decrease, the stochastic control approaches
the previously discussed deterministic control.

The frequency of irrigation λ̌(χ ) approaches infinity as the
state variable approaches the lower bound of the set point
range, i.e., limχ→χ̌min λ̌(χ ) = ∞, where we assume χ̌min is
approached from the right. Otherwise, if the irrigation con-
trol is not faultless, i.e., the crossing frequency is given by
υ(χ̌min) 	= 0, irrigation failures allow soil moisture levels to
decline below χ̌min.

The irrigation control is represented by the frequency λ̌(χ )
in conjunction with the distribution of soil moisture transitions

p̌�χ (�χ ), as defined by Appendix B with the p̌χ+ (χ, t ) given
by Eq. (36), i.e.,

p̌�χ (�χ )

= e− (�χ+χ̌min−μ)2

2σ2 (γ̌ σ 2− �χ− χ̌min+ μ)(1− e−γ̌ (χ̌−
max−χ̌min ) )

γ̌ σ 3
√

2π 1
2 erf

(
χ̌min−μ√

2σ
,

χ̌−
max+�χmax−μ√

2σ

) ,

0 � �χ � �χmax (37)

where the maximum forcing input is

�χmax = μ − χ̌min + γ̌ σ 2, (38)

which is based on p̌�χ (�χmax) = 0. As previously men-
tioned with Eq. (35), the PDF p̌χ− (χ ) is truncated at an
upper bound χ̌−

max. This upper bound χ̌−
max is not known

beforehand but is found from the normalization condition∫ �χmax

0 p̌�χ (�χ )d�χ = 1 (see Appendix B). With the an-
tecedent PDF of Eq. (35) and the PDF of soil moisture
transitions of Eq. (37), we follow Eq. (30) and derive the
average depth of irrigation water application, i.e.,

〈ž〉 =
∫ �χmax

0

∫ χ̌−
max

χ̌min

[η(�χ + u) − η(u)]
e− (�χ+χ̌min−μ)2

2σ2 (γ̌ σ 2 − �χ − χ̌min + μ)

σ 3
√

2π 1
2 erf

(
χ̌min−μ√

2σ
,

χ̌−
max+�χmax−μ√

2σ

) e−γ̌ (u−χ̌min )du d�χ, (39)

where �χmax is the maximum forcing input of Eq. (38). From 〈ž〉, we calculate the volume of irrigation for a growing season
based on Eq. (31).
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The volume of required irrigation water varies with both
the control noise, as shown by the variances γ̌ −2 and σ 2

[Fig. 1(d)], and the range of the control set points. The range
of the control set points approximately is indicated by χ̌min,
which represents the lower bound of the antecedent state (the
“on” set point) and μ, which represents the average renewal
state (the “off” set point). As the noise increases, the average
volume of irrigation water increases more for a smaller versus
a larger on or off set point range, as roughly indicated by
the difference between μ and χ̌min [Fig. 4(a)]. As shown on
Fig. 4(a), beyond the noise (variance) of γ̌ −2 ≈ 0.02, the
larger range of irrigation on and off set points (approximated
by χ̌min − μ) proves more effective in reducing the volume of
irrigation water. Such a behavior occurs because the smaller
range of on and off set points results in a greater frequency
of irrigation as the noise increases. Thus, if the farmer or
operator cannot precisely control irrigation, it may be more
efficient (water wise) to base irrigation on a larger set point
range with typically large water applications per irrigation
event.

Not surprisingly, as the location of the on and off set point
range increases, more irrigation water is required because the
soil moisture is being maintained at values where evapotran-
spiration is greater [Fig. 4(b)]. The application of irrigation
water must be balanced against the benefit it provides in
reducing plant water stress θ , which is considered in terms
of the control process noise. Depending on the on and off
set point range, the control noise (i.e., the variances γ̌ −2 and
σ ) may either increase or decrease the effective plant stress
[Fig. 4(c)]. Both trends are observed because the effective
stress has a minimum value with respect to the location of
the on and off setpoints [Fig. 4(d)]. Naturally, the larger set
point range and thus greater water application per irrigation
event reduces the effective stress [black line, Fig. 4(d)]. Notice
that the effective stress sharply decreases with the irrigation
set point range [Fig. 4(d)]. Accordingly, an optimal irriga-
tion control accounts for the inherent noise in the process
[Figs. 4(a) and 4(c)] and provides a set point range that both

minimizes the volume of irrigation water [Fig. 4(a)] and risk
of crop failure as measured by the effective stress [Fig. 4(d)].

IV. CONCLUSION

We have considered the problem of stochastic jumps with
a control based on set points. For this process, we have
presented a formulation of the control, based on the mean
frequency of jumps of the control process as well as the
distributions of the initial and target set points. This formula-
tion permits constructing a master equation where the control
appears more transparently than the common formulations
with transition probabilities. We also show that the steady-
state solution is expressible in terms of a potential function
and a set point function, which contains the properties of the
control.

We have shown an application to the problem of irrigation,
but similar applications can be carried out in other more com-
plex settings also with multiple controls and redundancies.
Such extensions will be presented elsewhere. We also plan
to analyze the connections with stochastic thermodynamics
of small systems where fluctuations appear as jumps and for
which optimal stochastic controls may be especially interest-
ing [18,19].
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APPENDIX A: MASTER EQUATION SOLUTION

For the master equation (13) with an exponentially distributed input pz(z) = γ e−γ z, we now derive the steady-state solution
pχ (χ ). To this purpose, we perform a change of variables based on the jump prescription of Eq. (5), i.e.,

y = η(χ ) =
∫

1

b(χ )
dχ , so that χ = η−1(y), (A1)

and thus the corresponding transformed PDF is given by pχ (χ, t ) = py(y, t )| dy
dχ

|, while the master equation (2) takes the form

∂t py(y, t ) = −∂y[Jm(y, t ) + Jϕ (y, t )] + 〈λ̌〉[ p̌y+ (y, t ) − p̌y− (y, t )]. (A2)

We then expand Eq. (A2) by substituting the probability current terms, i.e.,

∂

∂t
py(y, t ) = − ∂

∂y

[
m(η−1(y))
b(η−1(y))

py(y, t )

]
− λ(η−1(y), t )py(y, t ) +

∫ ∞

−∞
λ(η−1(u), t )pz(y − u)py(u, t )du

+ dχ

dy
δ[η−1(y) − χ+

max]
∫ χmax

χmin

λ(u, t )
∫ ∞

η(χ+
max )−η(u)−(χ+

max−u)
pz(1 + q − u)pχ (u, t )dq du + 〈λ̌〉[ p̌y+ (y, t ) − p̌y− (y, t )],

(A3)

where the fourth term on the right-hand side represents the transition probability to an upper bound of the system at χ+
max [22].

Assuming steady-state conditions and exponential PDF of z, we multiply the equation by the integrating function eγ y, and

042133-7



BARTLETT, PORPORATO, AND RONDONI PHYSICAL REVIEW E 100, 042133 (2019)

differentiate with respect to y, i.e.,

− eγ y d2

dy2

[
m(η−1(y))
b(η−1(y))

py(y)

]
− eγ yγ

d

dy

[
m(η−1(y))
b(η−1(y))

py(y)

]
− eγ y d

dy
[λ(η−1(y))py(y)]

= eγ y〈λ̌〉
(

γ p̌y− (y) + d

dy
p̌y− (y) − γ p̌y+ (y) − d

dy
p̌y+ (y)

)
. (A4)

Note that in steady state, the effect of an upper bound, i.e., the fourth term on the right-hand side of Eq. (A3), is accounted for in
the normalization constant of the solution PDF [22,24]. Dividing both sides of (A4) by eγ y and integrating,

− d

dy

[
m(η−1(y))
b(η−1(y))

py(y)

]
− m(η−1(y))

b(η−1(y))
py(y, t )

(
γ + λ(η−1(y))

b(η−1(y))
m(η−1(y))

)

= 〈λ̌〉
(

γ

∫
p̌y− (y)dy + p̌y− (y) − γ

∫
p̌y+ (y)dy − p̌y+ (y)

)
. (A5)

After multiplying both sides by the integrating function

exp
∫ (

γ + λ(η−1(y))
b(η−1(y))
m(η−1(y))

)
dy,

integrating, and rearranging terms, one obtains the desired solution in terms of the transformed variable

py(y) = − b(η−1(y))
m(η−1(y))

e
− ∫

(γ+λ(η−1(y)) b(η−1 (y))
m(η−1 (y))

)dy

×
[

N ′ + 〈λ̌〉
∫ (

γ

∫
p̌y− (y)dy + p̌y− (y) − γ

∫
p̌y+ (y)dy − p̌y+ (y)

)
e
∫

[γ+λ(η−1(y)) b(η−1 (y))
m(η−1 (y))

]dy
dy

]
. (A6)

Changing variables again, the solution of Eq. (A6) can be given in terms of χ , as in Eq. (14).

APPENDIX B: JUMP TRANSITION DETERMINED FOR EXPONENTIAL ANTECEDENT PDF

For Eq. (10) based on p̌�χ |u(�χ, t ) = p̌�χ (χ − u, t )�(χ − u), we retrieve the PDF p̌�χ (χ − u, t ) when the antecedent PDF,
p̌χ− (χ, t ), is based on a truncated exponential PDF, i.e.,

N p̌χ+ (χ, t ) =
∫ ∞

−∞
p̌�χ (χ − u, t )�(χ − u)

γ̌ (t )e−γ̌ (t )(u−χ̌min )

1 − e−γ̌ (t )(χ̌−
max−χ̌min )

�(u − χ̌min)�(χ̌−
max − u)du, (B1)

where p̌χ− (u, t ) now is defined by a truncated exponential distribution, and N is the normalization constant such that

N = 1∫ χ̌−
max+�χmax

χ̌min+�χmin
p̌χ+ (χ, t )dχ

, (B2)

for which �χmin and �χmax are the respective minimum and maximum jump transitions. Note that the Heaviside step function
�(χ − u) indicates that the transitions �χ must be positive. We may pose Eq. (B1) as

N p̌χ+ (χ, t ) =
∫ χ

χ̌min

p̌�χ (χ − u, t )
γ̌ (t )e−γ̌ (t )(u−χ̌min )

1 − e−γ̌ (t )(χ̌−
max−χ̌min )

du, (B3)

where the Heaviside step functions of Eq. (B1) now are implicit in both the integral limits and in the support of pχ+ (χ, t )
over the range χ̌min + �χmin � χ � χ̌−

max + �χmax as indicated by the normalization constant. Following a substitution for
χ = �χ + χ̌min and then a change of variables based on u = �χ + χ̌min − υ [29], Eq. (B3) becomes

N p̌χ+ (�χ + χ̌min, t ) =
∫ �χ

0
p̌�χ (υ, t )

γ̌ (t )e−γ̌ (t )(�χ−υ )

1 − e−γ̌ (t )(χ̌−
max−χ̌min )

dυ. (B4)

After multiplying both sides of Eq. (B4) by eγ̌ (t )�χ and then differentiating with respect to �χ , we recover

p̌�χ (�χ, t ) = N (1 − e−γ̌ (t )(χ̌−
max−χ̌min ) )∂�χ [ p̌χ+ (�χ + χ̌min, t )eγ̌ (t )�χ ]

γ̌ (t )eγ̌ (t )�χ
, (B5)

where �χmin � �χ � �χmax for which the limiting values of �χmin and �χmax, respectively, are found by solving
p̌�χ (�χmin) = 0 and p̌�χ (�χmax) = 0.

We also consider the case where the PDF p̌�χ (�χ, t ) and thus the jump transitions �χ are restricted to positive values, i.e.,
�χmin = 0. Accordingly, for only positive transitions, we must restrict the maximum antecedent value χ̌−

max. The new restricted
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value of χ̌−
max must be consistent with the normalization condition, i.e.,

∫ �χmax

0 p̌�χ (�χ )d�χ = 1. We pose the normalization
condition as

(1 − e−γ̌ (t )(χ̌−
max−χ̌min ) )∫ χ̌−

max+�χmax

χ̌min
p̌χ+ (χ, t )dχ

= 1∫ �χmax

0
∂�χ [p̌χ+ (�χ+χ̌min,t )eγ̌ (t )�χ ]

γ̌ (t )eγ̌ (t )�χ d�χ
(B6)

and then find the maximum permissible value of χ̌−
max for which both sides of the equation are equal.
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